CN115548698A - 一种高增益介质涡旋天线 - Google Patents

一种高增益介质涡旋天线 Download PDF

Info

Publication number
CN115548698A
CN115548698A CN202211383057.5A CN202211383057A CN115548698A CN 115548698 A CN115548698 A CN 115548698A CN 202211383057 A CN202211383057 A CN 202211383057A CN 115548698 A CN115548698 A CN 115548698A
Authority
CN
China
Prior art keywords
vortex
horn antenna
antenna
medium
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211383057.5A
Other languages
English (en)
Inventor
李文博
曾泓鑫
张雅鑫
杨梓强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN202211383057.5A priority Critical patent/CN115548698A/zh
Publication of CN115548698A publication Critical patent/CN115548698A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/06Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens
    • H01Q19/08Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens for modifying the radiation pattern of a radiating horn in which it is located
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/02Waveguide horns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/02Refracting or diffracting devices, e.g. lens, prism
    • H01Q15/08Refracting or diffracting devices, e.g. lens, prism formed of solid dielectric material

Landscapes

  • Aerials With Secondary Devices (AREA)

Abstract

本发明涉及通信技术领域,公开了一种高增益介质涡旋天线,包括馈源喇叭天线,介质涡旋透镜;其中所述馈源喇叭天线用于产生球面波;所述馈源喇叭天线与所述介质涡旋透镜的双曲面通过光学原理进行联系,将所述馈源喇叭天线置于所述介质透镜双曲面的焦点处,所述介质透镜对所述馈源喇叭天线产生的球面波进行会聚准直,形成平面波;再通过所述介质涡旋透镜透射阶梯螺旋结构形成涡旋电磁波,根据涡旋电磁波的模态计算公式进行设计,理论上可以得到任意需求的模态;且如此产生的涡旋电磁波具有高功率的特点,有助于在无线通信系统中的远距离传输。本发明提出的一种高增益介质涡旋天线具有高增益、高隔离度和轻量化的优点。

Description

一种高增益介质涡旋天线
技术领域
本发明涉及通信技术领域,具体涉及一种高增益介质涡旋天线。
背景技术
随着通信技术的迅猛发展,频谱资源日益匮乏,但我们对通信的容量和速度却是愈发渴求。为此如何提高频谱的利用率以及挖掘更宽广丰富的频谱资源成为了当今的核心与热点。
在现有的时分、频分、空分、码分、极化等复用技术手段下,利用远场平面电磁波进行通信情况下的通信链路传输能力已经接近香农限。在不拓展可利用频谱带宽的情况下提高频谱利用率问题的指引下,轨道角动量电磁涡旋技术逐渐进入人们的视野当中。根据麦克斯韦方程,电磁波不仅能传播能量同时能传播动量,传播的动量可分为线性动量与角动量,而角动量又分为旋转角动量与轨道角动量。在量子力学中,角动量是基本的物理量,旋转角动量与量子的自旋有关,在光学中对应光的偏振,在电磁学中对应电磁波的极化方式。轨道角动量描述螺旋波束横向旋转模式的空间坐标维度,垂直于坡印亭矢量方向。与已有的复用技术不同,轨道角动量电磁涡旋复用技术能够将载波所携带的轨道角动量模式作为调制参数,并且利用轨道角动量模式内在的正交性,将多路信号调制到不同的轨道角动量模式上,根据模式数或称拓扑电荷数区分不同的信道。通过这种方式,人们在相同载频上可以得到多个相互独立的轨道角动量信道。由于轨道角动量在理论上可以拥有无穷维阶数,因而可以构成无穷维的希尔伯特空间,由此理论上同一载波频率利用轨道角动量电磁涡旋复用可获得无穷的传输能力。
然而在无线通信系统的实际应用当中还存在许多的问题,如涡旋电磁波由于其中心能量低随传输距离会发散难以远距离传输、在模式复用系统中各模式的隔离度以及产生涡旋电磁波设备的设计和制造轻量化等问题,因此一种高增益、高隔离度且轻量化的涡旋电磁波发生器是未来无线通信远距离传输以及模式复用系统所需要的。
发明内容
针对上述存在问题或不足,本发明提供一种高增益介质涡旋天线,在具有高增益的同时还兼具高隔离度和轻量化的优点,以满足通信技术领域的需要。
为实现上述目的,本发明采用了以下技术方案:
一种高增益介质涡旋天线,包括馈源喇叭天线、介质涡旋透镜;其中所述馈源喇叭天线作为该介质涡旋天线的电磁波输入端,产生球面波;所述馈源喇叭天线与所述介质涡旋透镜的双曲面通过光学原理进行联系,将所述馈源喇叭天线置于所述介质涡旋透镜双曲面的焦点处,所述介质涡旋透镜对所述馈源喇叭天线产生的球面波进行会聚准直,形成平面波;再通过所述介质涡旋透镜的透射阶梯螺旋结构由的台阶厚度与旋转方位角成正比,电磁波入射后对应不同的方位角形成涡旋电磁波。
作为优选,所述馈源喇叭天线采用圆锥喇叭天线和矩形喇叭天线,其分别的张开终端成圆形和矩形,其中在设计矩形喇叭天线时应使其方向图中E面和H面的方向图曲线在主瓣范围内尽量重合。
作为优选,所述介质涡旋透镜(2)双曲面过其中心所截形成的剖面曲线可利用光程原理得出,设O点为曲线弧中点作为直角坐标系原点,剖面曲线凸出方向朝X轴的负方向,F点处点源发出球面波,P为该选线上任意一点,Q与原点重合,Q’为P点在X轴上的投影,应有:
FP=FQ+nQQ’
P点极坐标为
Figure BDA0003927635540000021
FQ=f,上式可写为:
Figure BDA0003927635540000022
若P点采用以O点为原点的直角坐标,则:
ρ2=(x+f)2+y2
Figure BDA0003927635540000023
最终其可化为:
(n2-1)x2+2(n-1)fx-y2=0
其中
Figure BDA0003927635540000024
为材料折射率,εr为所属介质涡旋透镜(2)材料的相对介电常数。
作为优选,所述介质涡旋透镜的透射阶梯螺旋结构,其由若干个呈扇形柱体的阶梯组成,且每相邻两个阶梯间高度差相等;针对于某一波长的电磁波,一个螺旋相位板对应着唯一的拓扑荷数即对应唯一的模式;且螺旋相位板拓扑荷数的表达式为l=hs(n-n0)/λ,其中,hs为表示相位板的台阶高度的最大差值,n表示为相位板的折射率,n0为相位板周围空间的折射率,λ为电磁波的波长。
作为优选,所述介质涡旋透镜采用聚四氟乙烯介质材料。
本发明的有益效果在于:
本发明采用一种具有对电磁波汇聚准直功能和透射阶梯螺旋结构的介质涡旋透镜,与一般的涡旋电磁波发生器相比,本发明更为简便的同时其产生的涡旋电磁波更为标准稳定,并且能获得较高的增益,从而克服涡旋电磁波中心能量低随传输距离会发散的问题,使其能更远距离的传输;此外,本发明还具有模式之间具有较高的隔离度以及介质材料轻量化的特点,从而满足未来无线通信远距离传输以及模式复用系统的需要。
附图说明
图1为本发明的一个实施例的结构模型的正面视图;
图2为本发明的一个实施例的结构模型的侧面视图;
图3为本发明的一个实施例的仿真远场曲线图。
具体实施方式
下面结合本发明的一个实施例的附图,对本发明的技术方法进行清晰地、详细的描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本申请实施例的组件可以以各种不同的配置来布置和设计。因此,以下对在附图中提供的本申请的实施例的详细描述并非旨在限制要求保护的本申请的范围,而是仅仅表示本申请的选定实施例。基于本申请的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请实施例的描述中,需要说明的是,术语“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,或者是该发明产品使用时惯常摆放的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
下面结合图对本发明做详细说明
实施例1
如图1、图2所示,图1和图2为本发明实施例提供的一种高增益介质涡旋天线的结构示意图,其包括馈源喇叭天线1、介质涡旋透镜2。其中所述馈源喇叭天线1作为该介质涡旋天线的电磁波输入端,产生球面波;所述馈源喇叭天线1与所述介质涡旋透镜2的双曲面通过光学原理进行联系,将所述馈源喇叭天线1置于所述介质涡旋透镜2双曲面的焦点处,所述介质涡旋透镜2对所述馈源喇叭天线1产生的球面波进行会聚准直,形成平面波,很大地提高了天线的增益;再通过所述介质涡旋透镜2的透射阶梯螺旋结构由的台阶厚度与旋转方位角成正比,电磁波入射后对应不同的方位角其走过的光程就不一样,从而形成涡旋电磁波,根据涡旋电磁波的模式计算公式进行设计,理论上可以产生任何模式的涡旋电磁波。
本实施例中,所述馈源喇叭天线1一般采用矩形喇叭天线,其张开终端成矩形,其工作频段为170GHz-260GHz,波导口为1.092mm*0.546mm标准波导;该矩形喇叭天线的方向图中E面和H面的方向图曲线在主瓣范围内基本重合,保证了辐射出的球面波尽量标准。
本实施例中,所述介质涡旋透镜2双曲面过其中心所截形成的剖面曲线可利用光程原理得出,设O点为曲线弧中点作为直角坐标系原点,剖面曲线凸出方向朝X轴的负方向,F点处点源发出球面波,P为该选线上任意一点,Q与原点重合,Q’为P点在X轴上的投影,应有:
FP=FQ+nQQ’
P点极坐标为
Figure BDA0003927635540000041
FQ=f,上式可写为:
Figure BDA0003927635540000042
若P点采用以O点为原点的直角坐标,则:
ρ2=(x+f)2+y2
Figure BDA0003927635540000043
最终其可化为:
(n2-1)x2+2(n-1)fx-y2=0
其中
Figure BDA0003927635540000044
为材料折射率,εr为所属介质涡旋透镜2材料的相对介电常数,本实施例采用聚四氟乙烯介质材料相对介电常数为2.01,双曲面口径大小取为30mm。
本实施例中,所述介质涡旋透镜2的透射阶梯螺旋结构,其由24个呈扇形柱体的阶梯组成,且每相邻两个阶梯间高度差相等;针对于某一波长的电磁波,一个螺旋相位板对应着唯一的拓扑荷数即对应唯一的模式;且螺旋相位板拓扑荷数的表达式为l=hs(n-n0)/λ,其中,n为介质材料的折射率取为1.42,n0为相位板周围空间的折射率取为1,λ为电磁波的波长根据220GHz的中心频率计算为1.36mm,最终hs表示相位板的台阶高度的最大差值计算为3.26mm;
以上所述实施例仅表达了本申请的具体实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请保护范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请技术方案构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。

Claims (5)

1.一种高增益介质涡旋天线,其特征在于:包括馈源喇叭天线(1)、介质涡旋透镜(2);其中所述馈源喇叭天线(1)作为该介质涡旋天线的电磁波输入端,产生球面波;所述馈源喇叭天线(1)与所述介质涡旋透镜(2)的双曲面通过光学原理进行联系,将所述馈源喇叭天线(1)置于所述介质涡旋透镜(2)双曲面的焦点处,所述介质涡旋透镜(2)对所述馈源喇叭天线(1)产生的球面波进行会聚准直,形成平面波;再通过所述介质涡旋透镜(2)的透射阶梯螺旋结构由的台阶厚度与旋转方位角成正比,电磁波入射后对应不同的方位角形成涡旋电磁波。
2.如权利要求1所述的一种高增益介质涡旋天线,其特征在于:所述馈源喇叭天线(1)采用圆锥喇叭天线和矩形喇叭天线,其分别的张开终端成圆形和矩形,其中在设计矩形喇叭天线时应使其方向图中E面和H面的方向图曲线在主瓣范围内尽量重合。
3.如权利要求1所述的一种高增益介质涡旋天线,其特征在于:所述介质涡旋透镜(2)双曲面过其中心所截形成的剖面曲线可利用光程原理得出,设O点为曲线弧中点作为直角坐标系原点,剖面曲线凸出方向朝X轴的负方向,F点处点源发出球面波,P为该选线上任意一点,Q与原点重合,Q’为P点在X轴上的投影,应有:
FP=FQ+nQQ’
P点极坐标为
Figure FDA0003927635530000011
FQ=f,上式可写为:
Figure FDA0003927635530000012
若P点采用以O点为原点的直角坐标,则:
ρ2=(x+f)2+y2
Figure FDA0003927635530000013
最终其可化为:
(n2-1)x2+2(n-1)fx-y2=0
其中
Figure FDA0003927635530000014
为材料折射率,εr为所属介质涡旋透镜(2)材料的相对介电常数。
4.如权利要求1所述的一种高增益介质涡旋天线,其特征在于:所述介质涡旋透镜的透射阶梯螺旋结构,其由若干个呈扇形柱体的阶梯组成,且每相邻两个阶梯间高度差相等;针对于某一波长的电磁波,一个螺旋相位板对应着唯一的拓扑荷数即对应唯一的模式;且螺旋相位板拓扑荷数的表达式为l=hs(n-n0)/λ,其中,hs为表示相位板的台阶高度的最大差值,n表示为相位板的折射率,n0为相位板周围空间的折射率,λ为电磁波的波长。
5.如权利要求1所述的一种高增益介质涡旋天线,其特征在于:所述介质涡旋透镜采用聚四氟乙烯介质材料。
CN202211383057.5A 2022-11-04 2022-11-04 一种高增益介质涡旋天线 Pending CN115548698A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211383057.5A CN115548698A (zh) 2022-11-04 2022-11-04 一种高增益介质涡旋天线

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211383057.5A CN115548698A (zh) 2022-11-04 2022-11-04 一种高增益介质涡旋天线

Publications (1)

Publication Number Publication Date
CN115548698A true CN115548698A (zh) 2022-12-30

Family

ID=84720305

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211383057.5A Pending CN115548698A (zh) 2022-11-04 2022-11-04 一种高增益介质涡旋天线

Country Status (1)

Country Link
CN (1) CN115548698A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117293551A (zh) * 2023-11-24 2023-12-26 壹新信通科技(成都)有限公司 一种太赫兹多波束介质天线

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117293551A (zh) * 2023-11-24 2023-12-26 壹新信通科技(成都)有限公司 一种太赫兹多波束介质天线
CN117293551B (zh) * 2023-11-24 2024-01-23 壹新信通科技(成都)有限公司 一种太赫兹多波束介质天线

Similar Documents

Publication Publication Date Title
Quevedo-Teruel et al. Geodesic lens antennas for 5G and beyond
Soric et al. Omnidirectional metamaterial antennas based on $\varepsilon $-near-zero channel matching
CN108701905B (zh) 一种喇叭天线
CN111740226B (zh) 一种双极化轨道角动量态复用超表面的设计方法
Orgeira et al. Near-field focusing multibeam geodesic lens antenna for stable aggregate gain in far-field
CN115548698A (zh) 一种高增益介质涡旋天线
Yi et al. All-dielectric transformed material for microwave broadband orbital angular momentum vortex beam
Yi et al. Design and validation of an all-dielectric metamaterial medium for collimating orbital-angular-momentum vortex waves at microwave frequencies
CN104319434A (zh) 能产生轨道角动量波束的极低反射率旋转相位板设计方法
Ali et al. Reflective metasurface with steered OAM beams for THz communications
CN102480019B (zh) 一种超材料天线
CN110011075A (zh) 一种高性能波束赋形天线及波束赋形方法
Papathanasopoulos et al. Fundamentals of orbital angular momentum beams: Concepts, antenna analogies, and applications
CN114865335A (zh) 基于渐变折射率材料加载的平面多波束透镜天线
CN111403906B (zh) 一种聚束型多模电磁涡旋发生器
CN102810767B (zh) 以类椭球型超材料为副反射面的超材料微波天线
CN106602275A (zh) 一种电磁涡旋喇叭天线
Zeng et al. Generation of Non-diffractive Beam by Using Metasurface for Wireless Power Transfer (WPT) Applications
CN110165407A (zh) 一种tm环形谐振腔和旋转抛物面的多模平面螺旋oam天线
Yi et al. Assembled medium: A route to the generation of vortex waves carrying orbital angular momentum with different modes
Zadeh et al. A Metal-Only Holographic Leaky-Wave Antenna Based on Spoof Surface Plasmon Polaritons
Quevedo-Teruel et al. Luneburg lenses for the new generation of communication systems
CN102820546A (zh) 副反射面为金属椭球面和类双曲型超材料的微波天线
CN102769206A (zh) 一种喇叭透镜天线
CAO et al. Near-Field Wireless Power Transfer Field Wireless Power Transfer, Sensing and Communication with Bessel Beams

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination