CN115546544B - 基于图神经网络的LiDAR点云与OSM标注信息流耦合分类方法 - Google Patents
基于图神经网络的LiDAR点云与OSM标注信息流耦合分类方法 Download PDFInfo
- Publication number
- CN115546544B CN115546544B CN202211209998.7A CN202211209998A CN115546544B CN 115546544 B CN115546544 B CN 115546544B CN 202211209998 A CN202211209998 A CN 202211209998A CN 115546544 B CN115546544 B CN 115546544B
- Authority
- CN
- China
- Prior art keywords
- super
- point
- superpoints
- point cloud
- graph
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 31
- 238000013528 artificial neural network Methods 0.000 title claims abstract description 26
- 238000002372 labelling Methods 0.000 title claims abstract description 22
- 230000008878 coupling Effects 0.000 title claims abstract description 17
- 238000010168 coupling process Methods 0.000 title claims abstract description 17
- 238000005859 coupling reaction Methods 0.000 title claims abstract description 17
- 230000011218 segmentation Effects 0.000 claims description 15
- 230000002776 aggregation Effects 0.000 claims description 9
- 238000004220 aggregation Methods 0.000 claims description 9
- 238000004422 calculation algorithm Methods 0.000 claims description 6
- 238000004364 calculation method Methods 0.000 claims description 6
- 238000012804 iterative process Methods 0.000 claims description 6
- 238000011176 pooling Methods 0.000 claims description 5
- 239000011159 matrix material Substances 0.000 claims description 4
- 230000004931 aggregating effect Effects 0.000 claims description 3
- 238000000354 decomposition reaction Methods 0.000 claims description 3
- 238000013507 mapping Methods 0.000 claims description 3
- 238000005457 optimization Methods 0.000 claims description 3
- 238000007665 sagging Methods 0.000 claims description 3
- 238000012216 screening Methods 0.000 claims description 3
- 241001235534 Graphis <ascomycete fungus> Species 0.000 claims description 2
- 238000012546 transfer Methods 0.000 abstract description 2
- 230000008569 process Effects 0.000 description 6
- 238000012549 training Methods 0.000 description 5
- 230000006870 function Effects 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 238000005070 sampling Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 241000512668 Eunectes Species 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003909 pattern recognition Methods 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/764—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using classification, e.g. of video objects
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/20—Image preprocessing
- G06V10/26—Segmentation of patterns in the image field; Cutting or merging of image elements to establish the pattern region, e.g. clustering-based techniques; Detection of occlusion
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/82—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/10—Terrestrial scenes
- G06V20/176—Urban or other man-made structures
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Evolutionary Computation (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Software Systems (AREA)
- Computing Systems (AREA)
- Artificial Intelligence (AREA)
- Medical Informatics (AREA)
- Databases & Information Systems (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- Molecular Biology (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Image Processing (AREA)
- Traffic Control Systems (AREA)
Abstract
Description
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211209998.7A CN115546544B (zh) | 2022-09-30 | 2022-09-30 | 基于图神经网络的LiDAR点云与OSM标注信息流耦合分类方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211209998.7A CN115546544B (zh) | 2022-09-30 | 2022-09-30 | 基于图神经网络的LiDAR点云与OSM标注信息流耦合分类方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115546544A CN115546544A (zh) | 2022-12-30 |
CN115546544B true CN115546544B (zh) | 2023-11-17 |
Family
ID=84731404
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211209998.7A Active CN115546544B (zh) | 2022-09-30 | 2022-09-30 | 基于图神经网络的LiDAR点云与OSM标注信息流耦合分类方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115546544B (zh) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107392130A (zh) * | 2017-07-13 | 2017-11-24 | 西安电子科技大学 | 基于阈值自适应和卷积神经网络的多光谱图像分类方法 |
CN108710906A (zh) * | 2018-05-11 | 2018-10-26 | 北方民族大学 | 基于轻量级网络LightPointNet的实时点云模型分类方法 |
CN109034233A (zh) * | 2018-07-18 | 2018-12-18 | 武汉大学 | 一种结合OpenStreetMap的高分辨率遥感影像多分类器联合分类方法 |
CN111950658A (zh) * | 2020-08-28 | 2020-11-17 | 南京大学 | 一种基于深度学习的LiDAR点云与光学影像先验级耦合分类方法 |
CN113469226A (zh) * | 2021-06-16 | 2021-10-01 | 中国地质大学(武汉) | 一种基于街景图像的土地利用分类方法及系统 |
CN113592013A (zh) * | 2021-08-06 | 2021-11-02 | 国网新源水电有限公司富春江水力发电厂 | 一种基于图注意力网络的三维点云分类方法 |
CN113989547A (zh) * | 2021-10-15 | 2022-01-28 | 天津大学 | 基于图卷积深度神经网络的三维点云数据分类结构及方法 |
CN114443858A (zh) * | 2022-01-20 | 2022-05-06 | 电子科技大学(深圳)高等研究院 | 一种基于图神经网络的多模态知识图谱表示学习方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108133227A (zh) * | 2017-11-29 | 2018-06-08 | 北京数字绿土科技有限公司 | 激光雷达点云数据分类方法及装置 |
US10885400B2 (en) * | 2018-07-03 | 2021-01-05 | General Electric Company | Classification based on annotation information |
DE102020120479A1 (de) * | 2019-08-07 | 2021-02-11 | Harman Becker Automotive Systems Gmbh | Fusion von Strassenkarten |
US11182612B2 (en) * | 2019-10-28 | 2021-11-23 | The Chinese University Of Hong Kong | Systems and methods for place recognition based on 3D point cloud |
US11551039B2 (en) * | 2020-04-28 | 2023-01-10 | Microsoft Technology Licensing, Llc | Neural network categorization accuracy with categorical graph neural networks |
-
2022
- 2022-09-30 CN CN202211209998.7A patent/CN115546544B/zh active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107392130A (zh) * | 2017-07-13 | 2017-11-24 | 西安电子科技大学 | 基于阈值自适应和卷积神经网络的多光谱图像分类方法 |
CN108710906A (zh) * | 2018-05-11 | 2018-10-26 | 北方民族大学 | 基于轻量级网络LightPointNet的实时点云模型分类方法 |
CN109034233A (zh) * | 2018-07-18 | 2018-12-18 | 武汉大学 | 一种结合OpenStreetMap的高分辨率遥感影像多分类器联合分类方法 |
CN111950658A (zh) * | 2020-08-28 | 2020-11-17 | 南京大学 | 一种基于深度学习的LiDAR点云与光学影像先验级耦合分类方法 |
CN113469226A (zh) * | 2021-06-16 | 2021-10-01 | 中国地质大学(武汉) | 一种基于街景图像的土地利用分类方法及系统 |
CN113592013A (zh) * | 2021-08-06 | 2021-11-02 | 国网新源水电有限公司富春江水力发电厂 | 一种基于图注意力网络的三维点云分类方法 |
CN113989547A (zh) * | 2021-10-15 | 2022-01-28 | 天津大学 | 基于图卷积深度神经网络的三维点云数据分类结构及方法 |
CN114443858A (zh) * | 2022-01-20 | 2022-05-06 | 电子科技大学(深圳)高等研究院 | 一种基于图神经网络的多模态知识图谱表示学习方法 |
Non-Patent Citations (2)
Title |
---|
A Graphical Convolutional Network-based Method for 3D Point Cloud Classification;Wang, Liang;《PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE》;全文 * |
Three-Dimensional Reconstruction of Large Multilayer Interchange Bridge Using Airborne LiDAR Data;YanMing Chen;《IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing》;全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN115546544A (zh) | 2022-12-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Catani | Landslide detection by deep learning of non-nadiral and crowdsourced optical images | |
Bassier et al. | Classification of sensor independent point cloud data of building objects using random forests | |
CN111598174B (zh) | 基于半监督对抗学习的模型训练方法及图像变化分析方法 | |
Sowmya et al. | Modelling and representation issues in automated feature extraction from aerial and satellite images | |
Liu et al. | Scale computation on high spatial resolution remotely sensed imagery multi-scale segmentation | |
Zhao et al. | Visual-based semantic SLAM with landmarks for large-scale outdoor environment | |
Chen et al. | Urban vegetation segmentation using terrestrial LiDAR point clouds based on point non-local means network | |
Yu et al. | Land cover classification of multispectral lidar data with an efficient self-attention capsule network | |
CN111611960B (zh) | 一种基于多层感知神经网络大区域地表覆盖分类方法 | |
Zhang et al. | Outdoor scene understanding of mobile robot via multi-sensor information fusion | |
CN116503602A (zh) | 基于多层级边缘增强的非结构化环境三维点云语义分割方法 | |
Liang et al. | Hierarchical estimation-based LiDAR odometry with scan-to-map matching and fixed-lag smoothing | |
Balaska et al. | Self-localization based on terrestrial and satellite semantics | |
CN117521424B (zh) | 一种仿真训练场景生成方法和装置 | |
Zhang et al. | Semantic segmentation of spectral LiDAR point clouds based on neural architecture search | |
CN115546544B (zh) | 基于图神经网络的LiDAR点云与OSM标注信息流耦合分类方法 | |
Tan et al. | A Review of Deep Learning-Based LiDAR and Camera Extrinsic Calibration | |
CN116664826A (zh) | 一种小样本点云语义分割方法 | |
Miranda et al. | Land Cover Classification through Ontology Approach from Sentinel-2 Satellite Imagery. | |
Cui et al. | A Review of Indoor Automation Modeling Based on Light Detection and Ranging Point Clouds. | |
Li et al. | [Retracted] PointLAE: A Point Cloud Semantic Segmentation Neural Network via Multifeature Aggregation for Large‐Scale Application | |
Chen et al. | Integrating OpenStreetMap tags for efficient LiDAR point cloud classification using graph neural networks | |
Yue et al. | Research on rural landscape spatial information recording and protection based on 3D point cloud technology under the background of internet of things | |
Zou et al. | Scene flow for 3D laser scanner and camera system | |
Boos | Image Segmentation using Convolutional Neural Networks for Change Detection of Landcover |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20230713 Address after: 518034 floor 1, No. 69, Xinwen Road, Futian District, Shenzhen, Guangdong Applicant after: Shenzhen planning and natural resources data management center Applicant after: HOHAI University Address before: 518034 floor 1, No. 69, Xinwen Road, Futian District, Shenzhen, Guangdong Applicant before: Shenzhen planning and natural resources data management center Applicant before: HOHAI University Applicant before: NANJING University |
|
TA01 | Transfer of patent application right | ||
GR01 | Patent grant | ||
GR01 | Patent grant |