CN115542813A - Unmanned vehicle control method, device, electronic device and storage medium - Google Patents
Unmanned vehicle control method, device, electronic device and storage medium Download PDFInfo
- Publication number
- CN115542813A CN115542813A CN202211248390.5A CN202211248390A CN115542813A CN 115542813 A CN115542813 A CN 115542813A CN 202211248390 A CN202211248390 A CN 202211248390A CN 115542813 A CN115542813 A CN 115542813A
- Authority
- CN
- China
- Prior art keywords
- unmanned vehicle
- wheel
- under different
- operating conditions
- different operating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 65
- 238000003860 storage Methods 0.000 title claims abstract description 31
- 230000006870 function Effects 0.000 claims description 24
- 238000006073 displacement reaction Methods 0.000 claims description 16
- 238000012545 processing Methods 0.000 claims description 12
- 238000009826 distribution Methods 0.000 claims description 5
- 238000004590 computer program Methods 0.000 claims description 4
- 230000000670 limiting effect Effects 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 14
- 239000011159 matrix material Substances 0.000 description 12
- 230000003044 adaptive effect Effects 0.000 description 10
- 230000008859 change Effects 0.000 description 9
- 238000011156 evaluation Methods 0.000 description 8
- 238000013461 design Methods 0.000 description 7
- 238000004364 calculation method Methods 0.000 description 6
- 238000005096 rolling process Methods 0.000 description 6
- 230000001133 acceleration Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 238000005457 optimization Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 230000006978 adaptation Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000009795 derivation Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000008447 perception Effects 0.000 description 2
- 239000013643 reference control Substances 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009440 infrastructure construction Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 230000006855 networking Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/04—Programme control other than numerical control, i.e. in sequence controllers or logic controllers
- G05B19/042—Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
- G05B19/0423—Input/output
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/20—Pc systems
- G05B2219/25—Pc structure of the system
- G05B2219/25257—Microcontroller
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Steering Control In Accordance With Driving Conditions (AREA)
Abstract
Description
技术领域technical field
本公开涉及无人驾驶技术领域,尤其涉及一种无人驾驶车辆控制方法、装置、电子设备及存储介质。The present disclosure relates to the technical field of unmanned driving, and in particular to an unmanned vehicle control method, device, electronic equipment and storage medium.
背景技术Background technique
随着电子信息和通讯技术的不断发展以及相关新型基础设施建设的不断完善,车辆的电动化、智能化和网联化进程不断加快。与传统车辆相比,四轮独立驱动的无人驾驶电动汽车,在减少环境污染、降低能源消耗、缓解交通拥堵、提高道路利用率、减少车辆安全事故以及提高车辆安全性等方面具有显著优势,为满足人们安全、舒适、便捷的日常生活需要和高效、节能、智能化的出行需求提供了解决方案。With the continuous development of electronic information and communication technology and the continuous improvement of related new infrastructure construction, the process of electrification, intelligence and networking of vehicles is accelerating. Compared with traditional vehicles, unmanned electric vehicles with four-wheel independent drive have significant advantages in reducing environmental pollution, reducing energy consumption, alleviating traffic congestion, improving road utilization, reducing vehicle safety accidents, and improving vehicle safety. It provides solutions to meet people's safe, comfortable and convenient daily life needs and efficient, energy-saving and intelligent travel needs.
无人驾驶车辆是一个复杂的系统,主要包括环境感知、行为决策、运动规划和轨迹跟踪控制四大核心关键技术。其中,轨迹跟踪控制基于感知规划层得到的道路环境信息和参考轨迹信息,结合车辆自身状态,通过控制车辆转向、加速或制动,在保证车辆稳定行驶的同时实现对参考轨迹和目标车速的跟踪。因此,轨迹跟踪控制作为控制车辆产生实际动作的功能模块,对于保证车辆的稳定性、安全性和舒适性至关重要。Unmanned vehicles are a complex system, mainly including four core key technologies of environment perception, behavior decision-making, motion planning and trajectory tracking control. Among them, the trajectory tracking control is based on the road environment information and reference trajectory information obtained by the perception planning layer, combined with the state of the vehicle itself, by controlling the steering, acceleration or braking of the vehicle, while ensuring the stable driving of the vehicle, the tracking of the reference trajectory and the target vehicle speed can be realized. . Therefore, trajectory tracking control, as a functional module that controls the actual movement of the vehicle, is very important to ensure the stability, safety and comfort of the vehicle.
目前,关于无人驾驶车辆的轨迹跟踪控制方案,大多是基于固定权重的中低车速良好路面的常规工况,很少同时考虑对稳定性和期望车速的控制,或将稳定性控制和轨迹跟踪控制分开进行考虑,导致一旦车辆的运行工况发生变化,控制器难以综合考虑稳定性和跟踪精度等多个控制目标的权重优先级,从而导致轨迹跟踪精度显著降低,甚至会导致车辆出现侧滑、失稳等危险工况,很难适应复杂多变的真实道路交通环境。因此,设计面向不同运行工况的无人驾驶车辆(例如,四轮独立驱动的无人驾驶电动汽车)轨迹跟踪与稳定性协调控制方法,以提升无人驾驶车辆在不同运行工况下的轨迹跟踪精度、稳定性和工况适应性,是本领域亟待解决的技术问题。At present, most of the trajectory tracking control schemes for unmanned vehicles are based on the regular working conditions of low-to-medium vehicle speed and good road surface with fixed weights, and rarely consider the control of stability and desired vehicle speed at the same time, or combine stability control and trajectory tracking. The control is considered separately. As a result, once the operating conditions of the vehicle change, it is difficult for the controller to comprehensively consider the weight priorities of multiple control objectives such as stability and tracking accuracy, resulting in a significant decrease in trajectory tracking accuracy and even causing the vehicle to slip , instability and other dangerous working conditions, it is difficult to adapt to the complex and changeable real road traffic environment. Therefore, a coordinated control method for trajectory tracking and stability of unmanned vehicles (for example, four-wheel independent drive unmanned electric vehicles) is designed to improve the trajectory of unmanned vehicles under different operating conditions. Tracking accuracy, stability and working condition adaptability are technical problems to be solved urgently in this field.
需要说明的是,在上述背景技术部分公开的信息仅用于加强对本公开的背景的理解,因此可以包括不构成对本领域普通技术人员已知的现有技术的信息。It should be noted that the information disclosed in the above background section is only for enhancing the understanding of the background of the present disclosure, and therefore may include information that does not constitute the prior art known to those of ordinary skill in the art.
发明内容Contents of the invention
本公开提供一种无人驾驶车辆控制方法、装置、电子设备及存储介质,至少在一定程度上克服相关技术中难以实现在不同运行工况下对无人驾驶车辆的轨迹跟踪精度和稳定性进行协调控制的技术问题。The present disclosure provides an unmanned vehicle control method, device, electronic equipment and storage medium, at least to a certain extent, overcomes the difficulties in the related art to realize the tracking accuracy and stability of the unmanned vehicle under different operating conditions. Technical issues of coordinated control.
本公开的其他特性和优点将通过下面的详细描述变得显然,或部分地通过本公开的实践而习得。Other features and advantages of the present disclosure will become apparent from the following detailed description, or in part, be learned by practice of the present disclosure.
根据本公开的一个方面,提供了一种无人驾驶车辆控制方法,该方法包括:获取无人驾驶车辆在不同运行工况下的轨迹跟踪精度、稳定性指标和车轮滑移率;根据所述无人驾驶车辆在不同运行工况下的轨迹跟踪精度、稳定性指标和车轮滑移率,确定所述无人驾驶车辆在不同运行工况下以稳定状态跟踪目标车速和参考轨迹信息行驶的前轮转角和车轮力矩;根据确定的前轮转角和车轮力矩,控制所述无人驾驶车辆行驶。According to one aspect of the present disclosure, there is provided a method for controlling an unmanned vehicle, the method comprising: acquiring the trajectory tracking accuracy, stability index and wheel slip ratio of the unmanned vehicle under different operating conditions; according to the The trajectory tracking accuracy, stability index and wheel slip rate of the unmanned vehicle under different operating conditions, determine the progress of the unmanned vehicle under different operating conditions to track the target vehicle speed and reference trajectory information in a steady state Wheel angle and wheel torque; according to the determined front wheel angle and wheel torque, control the driving of the unmanned vehicle.
根据本公开的另一个方面,还提供了一种无人驾驶车辆控制装置,该装置包括:状态信息获取模块,用于获取无人驾驶车辆在不同运行工况下的轨迹跟踪精度、稳定性指标和车轮滑移率;控制量确定模块,用于根据所述无人驾驶车辆在不同运行工况下的轨迹跟踪精度、稳定性指标和车轮滑移率,确定所述无人驾驶车辆在不同运行工况下以稳定状态跟踪目标车速和参考轨迹信息行驶的前轮转角和车轮力矩;控制模块,用于根据确定的前轮转角和车轮力矩,控制所述无人驾驶车辆行驶。According to another aspect of the present disclosure, there is also provided a control device for an unmanned vehicle, which includes: a state information acquisition module, used to acquire trajectory tracking accuracy and stability indicators of the unmanned vehicle under different operating conditions and wheel slip ratio; the control variable determination module is used to determine the unmanned vehicle in different operating conditions according to the trajectory tracking accuracy, stability index and wheel slip ratio of the unmanned vehicle under different operating conditions. Under working conditions, track the target vehicle speed and the front wheel angle and wheel torque of the reference trajectory information in a steady state; the control module is used to control the driving of the unmanned vehicle according to the determined front wheel angle and wheel torque.
根据本公开的另一个方面,还提供了一种电子设备,该电子设备包括:处理器;以及存储器,用于存储所述处理器的可执行指令;其中,所述处理器配置为经由执行所述可执行指令来执行上述任意一项所述无人驾驶车辆控制方法。According to another aspect of the present disclosure, there is also provided an electronic device, which includes: a processor; and a memory for storing executable instructions of the processor; wherein the processor is configured to execute the The executable instructions are used to execute any one of the unmanned vehicle control methods described above.
根据本公开的另一个方面,还提供了一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述任意一项所述的无人驾驶车辆控制方法。According to another aspect of the present disclosure, there is also provided a computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a processor, the unmanned vehicle control method described in any one of the above is implemented.
本公开的实施例所提供的无人驾驶车辆控制方法、装置、电子设备及计算机可读存储介质,通过获取无人驾驶车辆在不同运行工况下的轨迹跟踪精度、稳定性指标和车轮滑移率,进而根据无人驾驶车辆在不同运行工况下的轨迹跟踪精度、稳定性指标和车轮滑移率,确定无人驾驶车辆在不同运行工况下以稳定状态跟踪目标车速和参考轨迹信息行驶的前轮转角和车轮力矩,以便根据确定的前轮转角和车轮力矩,控制无人驾驶车辆行驶。通过本公开实施例,能够综合考虑无人驾驶车辆在不同运行工况下的车辆稳定性和跟踪精度来对无人驾驶车辆的行驶进行控制,能够实现适应不同运行工况的轨迹跟踪与稳定性的一体化协调控制。The unmanned vehicle control method, device, electronic device, and computer-readable storage medium provided by the embodiments of the present disclosure obtain the trajectory tracking accuracy, stability index, and wheel slip of the unmanned vehicle under different operating conditions. Then, according to the trajectory tracking accuracy, stability index and wheel slip rate of the unmanned vehicle under different operating conditions, it is determined that the unmanned vehicle can track the target speed and reference trajectory information in a stable state under different operating conditions. The front wheel angle and wheel torque can be determined in order to control the driving of the unmanned vehicle according to the determined front wheel angle and wheel torque. Through the embodiments of the present disclosure, the vehicle stability and tracking accuracy of the unmanned vehicle under different operating conditions can be comprehensively considered to control the driving of the unmanned vehicle, and the trajectory tracking and stability adapting to different operating conditions can be realized. integrated coordinated control.
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the present disclosure.
附图说明Description of drawings
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments consistent with the disclosure and together with the description serve to explain the principles of the disclosure. Apparently, the drawings in the following description are only some embodiments of the present disclosure, and those skilled in the art can obtain other drawings according to these drawings without creative efforts.
图1示出本公开实施例中一种无人驾驶车辆控制方法流程图;Fig. 1 shows a flow chart of a method for controlling an unmanned vehicle in an embodiment of the disclosure;
图2示出本公开实施例中一种无人驾驶车辆控制方法的具体实现架构示意图;FIG. 2 shows a schematic diagram of a specific implementation architecture of a control method for an unmanned vehicle in an embodiment of the present disclosure;
图3示出本公开实施例中一种纵向PID运动控制器示意图;Fig. 3 shows a schematic diagram of a longitudinal PID motion controller in an embodiment of the present disclosure;
图4示出本公开实施例中一种车辆与路径相对位置模型示意图;FIG. 4 shows a schematic diagram of a relative position model between a vehicle and a path in an embodiment of the present disclosure;
图5示出本公开实施例中一种七自由度双轨车辆动力学模型示意图;5 shows a schematic diagram of a seven-degree-of-freedom dual-track vehicle dynamics model in an embodiment of the present disclosure;
图6示出本公开实施例中一种轮胎模型模型示意图;Fig. 6 shows a schematic diagram of a tire model model in an embodiment of the present disclosure;
图7示出本公开实施例中一种基于轮胎侧偏角相平面的稳定性指标设计示意图;Fig. 7 shows a schematic diagram of a stability index design based on the phase plane of the tire slip angle in an embodiment of the present disclosure;
图8示出本公开实施例中一种对车辆轨迹跟踪精度、操纵性、稳定性权重自适应调节曲线示意图;8 shows a schematic diagram of an adaptive adjustment curve for vehicle trajectory tracking accuracy, maneuverability, and stability weights in an embodiment of the present disclosure;
图9示出本公开实施例中一种四轮滑移率偏差权重自适应调节曲线示意图;FIG. 9 shows a schematic diagram of a four-wheel slip ratio deviation weight adaptive adjustment curve in an embodiment of the present disclosure;
图10示出本公开实施例中一种无人驾驶车辆控制装置示意图;Fig. 10 shows a schematic diagram of an unmanned vehicle control device in an embodiment of the present disclosure;
图11示出本公开实施例中一种电子设备的结构框图;FIG. 11 shows a structural block diagram of an electronic device in an embodiment of the present disclosure;
图12示出本公开实施例中一种计算机可读存储介质示意图。Fig. 12 shows a schematic diagram of a computer-readable storage medium in an embodiment of the present disclosure.
具体实施方式detailed description
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的范例;相反,提供这些实施方式使得本公开将更加全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施方式中。Example embodiments will now be described more fully with reference to the accompanying drawings. Example embodiments may, however, be embodied in many forms and should not be construed as limited to the examples set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete and will fully convey the concept of example embodiments to those skilled in the art. The described features, structures, or characteristics may be combined in any suitable manner in one or more embodiments.
此外,附图仅为本公开的示意性图解,并非一定是按比例绘制。图中相同的附图标记表示相同或类似的部分,因而将省略对它们的重复描述。附图中所示的一些方框图是功能实体,不一定必须与物理或逻辑上独立的实体相对应。可以采用软件形式来实现这些功能实体,或在一个或多个硬件模块或集成电路中实现这些功能实体,或在不同网络和/或处理器装置和/或微控制器装置中实现这些功能实体。Furthermore, the drawings are merely schematic illustrations of the present disclosure and are not necessarily drawn to scale. The same reference numerals in the drawings denote the same or similar parts, and thus repeated descriptions thereof will be omitted. Some of the block diagrams shown in the drawings are functional entities and do not necessarily correspond to physically or logically separate entities. These functional entities may be implemented in software, or in one or more hardware modules or integrated circuits, or in different network and/or processor means and/or microcontroller means.
下面结合附图,对本公开实施例的具体实施方式进行详细说明。The specific implementation manners of the embodiments of the present disclosure will be described in detail below in conjunction with the accompanying drawings.
为解决车辆在不同运行工况下的轨迹跟踪精度和稳定性协调控制问题,本公开实施例中提供了一种无人驾驶车辆控制方法,能够适用但不限于适用于四轮独立驱动电动无人驾驶车辆的轨迹跟踪与稳定性协调控制。In order to solve the problem of coordinated control of trajectory tracking accuracy and stability of vehicles under different operating conditions, an embodiment of the present disclosure provides a control method for unmanned vehicles, which can be applied to but not limited to four-wheel independent drive electric unmanned vehicles. Coordinated control of trajectory tracking and stability of a driving vehicle.
需要说明的是,本公开实施例中提供的无人驾驶车辆控制方法,可以由任意具备计算处理能力的电子设备执行。在一些实施例中,本公开实施例中提供的无人驾驶车辆控制方法可以由车载控制设备来执行;在另一些实施例中,本公开实施例中提供的无人驾驶车辆控制方法可以由远程控制设备来执行;在另一些实施例中,本公开实施例中提供的无人驾驶车辆控制方法还可以由车载控制设备和远程控制设备通过交互的方式来实现。It should be noted that the method for controlling an unmanned vehicle provided in the embodiments of the present disclosure may be executed by any electronic device with computing and processing capabilities. In some embodiments, the unmanned vehicle control method provided in the embodiments of the present disclosure can be executed by a vehicle control device; in other embodiments, the unmanned vehicle control method provided in the embodiments of the present disclosure can be implemented by a remote In some other embodiments, the method for controlling an unmanned vehicle provided in the embodiments of the present disclosure may also be implemented by an on-vehicle control device and a remote control device in an interactive manner.
图1示出本公开实施例中一种无人驾驶车辆控制方法流程图,如图1所示,本公开实施例中提供的无人驾驶车辆控制方法包括如下步骤:Figure 1 shows a flowchart of a control method for an unmanned vehicle in an embodiment of the disclosure. As shown in Figure 1, the control method for an unmanned vehicle provided in an embodiment of the disclosure includes the following steps:
S102,获取无人驾驶车辆在不同运行工况下的轨迹跟踪精度、稳定性指标和车轮滑移率。S102, acquiring trajectory tracking accuracy, stability index and wheel slip ratio of the unmanned vehicle under different operating conditions.
需要说明的是,本公开实施例中的无人驾驶车辆可以是但不限于四轮独立驱动的电动无人驾驶汽车,本公开各个实施例中以四轮独立驱动的电动无人驾驶汽车为例来进行说明。相关技术中对无人驾驶车辆的控制,将稳定性控制和轨迹跟踪控制分开进行考虑,一旦车辆的工况发生变化,要么可能导致车辆的轨迹跟踪精度降低,要么可能导致车辆出现侧滑、失稳等危险情况。四轮滑移率偏差能够反映车轮的滚动状态,本公开实施例中,获取无人驾驶车辆在不同运行工况下的轨迹跟踪精度、稳定性指标和车轮滑移率,能够综合这些控制目标来实现对无人驾驶车辆的控制,It should be noted that the unmanned vehicle in the embodiments of the present disclosure may be, but not limited to, an electric unmanned vehicle driven independently by four wheels. to explain. For the control of unmanned vehicles in the related art, the stability control and the trajectory tracking control are considered separately. Once the working conditions of the vehicle change, it may cause the vehicle’s trajectory tracking accuracy to decrease, or may cause the vehicle to slip and fail. Wait for the dangerous situation. The four-wheel slip ratio deviation can reflect the rolling state of the wheels. In the embodiment of the present disclosure, the trajectory tracking accuracy, stability index and wheel slip ratio of the unmanned vehicle under different operating conditions can be obtained, and these control objectives can be integrated to obtain Realize the control of unmanned vehicles,
S104,根据无人驾驶车辆在不同运行工况下的轨迹跟踪精度、稳定性指标和车轮滑移率,确定无人驾驶车辆在不同运行工况下以稳定状态跟踪目标车速和参考轨迹信息行驶的前轮转角和车轮力矩。S104, according to the trajectory tracking accuracy, stability index and wheel slip rate of the unmanned vehicle under different operating conditions, determine the tracking target speed and reference trajectory information of the unmanned vehicle under different operating conditions Front wheel angle and wheel torque.
在具体实施时,上述S104可通过如下步骤来实现:以轨迹跟踪精度、稳定性指标和车轮滑移率为目标,构建目标函数;确定目标函数的约束条件;根据目标函数和约束条件,确定无人驾驶车辆在不同运行工况下以稳定状态跟踪目标车速和参考轨迹信息行驶的前轮转角和车轮力矩。During specific implementation, above-mentioned S104 can be realized through the following steps: with trajectory tracking accuracy, stability index and wheel slip rate target, build objective function; Determine the constraint condition of objective function; According to objective function and constraint condition, determine no The front wheel angle and wheel moment of the human-driven vehicle track the target speed and the reference trajectory information in a steady state under different operating conditions.
在一些实施例中,目标函数为:In some embodiments, the objective function is:
其中,in,
u=[δf Tfl Tfr Trl Trr sv sr]T (2)u=[δ f T fl T fr T rl T rr s v s r ] T (2)
其中,J表示目标函数的函数值;k表示时刻;Np表示预测时域;ηk表示k时刻的实际输出量;ηk ref表示k时刻的参考输出量;uk表示k时刻的实际控制量;Vk表示k时刻的参考控制量;uk-1表示k-1时刻的实际控制量;Q,S,R,P表示权重系数;δf表示前轮转角;Tfl表示左前轮纵向驱动或制动力矩;Tfr表示右前轮纵向驱动或制动力矩;Trl表示左后轮纵向驱动或制动力矩;Trr表示右后轮纵向驱动或制动力矩;sv和sr表示松弛变量;vy表示侧向速度;r表示横摆角速度;ey表示侧向位移偏差;表示航向角偏差;ewfl表示左前轮滑移率偏差;ewfr表示右前轮滑移率偏差;ewrl表示左后轮滑移率偏差;ewrr表示右后轮滑移率偏差;V中的第一个元素表示参考前轮转角,取值为0;Tall表示总驱动或制动力矩;Fzf表示前轴垂直载荷;Fzr表示后轴垂直载荷。Among them, J represents the function value of the objective function; k represents the time; N p represents the forecast time domain; η k represents the actual output at k time; η k ref represents the reference output at k time; u k represents the actual control at k time V k represents the reference control value at time k; u k-1 represents the actual control value at time k-1; Q, S, R, P represent weight coefficients; δ f represents the front wheel angle; T fl represents the left front wheel Longitudinal driving or braking torque; T fr represents the longitudinal driving or braking torque of the right front wheel; T rl represents the longitudinal driving or braking torque of the left rear wheel; T rr represents the longitudinal driving or braking torque of the right rear wheel; s v and s r represents the slack variable; v y represents the lateral velocity; r represents the yaw rate; e y represents the lateral displacement deviation; Indicates the heading angle deviation; e wfl indicates the slip rate deviation of the left front wheel; e wfr indicates the slip rate deviation of the right front wheel; e wrl indicates the slip rate deviation of the left rear wheel; e wrr indicates the slip rate deviation of the right rear wheel; The first element in represents the reference front wheel angle, and the value is 0; T all represents the total driving or braking torque; F zf represents the vertical load of the front axle; F zr represents the vertical load of the rear axle.
在一些实施例中,本公开实施例中,对上述目标函数优化的约束条件可包括:In some embodiments, in the embodiments of the present disclosure, the constraint conditions for the optimization of the above objective function may include:
前轮转角的约束条件:Constraints on the front wheel angle:
δfmin≤δf≤δfmax (5)δ f min ≤ δ f ≤ δ f max (5)
四个轮胎纵向驱动或制动力矩的约束条件:Constraints for four tire longitudinal driving or braking moments:
前轮转角增量的约束条件:Constraints for front wheel angle increment:
-Δδfmax≤Δδf≤Δδfmax (7)-Δδ fmax ≤Δδ f ≤Δδ fmax (7)
四个轮胎纵向驱动或制动力矩增量的约束条件:Constraints for four tire longitudinal driving or braking torque increments:
-ΔTij,max≤ΔTij≤ΔTij,max (8)-ΔT ij,max ≤ΔT ij ≤ΔT ij,max (8)
安全相平面约束约束条件:Safe Phase Plane Constraints Constraints:
M|ξk|≤E+sk (9)M|ξ k |≤E+s k (9)
其中, in,
M=[M1|02×8],E=[αsat rsat], M=[M 1 |0 2×8 ], E=[α sat r sat ],
sk≥0,且sk=suk,s=[02×5|I2×2];s k ≥ 0, and s k =su k , s=[0 2×5 |I 2×2 ];
其中,δf表示前轮转角;δfmin表示前轮转角的最小值;δfmax表示前轮转角的最大值;Tij表示四个车轮的纵向驱动或制动力矩,ij=fl,fr,rl,rr,分别表示左前轮、右前轮、左后轮、右后轮;Tmax表示电机输出的最大驱动或制动力矩;表示四个车轮的纵向力最大值;Fyij表示四个车轮的侧向力;表示四个车轮的侧向力最大值;Re表示车轮有效半径;Δδf表示前轮转角增量;Δδfmax表示前轮转角增量的最大值;ΔTij表示四个车轮纵向驱动或制动力矩增量;ΔTij,max表示四个车轮纵向驱动或制动力矩增量的最大值;M表示安全相平面约束相关的构造矩阵;ξk表示离散后的状态量;vy表示侧向速度;r表示横摆角速度;ey表示侧向位移偏差;表示航向角偏差;ewfl表示左前轮滑移率偏差;ewfr表示右前轮滑移率偏差;ewrl表示左后轮滑移率偏差;ewrr表示右后轮滑移率偏差;αf表示前轴车轮侧偏角;αr表示后轴车轮侧偏角;E表示曲率因子;vx表示纵向车速;lr表示车辆质心到后轴的距离;αsat表示后轮侧偏角饱和值;βsat表示质心侧偏角;rsat表示横摆角速度;sk表示松弛变量;s表示系数;uk表示离散后的控制量;I表示单位矩阵。Among them, δ f represents the front wheel angle; δ fmin represents the minimum value of the front wheel angle; δ fmax represents the maximum value of the front wheel angle; T ij represents the longitudinal driving or braking torque of the four wheels, ij = fl, fr, rl , rr, represent the left front wheel, right front wheel, left rear wheel, and right rear wheel respectively; T max represents the maximum driving or braking torque output by the motor; Indicates the maximum longitudinal force of the four wheels; F yij indicates the lateral force of the four wheels; Represents the maximum lateral force of the four wheels; R e represents the effective radius of the wheel; Δδ f represents the increment of the front wheel angle; Δδ fmax represents the maximum value of the front wheel angle increment; ΔT ij represents the longitudinal driving or braking of the four wheels Torque increment; ΔT ij,max represents the maximum value of the longitudinal driving or braking torque increment of the four wheels; M represents the construction matrix related to the safety phase plane constraints; ξ k represents the discretized state quantity; v y represents the lateral velocity ; r represents the yaw rate; e y represents the lateral displacement deviation; Indicates the heading angle deviation; e wfl indicates the slip rate deviation of the left front wheel; e wfr indicates the slip rate deviation of the right front wheel; e wrl indicates the slip rate deviation of the left rear wheel; e wrr indicates the slip rate deviation of the right rear wheel; f represents the front axle wheel slip angle; α r represents the rear axle wheel slip angle; E represents the curvature factor; v x represents the longitudinal speed; l r represents the distance from the center of mass of the vehicle to the rear axle; α sat represents the saturation of the rear wheel slip angle β sat represents the side slip angle of the center of mass; r sat represents the yaw rate; s k represents the slack variable; s represents the coefficient; u k represents the discretized control quantity; I represents the identity matrix.
在一些实施例中,通过如下公式自适应调整输出量的权重系数:In some embodiments, the weight coefficient of the output is adaptively adjusted by the following formula:
其中,in,
其中,Q表示输出量权重系数的矩阵符号;表示侧向速度vy的权重系数;Qr表示横摆角速度r的权重系数;表示侧向位移偏差ey的权重系数;表示航向角偏差的权重系数;表示四个车轮滑移率偏差的权重系数,ij=fl,fr,rl,rr,分别表示左前轮、右前轮、左后轮、右后轮;ε表示稳定性指标;κij表示四个车轮的滑移率;s1=400;s2=5;s3=400;s4=0.65;s5=500;s6=0.65;s7=500;s8=0.67;a1=1.5;a2=1.5;b1=1.2;b2=1.2;a'1=30;b'1=3;c'1=0.5;range=0.15。Among them, Q represents the matrix symbol of the output weight coefficient; Represents the weight coefficient of lateral velocity v y ; Q r represents the weight coefficient of yaw rate r; Indicates the weight coefficient of lateral displacement deviation e y ; Indicates the heading angle deviation The weight factor of; Indicates the weight coefficients of the four wheel slip ratio deviations, ij=fl, fr, rl, rr, respectively represent the left front wheel, right front wheel, left rear wheel, right rear wheel; ε represents the stability index; κ ij represents the four slip ratio of each wheel; s 1 =400; s 2 =5; s 3 =400; s 4 =0.65; s 5 =500; s 6 =0.65; s 7 =500; 1.5; a 2 =1.5; b 1 =1.2; b 2 =1.2; a' 1 =30; b' 1 =3; c' 1 =0.5; range=0.15.
需要说明的是,本公开实施例中s1、s2、s3、s4、s5、s6、s7、s8、a1、a2、b1、b2、a'1、b'1、c'1和range的取值是根据自身系统的调试经验给出一组参考值,由于被控对象的结构参数等不同,在实际使用时,本领技术人员可根据自身系统特征进行调试,以期取得更好的控制效果。It should be noted that in the embodiments of the present disclosure, s 1 , s 2 , s 3 , s 4 , s 5 , s 6 , s 7 , s 8 , a 1 , a 2 , b 1 , b 2 , a' 1 , The values of b' 1 , c' 1 and range are a set of reference values based on the debugging experience of the own system. Since the structural parameters of the controlled objects are different, in actual use, skilled technicians can make adjustments according to the characteristics of their own system. Debugging in order to achieve better control effect.
在一些实施例中,通过如下公式自适应调整控制量的权重系数:In some embodiments, the weight coefficient of the control variable is adaptively adjusted by the following formula:
其中,in,
通过如下公式自适应调整控制量增量的权重系数:Adaptively adjust the weight coefficient of the control amount increment through the following formula:
其中,R表示控制量权重系数的矩阵符号;表示前轮转角的权重系数;表示左前轮纵向驱动或制动力矩的权重系数;表示右前轮纵向驱动或制动力矩的权重系数;表示左后轮纵向驱动或制动力矩的权重系数;表示右后轮纵向驱动或制动力矩的权重系数;和表示松弛变量增量对应权重系数;S表示控制量增量权重系数的矩阵符号;表示前轮转角增量的权重系数;表示左前轮纵向驱动或制动力矩增量的权重系数;表示右前轮纵向驱动或制动力矩增量的权重系数;表示左后轮纵向驱动或制动力矩增量的权重系数;表示右后轮纵向驱动或制动力矩增量的权重系数;a'2=15;b'2=3;c'2=0.6;rangeR=300。Among them, R represents the matrix symbol of the weight coefficient of the control quantity; Indicates the weight coefficient of the front wheel angle; Indicates the weight coefficient of the longitudinal driving or braking moment of the left front wheel; Indicates the weight coefficient of the longitudinal driving or braking moment of the right front wheel; Indicates the weight coefficient of the longitudinal driving or braking moment of the left rear wheel; Indicates the weight coefficient of the longitudinal driving or braking moment of the right rear wheel; and Represents the weight coefficient corresponding to the slack variable increment; S represents the matrix symbol of the weight coefficient of the control variable increment; Indicates the weight coefficient of the front wheel rotation angle increment; Indicates the weight coefficient of the left front wheel longitudinal driving or braking torque increment; Indicates the weight coefficient of the right front wheel longitudinal driving or braking torque increment; Indicates the weight coefficient of the left rear wheel longitudinal driving or braking torque increment; Indicates the weight coefficient of the right rear wheel longitudinal driving or braking torque increment; a' 2 =15; b' 2 =3; c' 2 =0.6; rangeR=300.
需要说明的是,本公开实施例中a'2、b'2、c'2和rangeR的取值是根据自身系统的调试经验给出一组参考值,由于被控对象的结构参数等不同,在实际使用时,本领技术人员可根据自身系统特征进行调试,以期取得更好的控制效果。It should be noted that the values of a' 2 , b' 2 , c' 2 and rangeR in the embodiments of the present disclosure are a set of reference values based on the debugging experience of the own system. Due to the different structural parameters of the controlled objects, In actual use, skilled personnel can debug according to their own system characteristics in order to obtain better control effects.
在一些实施例中,通过如下公式自适应调整松弛变量的权重系数:In some embodiments, the weight coefficient of the slack variable is adaptively adjusted by the following formula:
P=[01×5 σv P σr P] (15)P=[0 1×5 σ v P σ r P ] (15)
其中,P表示矩阵符号;表示松弛变量sv的权重系数;表示松弛变量sr的权重系数。Among them, P represents the matrix symbol; Indicates the weight coefficient of the slack variable s v ; Indicates the weight coefficient of the slack variable s r .
S106,根据确定的前轮转角和车轮力矩,控制无人驾驶车辆行驶。S106. Control the driving of the unmanned vehicle according to the determined front wheel angle and wheel torque.
需要说明的是,控制无人驾驶车辆行驶的控制量主要是前轮转角和车轮力矩,此处的车轮力矩包括各个车轮的纵向驱动或制动力矩。上述S106中控制无人驾驶车辆行驶的前轮转角和车轮力矩是综合考虑无人驾驶车辆在不同运行工况下的轨迹跟踪精度、稳定性指标和车轮滑移率来确定的,因而,本公开实施例中提供的无人驾驶车辆控制方法,能够确保在车辆在不同运行工况下以稳定状态跟踪目标车速和参考轨迹,既满足车辆的稳定性要求,也满足车辆的轨迹跟踪精度。It should be noted that the control quantities used to control the driving of the unmanned vehicle are mainly the front wheel angle and the wheel torque, where the wheel torque includes the longitudinal driving or braking torque of each wheel. The front wheel angle and wheel torque for controlling the driving of the unmanned vehicle in the above S106 are determined by comprehensively considering the trajectory tracking accuracy, stability index and wheel slip rate of the unmanned vehicle under different operating conditions. Therefore, the present disclosure The unmanned vehicle control method provided in the embodiment can ensure that the vehicle tracks the target vehicle speed and the reference trajectory in a steady state under different operating conditions, which not only meets the stability requirements of the vehicle, but also meets the trajectory tracking accuracy of the vehicle.
由上可知,本公开实施例中提供的无人驾驶车辆控制方法,通过获取无人驾驶车辆在不同运行工况下的轨迹跟踪精度、稳定性指标和车轮滑移率,进而根据无人驾驶车辆在不同运行工况下的轨迹跟踪精度、稳定性指标和车轮滑移率,确定无人驾驶车辆在不同运行工况下以稳定状态跟踪目标车速和参考轨迹信息行驶的前轮转角和车轮力矩,以便根据确定的前轮转角和车轮力矩,控制无人驾驶车辆行驶。通过本公开实施例,能够综合考虑无人驾驶车辆在不同运行工况下的车辆稳定性和跟踪精度来对无人驾驶车辆的行驶进行控制,能够实现适应不同运行工况的轨迹跟踪与稳定性的一体化协调控制。It can be seen from the above that the unmanned vehicle control method provided in the embodiment of the present disclosure, by obtaining the trajectory tracking accuracy, stability index and wheel slip rate of the unmanned vehicle under different operating conditions, and then according to the unmanned vehicle Trajectory tracking accuracy, stability index and wheel slip rate under different operating conditions, determine the front wheel angle and wheel torque of the unmanned vehicle to track the target speed and reference trajectory information in a steady state under different operating conditions, In order to control the driving of the unmanned vehicle according to the determined front wheel angle and wheel torque. Through the embodiments of the present disclosure, the vehicle stability and tracking accuracy of the unmanned vehicle under different operating conditions can be comprehensively considered to control the driving of the unmanned vehicle, and the trajectory tracking and stability adapting to different operating conditions can be realized. integrated coordinated control.
在一些实施例中,本公开实施例中提供的无人驾驶车辆控制方法还可包括如下步骤:获取无人驾驶车辆的目标车速和参考轨迹信息;根据无人驾驶车辆的目标车速和参考轨迹信息,确定无人驾驶车辆跟踪目标车速和参考轨迹信息行驶的前轮转角;根据无人驾驶车辆的目标车速和实际车速,确定无人驾驶车辆跟踪目标车速所需的总驱动或制动力矩;根据无人驾驶车辆的前后轴垂直载荷分布情况,将无人驾驶车辆跟踪目标车速所需的总驱动或制动力矩分配到各个车轮,得到各个车轮的纵向驱动或制动力矩;根据无人驾驶车辆在不同运行工况下的车轮滑移率,对各个车轮的纵向驱动或制动力矩进行约束。In some embodiments, the unmanned vehicle control method provided in the embodiments of the present disclosure may further include the following steps: obtaining the target speed and reference trajectory information of the unmanned vehicle; , to determine the front wheel angle of the unmanned vehicle tracking target speed and reference trajectory information; according to the target speed and actual speed of the unmanned vehicle, determine the total driving or braking torque required for the unmanned vehicle to track the target speed; according to The vertical load distribution of the front and rear axles of the unmanned vehicle, the total driving or braking torque required for the unmanned vehicle to track the target speed is distributed to each wheel, and the longitudinal driving or braking torque of each wheel is obtained; according to the unmanned vehicle The wheel slip ratio under different operating conditions constrains the longitudinal driving or braking torque of each wheel.
进一步地,在一些实施例中,可通过如下公式确定无人驾驶车辆跟踪目标车速所需的总驱动或制动力矩:Further, in some embodiments, the total driving or braking torque required for the unmanned vehicle to track the target vehicle speed can be determined by the following formula:
Tdes=k1(vx-vxdes)+k2∫(vx-vxdes)dt (16)T des =k 1 (v x -v xdes )+k 2 ∫(v x -v xdes )dt (16)
其中,Tdes表示总驱动或制动力矩;vx表示实际车速;vxdes表示目标车速;k1表示比例系数;k2表示积分系数。Among them, T des represents the total driving or braking torque; v x represents the actual vehicle speed; v xdes represents the target vehicle speed; k 1 represents the proportional coefficient; k 2 represents the integral coefficient.
更进一步地,在一些实施例中,本公开实施例中提供的无人驾驶车辆控制方法,可通过如下步骤来对无人驾驶车辆跟踪目标车速所需的总驱动或制动力矩进行限幅处理:获取无人驾驶车辆上电机输出的最大驱动或制动力矩;根据无人驾驶车辆上电机输出的最大驱动或制动力矩,对无人驾驶车辆跟踪目标车速所需的总驱动或制动力矩进行限幅处理。Furthermore, in some embodiments, the unmanned vehicle control method provided in the embodiments of the present disclosure can limit the total driving or braking torque required for the unmanned vehicle to track the target vehicle speed through the following steps : Obtain the maximum driving or braking torque output by the motor on the unmanned vehicle; according to the maximum driving or braking torque output by the motor on the unmanned vehicle, the total driving or braking torque required for the unmanned vehicle to track the target speed Perform limit processing.
在一些实施例中,通过如下公式对无人驾驶车辆跟踪目标车速所需的总驱动或制动力矩进行限幅处理:In some embodiments, the total driving or braking torque required for the unmanned vehicle to track the target vehicle speed is limited by the following formula:
其中,Tall表示限幅处理后的总驱动或制动力矩;Tdes表示限幅处理前的总驱动或制动力矩;Tmax表示单个电机输出的最大驱动或制动力矩;n表示输出驱动或制动力矩的电机数量。Among them, T all represents the total driving or braking torque after limiting processing; T des represents the total driving or braking torque before limiting processing; T max represents the maximum driving or braking torque output by a single motor; n represents the output drive or the number of motors with braking torque.
在一些实施例中,本公开实施例中提供的无人驾驶车辆控制方法还可包括如下步骤:获取无人驾驶车辆在不同运行工况下跟踪目标车速和参考轨迹信息的侧向位移偏差量和航向角偏差量;根据无人驾驶车辆在不同运行工况下跟踪目标车速和参考轨迹信息的侧向位移偏差量和航向角偏差量,确定无人驾驶车辆在不同运行工况下跟踪目标车速和参考轨迹信息行驶的的轨迹跟踪精度。In some embodiments, the unmanned vehicle control method provided in the embodiments of the present disclosure may further include the following steps: acquiring the lateral displacement deviation and Heading angle deviation; according to the lateral displacement deviation and heading angle deviation of the unmanned vehicle tracking the target vehicle speed and reference track information under different operating conditions, determine the unmanned vehicle tracking target vehicle speed and Trajectory tracking accuracy for driving with reference to trajectory information.
在一些实施例中,本公开实施例中提供的无人驾驶车辆控制方法还可包括如下步骤:获取无人驾驶车辆在不同运行工况下的侧向车速、横摆角速度和前后轴车轮侧偏角;根据无人驾驶车辆在不同运行工况下的侧向车速、横摆角速度和前后轴车轮侧偏角,确定无人驾驶车辆在不同运行工况下跟踪目标车速和参考轨迹信息行驶的的稳定性指标。In some embodiments, the unmanned vehicle control method provided in the embodiments of the present disclosure may further include the following steps: obtaining the lateral speed, yaw rate, and front and rear axle wheel lateral deflection of the unmanned vehicle under different operating conditions According to the lateral speed, yaw rate and side slip angle of the front and rear axle wheels of the unmanned vehicle under different operating conditions, determine the tracking target speed and reference trajectory information of the unmanned vehicle under different operating conditions. stability indicator.
在一些实施例中,通过如下公式确定无人驾驶车辆在不同运行工况下跟踪目标车速和参考轨迹信息行驶的的稳定性指标:In some embodiments, the following formula is used to determine the stability index of the unmanned vehicle tracking the target vehicle speed and the reference trajectory information under different operating conditions:
其中,R1=max(|αf,sat|,|αr,sat|)表示前轮饱和侧偏角和后轮饱和侧偏角中较大的一个取值;(αf,s,αr,s)表示距离原点更近的鞍点坐标;表示无人驾驶车辆当前状态到原点位置的距离。Among them, R 1 =max(|α f,sat |,|α r,sat |) represents the larger value among the saturated side slip angle of the front wheel and the saturated side slip angle of the rear wheel; (α f,s ,α r,s ) represents the saddle point coordinates closer to the origin; Indicates the distance from the current state of the unmanned vehicle to the origin.
在一些实施例中,方法还包括:将侧向速度、横摆角速度、侧向位移偏差、航向角偏差、车轮滑移率和前后轴车轮侧偏角确定为状态变量,建立状态空间表达式;根据无人驾驶车辆在不同运行工况下的车辆稳定状态,自适应调整侧向车速、横摆角速度与跟踪偏差量的权重系数。In some embodiments, the method further includes: determining lateral velocity, yaw rate, lateral displacement deviation, heading angle deviation, wheel slip rate, and front and rear axle wheel sideslip angles as state variables, and establishing a state space expression; According to the stable state of the unmanned vehicle under different operating conditions, the weight coefficients of the lateral vehicle speed, yaw rate and tracking deviation are adaptively adjusted.
进一步地,在一些实施例中,建立状态空间表达式为:Further, in some embodiments, the state space expression is established as:
其中,in,
其中,表示状态量的变化速度;ξ表示状态量;u表示控制量;f()表示状态量的变化速度与状态量、控制量之间的函数关系;η表示输出量;h()表示输出量与状态量之间的函数关系;αf表示前轴车轮侧偏角;αr表示后轴车轮侧偏角。in, Indicates the change speed of the state quantity; ξ indicates the state quantity; u indicates the control quantity; f() indicates the functional relationship between the change speed of the state quantity and the state quantity and the control quantity; η indicates the output quantity; h() indicates the output quantity and The functional relationship between the state quantities; α f represents the front axle wheel slip angle; α r represents the rear axle wheel slip angle.
进一步地,在一些实施例中,可通过如下步骤来自适应调整侧向车速、横摆角速度与跟踪偏差量的权重系数:若无人驾驶车辆处于稳定状态,则减小侧向车速的权重系数,增大横摆角度度与跟踪偏差量的权重系数;若无人驾驶车辆处于非稳定状态,则增大侧向车速的权重系数,减小横摆角度度与跟踪偏差量的权重系数。Further, in some embodiments, the weight coefficients of lateral vehicle speed, yaw rate and tracking deviation can be adaptively adjusted through the following steps: if the unmanned vehicle is in a stable state, then reduce the weight coefficient of lateral vehicle speed, Increase the weight coefficient of yaw angle and tracking deviation; if the unmanned vehicle is in an unstable state, increase the weight coefficient of lateral vehicle speed, and reduce the weight coefficient of yaw angle and tracking deviation.
图2示出本公开实施例中一种无人驾驶车辆控制方法的具体实现架构,该架构可以应用但不限于面向不同运行工况的四轮独立驱动电动无人驾驶汽车轨迹跟踪与稳定性协调控制,如图2所示,总体思路是:首先基于上层运动规划层得到的目标车速vxref和参考轨迹信息Yref和以及实时车辆状态信息,通过设计PID控制器跟踪目标车速变化,得到所需的总驱动力矩Tall,即驾驶员的总力矩需求,之后按照前后轴垂直载荷分布情况对总的驱动力矩进行分配,得到参考四轮力矩值Tref。之后设计基于MPC的一体化控制器,选择表征跟踪精度的侧向位移偏差和航向角偏差,描述车辆横摆动力学特性的侧向速度和横摆角速度,以及表征轮胎滚动状态的四轮滑移率偏差作为状态量,此外为了进一步保证车辆的稳定性,选择前后轴轮胎侧偏角作为状态量,通过基于前后轮侧偏角相平面设计的稳定性评价指标,实时对车辆的稳定状态进行判断,并设计一套基于该稳定性评价指标的轨迹跟踪精度、操纵性与稳定性目标的权重自适应调节策略,根据实时的轮胎滑移率信息,引入双曲函数对四轮滑移率偏差的权重进行相应调节,决策出相应的转角和力矩,保证车辆稳定行驶的同时,实现对参考轨迹和目标车速的跟踪。Figure 2 shows a specific implementation architecture of a control method for an unmanned vehicle in an embodiment of the disclosure, which can be applied but not limited to trajectory tracking and stability coordination of four-wheel independent drive electric unmanned vehicles for different operating conditions Control, as shown in Figure 2, the general idea is: first, based on the target vehicle speed v xref and reference trajectory information Y ref and As well as real-time vehicle status information, by designing a PID controller to track the target vehicle speed change, the required total drive torque T all is obtained, that is, the driver's total torque demand, and then the total drive torque is distributed according to the vertical load distribution of the front and rear axles. The reference four-wheel torque value T ref is obtained. Then design an integrated controller based on MPC, select the lateral displacement deviation and yaw angle deviation to characterize the tracking accuracy, the lateral velocity and yaw rate to describe the vehicle yaw dynamics, and the four-wheel slip rate to characterize the tire rolling state The deviation is used as the state quantity. In addition, in order to further ensure the stability of the vehicle, the side slip angle of the front and rear axle tires is selected as the state quantity, and the stability of the vehicle is judged in real time through the stability evaluation index based on the phase plane design of the front and rear wheel side slip angle. And design a set of weight adaptive adjustment strategies based on the trajectory tracking accuracy, maneuverability and stability goals based on the stability evaluation index, according to the real-time tire slip rate information, introduce the weight of the hyperbolic function to the four-wheel slip rate deviation Make corresponding adjustments, determine the corresponding rotation angle and torque, and realize the tracking of the reference trajectory and the target vehicle speed while ensuring the stable driving of the vehicle.
在具体实施时,可包括如下步骤:During specific implementation, the following steps may be included:
1)建立PI纵向运动控制器,计算无人驾驶车辆跟踪目标车速和参考轨迹信息所需的总驱动或制动力矩:1) Establish a PI longitudinal motion controller to calculate the total driving or braking torque required for the unmanned vehicle to track the target speed and reference trajectory information:
如图3所示,根据当前车速(实际车速)与期望车速(目标车速)的偏差,利用比例积分原理,计算跟踪期望车速所需的总驱动力矩,具体计算公式如公式(16)所示,此处不再赘述。As shown in Figure 3, according to the deviation between the current vehicle speed (actual vehicle speed) and the desired vehicle speed (target vehicle speed), the proportional integral principle is used to calculate the total driving torque required to track the desired vehicle speed. The specific calculation formula is shown in formula (16), I won't repeat them here.
接着,根据单个电机可输出的最大驱动或制动力矩Tmax,对总驱动或制动力矩进行限幅处理,得到实际的总驱动或制动力矩Tall为:Then, according to the maximum driving or braking torque T max that can be output by a single motor, the total driving or braking torque is limited, and the actual total driving or braking torque T all is obtained as:
此后,根据前后轴载荷分布情况,对总的驱动/制动力矩Tall进行分配,左右两侧车轮平均分配,作为参考控制量V,如上述公式(4)所示。Thereafter, according to the front and rear axle load distribution, the total driving/braking torque T all is distributed, and the wheels on the left and right sides are evenly distributed as the reference control variable V, as shown in the above formula (4).
2)建立基于MPC的一体化控制器,实现轨迹跟踪与稳定性协调控制:2) Establish an integrated controller based on MPC to realize coordinated control of trajectory tracking and stability:
结合图4所示的车辆与路径相对位置模型和图5所示的七自由度双轨车辆动力学模型对预测模型的建立过程进行详细说明:Combined with the relative position model of the vehicle and the path shown in Figure 4 and the seven-degree-of-freedom dual-track vehicle dynamics model shown in Figure 5, the process of establishing the prediction model is described in detail:
A1、建立状态空间表达式:A1. Establish state space expression:
基于车辆与路径相对位置模型进行侧向位移和航向角偏差导数计算,计算公式分别如下:The lateral displacement and heading angle deviation derivatives are calculated based on the relative position model of the vehicle and the path, and the calculation formulas are as follows:
基于七自由度车辆动力学模型的侧向车速、横摆角速度与四轮滑移率偏差以及侧偏角变化率计算,计算公式分别如下:Based on the seven-degree-of-freedom vehicle dynamics model, the lateral vehicle speed, yaw rate, four-wheel slip rate deviation, and side slip angle change rate are calculated. The calculation formulas are as follows:
其中,Mz为由四轮纵向力绕车辆质心产生的外部横摆力矩,具体表达为:Among them, Mz is the external yaw moment generated by the longitudinal force of the four wheels around the center of mass of the vehicle, specifically expressed as:
其中,κ(ρ)为道路曲率;m为整车质量;Iz为车辆绕z轴的转动惯量,vx、vy分别为纵向和侧向车速,r为横摆角速度,δ为前轮转角,Fxij,Fyij分别为轮胎纵向力和侧向力,其中下标ij=fl,fr,rl,rr分别表示左前轮,右前轮,左后轮,右后轮;la、lb分别为质心至前后轴的距离,c为车辆轮距。Among them, κ(ρ) is the curvature of the road; m is the mass of the vehicle; I z is the moment of inertia of the vehicle around the z-axis, v x and v y are the longitudinal and lateral vehicle speeds, r is the yaw rate, and δ is the front wheel Corner, F xij , F yij are tire longitudinal force and lateral force respectively, where the subscripts ij=fl, fr, rl, rr represent left front wheel, right front wheel, left rear wheel, right rear wheel respectively; l a , l b is the distance from the center of mass to the front and rear axles, and c is the wheelbase of the vehicle.
四轮滑移率偏差导数为:The derivative of the four-wheel slip ratio deviation is:
期望的轮胎转动角速度为:The desired angular velocity of the tire is:
则期望的轮胎转动角加速度为:Then the expected angular acceleration of tire rotation is:
其中,ζr=-ζl=1;Among them, ζ r =-ζ l =1;
轮胎实际的转动角加速度为:The actual rotational angular acceleration of the tire is:
其中,ωij为轮胎实际转动角速度,Tij为四轮力矩,Iz为转动惯量,Re为车轮有效半径;Among them, ω ij is the actual rotation angular velocity of the tire, T ij is the four-wheel moment, I z is the moment of inertia, R e is the effective radius of the wheel;
四轮胎侧偏角可写为:The side slip angle of the four tires can be written as:
其中,ζf=-ζr=1,δf=δ,δr=0;Among them, ζ f = -ζ r = 1, δ f = δ, δ r = 0;
对轮胎侧偏角求导可得:The derivative of the tire slip angle can be obtained as follows:
其中,in,
经过上述公式推导,可建立如上述公式(19)所示的状态空间表达式。After the derivation of the above formula, the state space expression shown in the above formula (19) can be established.
为保证车辆稳定行驶的同时较好的跟踪参考轨迹,确定的状态变量如上述公式(20)所示;选取的控制量如上述公式(2)所示;选取的输出量如上述公式(3)所示;选取的扰动量如公式(22)所示。In order to ensure that the vehicle can track the reference trajectory well while driving stably, the determined state variable is shown in the above formula (20); the selected control quantity is shown in the above formula (2); the selected output quantity is shown in the above formula (3) Shown; the selected disturbance is shown in formula (22).
其中,ax为纵向加速度,为估计得到的四轮纵向力。Among them, a x is the longitudinal acceleration, is the estimated four-wheel longitudinal force.
A2、对状态空间表达式进行线性化处理,得到线性时变系统:A2. Linearize the state space expression to obtain a linear time-varying system:
轮胎受力对车辆的操纵稳定性和平顺性起着至关重要的作用,本公开实施例中图6所示的统一轮胎模型(UniTire轮胎模型)来对轮胎在不同运行工况下的受力进行描述,该模型可以对纯工况和复合工况的轮胎纵滑侧偏特性进行统一表达,具体表达形式为:Tire stress plays a vital role in the handling stability and ride comfort of the vehicle. The unified tire model (UniTire tire model) shown in FIG. For description, the model can uniformly express the tire longitudinal slipping characteristics of pure working conditions and compound working conditions, and the specific expression form is:
其中,为无量纲的总切向力;Fx和Fy分别表示实际的纵向力和侧向力;E为曲率因子;μ为方向摩擦系数;Fz为垂直载荷;φx,φy和φ分别表示相对纵向、侧向和综合滑移率,定义为:in, is the dimensionless total tangential force; F x and F y represent the actual longitudinal force and lateral force respectively; E is the curvature factor; μ is the direction friction coefficient; F z is the vertical load; φ x , φ y and φ respectively Indicates the relative longitudinal, lateral and combined slip ratios, defined as:
其中,Kx、Ky分别是轮胎的纵滑和侧偏刚度;Fz是垂直载荷;μx,μy分别是纵向和侧向摩擦系数,Sx和Sy分别为轮胎纵向滑移率和侧向滑移率,计算公式如下:Among them, K x , K y are longitudinal slip and cornering stiffness of tire respectively; F z is vertical load; μ x , μ y are longitudinal and lateral friction coefficients respectively, S x and S y are tire longitudinal slip rate respectively and lateral slip rate, the calculation formula is as follows:
其中,Re为有效滚动半径;Vsx和Vsy分别表示纵向和侧向滑移速度。Among them, R e is the effective rolling radius; V sx and V sy represent the longitudinal and lateral slip velocity, respectively.
将上述轮胎力带入到状态空间方程后将得到非线性的车辆动力学模型作为预测模型。After bringing the above tire force into the state space equation, a nonlinear vehicle dynamics model will be obtained as a predictive model.
为满足控制器在实际应用过程中对实时性的要求,必须对模型(状态空间表达式)进行适当的线性化处理。根据泰勒展开公式,在工作点(ξ0(k)、u0(k)、w0(k))处进行泰勒展开,只保留第一项,忽略所有高阶项,得到如下线性时变系统:In order to meet the real-time requirements of the controller in the actual application process, the model (state space expression) must be properly linearized. According to the Taylor expansion formula, Taylor expansion is carried out at the operating point (ξ 0 (k), u 0 (k), w 0 (k)), only the first term is kept, and all higher-order terms are ignored, and the following linear time-varying system is obtained :
其中,A(t)表示状态量的系数矩阵,B(t)表示控制量的系数矩阵,D(t)表示扰动量的系数矩阵;Among them, A(t) represents the coefficient matrix of the state quantity, B(t) represents the coefficient matrix of the control quantity, and D(t) represents the coefficient matrix of the disturbance quantity;
A3、通过一阶差商的方法对状态空间表达式进行离散化处理,得到离散后的状态空间表达式为:A3. The state space expression is discretized by the first-order difference quotient method, and the discretized state space expression is obtained as:
ξ(k+1)=A(k)ξ(k)+B(k)u(k)+D(k)w(k) (39)ξ(k+1)=A(k)ξ(k)+B(k)u(k)+D(k)w(k) (39)
式中,ξ(k)表示离散后的状态量,u(k)表示离散后的控制量,A(k)表示离散后的状态量系数矩阵,满足A(k)=I+A(t)T,B(k)和D(k)分别表示离散后的控制量和扰动量系数矩阵,满足B(k)=B(t)T,D(k)=D(t)T;其中,I表示单位矩阵;T表示采样周期。In the formula, ξ(k) represents the discretized state quantity, u(k) represents the discretized control quantity, and A(k) represents the discretized state quantity coefficient matrix, satisfying A(k)=I+A(t) T, B(k) and D(k) respectively denote the discretized control and disturbance coefficient matrices, satisfying B(k)=B(t)T, D(k)=D(t)T; where, I Represents the identity matrix; T represents the sampling period.
由于系统矩阵维度较大,为降低手动求导运算庞大的计算量,降低的出错率,采用matlab的jacobian函数求解状态量、控制量和扰动量系数矩阵A(k)、B(k)、D(k);Due to the large dimension of the system matrix, in order to reduce the huge amount of calculation and reduce the error rate of the manual derivation operation, the jacobian function of matlab is used to solve the state quantity, control quantity and disturbance quantity coefficient matrices A(k), B(k), D (k);
A4、计算期望参考输出量:A4. Calculate the expected reference output:
以当前时刻车速和上一时刻控制器决策出的前轮转角作为输入,通过二自由度车辆模型计算得到期望的横摆角速度为:Taking the vehicle speed at the current moment and the front wheel angle determined by the controller at the previous moment as input, the desired yaw rate is calculated by the two-degree-of-freedom vehicle model as:
式中,rdes中为期望的横摆角速度,r0和rmax分别为目标横摆角速度及其最大值,具体表达为:In the formula, r des is the desired yaw rate, r 0 and r max are the target yaw rate and its maximum value respectively, specifically expressed as:
其中,μ为路面附着系数;Cr为后轮刚度;Cf为前轮刚度;lf为车辆质心到前轴的距离;lr为车辆质心到后轴的距离。Among them, μ is the adhesion coefficient of the road surface; C r is the stiffness of the rear wheel; C f is the stiffness of the front wheel; l f is the distance from the center of mass of the vehicle to the front axle; l r is the distance from the center of mass of the vehicle to the rear axle.
当质心侧偏角β较小时,期望侧向车速定义为实车侧向速度,一旦质心侧偏角增大并超出一定的阈值,则期望侧向车速被设定为零,即:When the center-of-mass slip angle β is small, the desired lateral vehicle speed is defined as the lateral speed of the actual vehicle. Once the center-of-mass slip angle increases and exceeds a certain threshold, the desired lateral vehicle speed is set to zero, that is:
其中质心侧偏角阈值为:βmax=atan(0.02μg),表征跟踪精度的侧向位移和航向角偏差的期望值为0,即: The center of mass sideslip angle threshold is: β max =atan(0.02μg), and the expected value of the lateral displacement and heading angle deviation that characterizes the tracking accuracy is 0, namely:
为了尽可能使轮胎处于纯滚动状态,期望转速设定为轮胎纯滚动状态的转速,在控制车辆操纵稳定性的同时,也控制车轮的滑移率,防止车轮过度滑转,因此四轮滑移率偏差的期望值为0,即:ewij,des=0。In order to keep the tires in a pure rolling state as much as possible, the desired speed is set to the pure rolling state of the tires. While controlling the vehicle handling stability, it also controls the slip rate of the wheels to prevent excessive wheel slippage, so four-wheel slippage The expected value of rate deviation is 0, namely: e wij,des =0.
因此总的参考输出为:So the total reference output is:
其中,ηref表示期望的参考输出量;vydes表示期望的侧向速度;rdes表示期望的横摆角速度;eydes表示期望的侧向位移偏差;表示期望的航向角偏差;ewfl,des表示期望的左前轮滑移率偏差;ewfr,des表示期望的右前轮滑移率偏差;ewrl,des表示期望的左后轮滑移率偏差;ewrr,des表示期望的右后轮滑移率偏差。Among them, η ref represents the desired reference output; v ydes represents the desired lateral velocity; r des represents the desired yaw rate; eydes represents the desired lateral displacement deviation; Indicates the expected heading angle deviation; e wfl, des indicates the expected left front wheel slip rate deviation; e wfr, des indicates the expected right front wheel slip rate deviation; e wrl, des indicates the expected left rear wheel slip rate Deviation; e wrr, des represents the desired right rear wheel slip ratio deviation.
A5、建立目标函数:A5. Establish the objective function:
假设当前时刻为k,为计算车辆快速平稳的跟踪参考轨迹所需的前轮转角和四轮力矩,建立如上述公式(1)所示的目标函数,其中,第一项为对实际输出与参考输出之间偏差的惩罚,用来保证轨迹跟踪精度和车辆稳定性,第二项为对前轮转角幅值和实际力矩输出与参考值之间偏差的惩罚,防止转角过大同时使控制器在常规工况决策出的力矩尽量跟踪驾驶员期望值变化,更好的实现对期望车速的跟踪,第三项为对控制量增量的惩罚,保证执行器平稳变化,第四项为对安全相平面松弛变量的惩罚,保证控制器求解的可行性。Assuming that the current moment is k, in order to calculate the front wheel angle and four-wheel torque required for the vehicle to quickly and smoothly track the reference trajectory, an objective function as shown in the above formula (1) is established, where the first item is the comparison between the actual output and the reference The penalty for the deviation between outputs is used to ensure the trajectory tracking accuracy and vehicle stability. The second item is the penalty for the deviation between the front wheel angle amplitude and the actual torque output and the reference value. The torque determined by the normal working condition should track the change of the driver's expectation as much as possible, so as to better track the expected vehicle speed. The third item is the penalty for the increment of the control amount to ensure the smooth change of the actuator. The fourth item is the control of the safety phase plane. The penalty of the slack variable ensures the feasibility of the controller solution.
A6、考虑相关的约束条件:A6. Consider the relevant constraints:
首先考虑执行器的物理约束和摩擦椭圆约束,给出前轮转角和四轮力矩范围,分别如上述公式(5)和公式(6)所示。Firstly, considering the physical constraints of the actuator and the frictional ellipse constraints, the front wheel rotation angle and the four-wheel torque range are given, as shown in the above formula (5) and formula (6), respectively.
为保证执行器平滑变化,提升整车舒适性和综合控制效果,对控制量增量进行约束,约束公式如上述公式(7)和公式(8)所示。In order to ensure the smooth change of the actuator, improve the comfort of the vehicle and the comprehensive control effect, the increment of the control amount is constrained, and the constraint formula is shown in the above formula (7) and formula (8).
为保证车辆稳定性,基于峰值侧偏角得到的质心侧偏角βe和横摆角速度re设计安全相平面约束,如上述公式(9)所示,此处不再赘述。In order to ensure the stability of the vehicle, the safety phase plane constraints are designed based on the side slip angle β e obtained from the peak side slip angle and the yaw rate r e , as shown in the above formula (9), and will not be repeated here.
A7、车辆稳定性评价指标计算:A7. Calculation of vehicle stability evaluation index:
采用基于前后轮侧偏角相平面的量化稳定性评价指标,如公式(18)所示。The quantitative stability evaluation index based on the phase plane of front and rear wheel slip angles is adopted, as shown in formula (18).
结合图7基于轮胎侧偏角相平面的稳定性指标设计来看,区域3代表稳定区域,它是以原点为中心半径为R1的圆,R1=max(|αf,sat|,|αr,sat|)表示前轮或后轮饱和侧偏角的较大值,在该区域车辆具有较好的稳定性,以车辆的轨迹跟踪精度和操纵性为主要的控制目标;区域2表示过渡区域,它是以原点为圆心,半径为的圆,由于此时车辆前后轮侧偏角都达到了较大的值,并且一部分超过饱和值,因而状态位于该区域时车辆存在失稳的可能性。区域1被定义为不稳定区域,它是以原点为圆心,半径为的圆,其中点(αf,s,αr,s)表示距离原点更近的鞍点坐标,前轮或后轮侧偏角进入到严重下降区域,车辆容易失去转向能力,或发生“甩尾”,为不稳定区域。Combining with the stability index design based on the tire slip angle phase plane in Figure 7, area 3 represents the stable area, which is a circle with the origin as the center and radius R 1 , R 1 =max(|α f,sat |,| α r,sat |) indicates the larger value of the front or rear wheel saturation side slip angle, in which the vehicle has better stability, and the main control objectives are the trajectory tracking accuracy and maneuverability of the vehicle;
表示当前车辆实际状态到原点位置的距离。 Indicates the distance from the actual state of the current vehicle to the origin.
当ε∈(0,1]时,车辆状态是稳定的,ε数值越大,稳定程度越高;当ε∈(-1,0]时,车辆状态位于过渡区域,车辆存在失稳的可能性;当ε∈[-2,-1]时,车辆处于极限状态即将失稳。When ε∈(0,1], the vehicle state is stable, and the larger the value of ε, the higher the degree of stability; when ε∈(-1,0], the vehicle state is in the transition region, and the vehicle may be unstable ; When ε∈[-2,-1], the vehicle is in the limit state and is about to lose stability.
A8、基于量化稳定性评价指标的权重自适应调节策略:A8. Weight adaptive adjustment strategy based on quantitative stability evaluation indicators:
轨迹跟踪精度与车辆的操纵性控制目标相似,而操纵性与稳定性控制目标通常是相互矛盾的,因此,为了更好的满足不同运行工况下,车辆对轨迹跟踪精度、操纵性、稳定性等控制目标的权重优先级,设计了一套基于稳定性评价指标的权重自适应调节策略和基于四轮滑移率的双曲正切滑移率偏差权重自适应调节,具体上述公式(11)所示。Trajectory tracking accuracy is similar to the vehicle's maneuverability control objectives, but the maneuverability and stability control objectives are usually contradictory. Therefore, in order to better meet different operating conditions, the vehicle's trajectory tracking accuracy, maneuverability, stability In order to control the weight priority of control objectives, a set of weight adaptive adjustment strategy based on stability evaluation index and hyperbolic tangent slip rate deviation weight adaptive adjustment based on four-wheel slip rate is designed. Specifically, the above formula (11) Show.
结合图8的跟踪精度、操纵性与稳定性权重自适应图来看,在ε≥0.2时车辆处于稳定状态,以轨迹跟踪精度和车辆操纵性为主要控制目标,因此,侧向车速权重较小,横摆角速度和跟踪偏差量权重较大;在ε<0.2时,随着ε的减小,车辆的稳定性逐渐变差,因此逐步增大侧向车速权重,相应减小横摆角速度与跟踪偏差量权重,如此实现自适应调节。本公开实施例中,引入双曲函数对四轮滑移率偏差权重调节进行过自适应调节,结合图9所示的曲线来看,在滑移率较小时,赋予较小的权重,在滑移率增大后,相应的快速增大权重,将滑移率约束在较小的范围内,防止车轮打滑,进一步提高车辆行驶的安全性。Combined with the tracking accuracy, maneuverability and stability weight adaptive graph in Figure 8, the vehicle is in a stable state when ε≥0.2, and the trajectory tracking accuracy and vehicle maneuverability are the main control objectives, so the weight of lateral vehicle speed is small , the weight of yaw rate and tracking deviation is relatively large; when ε<0.2, with the decrease of ε, the stability of the vehicle gradually deteriorates, so the weight of lateral vehicle speed is gradually increased, and the weight of yaw rate and tracking deviation is correspondingly reduced Deviation weight, so as to realize adaptive adjustment. In the embodiment of the present disclosure, a hyperbolic function is introduced to adjust the weight adjustment of the four-wheel slip ratio deviation adaptively. According to the curve shown in FIG. After the slip rate increases, the corresponding rapid increase in weight will constrain the slip rate within a small range, prevent wheel slippage, and further improve the safety of the vehicle.
因此,最终的输出量权重为:Therefore, the final output weight is:
基于力矩增量的控制量权重自适应调节,具体如上述公式(13)所示;控制量权重如上述公式(12)所示;控制增量权重如上述公式(14)所示;松弛变量量权重如上述公式(15)所示。The adaptive adjustment of the control variable weight based on the torque increment is specifically shown in the above formula (13); the control variable weight is shown in the above formula (12); the control increment weight is shown in the above formula (14); the slack variable The weights are shown in the above formula (15).
A9、目标函数的优化求解:A9. Optimal solution of objective function:
基于公式(4)的目标函数,综合考虑执行器约束和安全相平面约束,通过qpOASESsolver求解器进行优化求解,即:Based on the objective function of formula (4), considering the constraints of the actuator and the safety phase plane, the optimization solution is performed by the qpOASESsolver solver, namely:
求解上述目标函数得到控制时域内的一系列控制输入增量和松弛变量:Solving the above objective function obtains a series of control input increments and slack variables in the control time domain:
其中,Δu表示控制量增量;表示t时刻的控制量增量;表示t+1时刻的控制量增量;表示t+Nc-1时刻的控制量增量;σv和σr表示松弛变量。Among them, Δu represents the control quantity increment; Indicates the control quantity increment at time t; Indicates the increment of control quantity at
对将上述控制序列中的第一个元素与上一时刻对应的控制量加和最为最终的控制量。The final control amount is the sum of the control amount corresponding to the first element in the above control sequence and the previous moment.
A10、在t+1时刻重复步骤A1-A9,如此反复滚动优化,实现对参考轨迹的跟踪。A10. Steps A1-A9 are repeated at
由上可知,本公开实施例中提供的无人驾驶车辆控制方法,采用基于MPC的一体化控制方法,综合考虑轨迹跟踪精度和车辆稳定性控制目标以及四轮滑移率控制目标,通过基于前后轮侧偏角相平面设计的稳定性评价指标,对车辆运行状态进行判断,相应对MPC的多个控制目标权重进行实时自适应调节,最终决策出相应的转角和四轮力矩,实现适应不同运行工况的轨迹跟踪与稳定性的一体化协调控制。It can be seen from the above that the unmanned vehicle control method provided in the embodiment of the present disclosure adopts the integrated control method based on MPC, comprehensively considers the trajectory tracking accuracy, the vehicle stability control target and the four-wheel slip rate control target, and through The stability evaluation index of the wheel slip angle phase plane design judges the running state of the vehicle, correspondingly adjusts the multiple control target weights of the MPC in real time, and finally decides the corresponding rotation angle and four-wheel torque, so as to adapt to different running conditions Integrated coordinated control of trajectory tracking and stability of working conditions.
与现有轨迹跟踪控制器相比,本公开实施例中提供的无人驾驶车辆控制方法,具有如下优点:Compared with the existing trajectory tracking controller, the unmanned vehicle control method provided in the embodiment of the present disclosure has the following advantages:
1)面向不同运行工况的四轮独立驱动无人驾驶电动汽车轨迹跟踪与稳定性协调控制方法,能够保证车辆在跟踪参考轨迹的同时具有较高的稳定性。1) The trajectory tracking and stability coordination control method of four-wheel independent driving unmanned electric vehicles for different operating conditions can ensure that the vehicle has high stability while tracking the reference trajectory.
2)基于模型预测控制算法设计了面向不同运行工况的一体化控制器,能够综合考虑不同运行工况下的轨迹跟踪精度、车辆稳定性和四轮滑移率控制目标,和执行器物理约束、摩擦椭圆约束、相平面安全约束,决策出相对最优的控制量,具有较好的综合控制性能。2) An integrated controller for different operating conditions is designed based on the model predictive control algorithm, which can comprehensively consider the trajectory tracking accuracy, vehicle stability and four-wheel slip ratio control objectives under different operating conditions, and the physical constraints of the actuator , frictional ellipse constraints, and phase plane security constraints, determine the relatively optimal control quantity, and have good comprehensive control performance.
3)基于量化的稳定性评价指标设计了一套不同控制目标的权重自适应调节策略,来协调轨迹跟踪精度和车辆操纵性目标与车辆稳定性目标在不同运行工况下的权重优先级,并引入双曲函数对四轮滑移率偏差权重进行自适应调节,防止轮胎滑转,进一步提升车辆安全性能,对不同运行工况具有较好的适应性和鲁棒性。3) Based on the quantitative stability evaluation index, a set of weight adaptive adjustment strategies for different control objectives is designed to coordinate the trajectory tracking accuracy and the weight priority of vehicle maneuverability objectives and vehicle stability objectives under different operating conditions, and A hyperbolic function is introduced to adaptively adjust the weight of the four-wheel slip ratio deviation to prevent tire slippage and further improve vehicle safety performance. It has good adaptability and robustness to different operating conditions.
4)基于后轮侧偏角饱和时对应的横摆角速度和质心侧偏角设计相平面安全约束,进一步保证了车辆的稳定性;并通过引入松弛变量,来保证极限工况下控制器仍然能够找到可行解,即允许车辆暂时小幅超出安全约束边界,来保证整车控制性能,防止出现控制器求解失败导致的车辆失控。4) Design phase plane safety constraints based on the corresponding yaw rate and center of mass sideslip angle when the rear wheel slip angle is saturated, to further ensure the stability of the vehicle; and by introducing slack variables to ensure that the controller can still be able to Find a feasible solution, that is, allow the vehicle to temporarily exceed the safety constraint boundary slightly to ensure the control performance of the whole vehicle and prevent the vehicle from getting out of control due to the failure of the controller to solve.
基于同一发明构思,本公开实施例中还提供了一种无人驾驶车辆控制装置,如下面的实施例所述。由于该装置实施例解决问题的原理与上述方法实施例相似,因此该装置实施例的实施可以参见上述方法实施例的实施,重复之处不再赘述。Based on the same inventive concept, embodiments of the present disclosure also provide a control device for an unmanned vehicle, as described in the following embodiments. Since the problem-solving principle of this device embodiment is similar to that of the above-mentioned method embodiment, the implementation of this device embodiment can refer to the implementation of the above-mentioned method embodiment, and repeated descriptions will not be repeated.
图10示出本公开实施例中一种无人驾驶车辆控制装置示意图,如图10所示,该装置包括:状态信息获取模块1001、控制量确定模块1002和控制模块1003。FIG. 10 shows a schematic diagram of an unmanned vehicle control device in an embodiment of the present disclosure. As shown in FIG. 10 , the device includes: a state
其中,状态信息获取模块1001,用于获取无人驾驶车辆在不同运行工况下的轨迹跟踪精度、稳定性指标和车轮滑移率;控制量确定模块1002,用于根据无人驾驶车辆在不同运行工况下的轨迹跟踪精度、稳定性指标和车轮滑移率,确定无人驾驶车辆在不同运行工况下以稳定状态跟踪目标车速和参考轨迹信息行驶的前轮转角和车轮力矩;控制模块1003,用于根据确定的前轮转角和车轮力矩,控制无人驾驶车辆行驶。Among them, the state
此处需要说明的是,上述状态信息获取模块1001、控制量确定模块1002和控制模块1003对应于方法实施例中的S102~S106,上述模块与对应的步骤所实现的示例和应用场景相同,但不限于上述方法实施例所公开的内容。需要说明的是,上述模块作为装置的一部分可以在诸如一组计算机可执行指令的计算机系统中执行。It should be noted here that the above-mentioned state
在一些实施例中,根据无人驾驶车辆在不同运行工况下的轨迹跟踪精度、稳定性指标和车轮滑移率,确定无人驾驶车辆在不同运行工况下以稳定状态跟踪目标车速和参考轨迹信息行驶的前轮转角和车轮力矩,包括:以轨迹跟踪精度、稳定性指标和车轮滑移率为目标,构建目标函数;确定目标函数的约束条件;根据目标函数和约束条件,确定无人驾驶车辆在不同运行工况下以稳定状态跟踪目标车速和参考轨迹信息行驶的前轮转角和车轮力矩。In some embodiments, according to the trajectory tracking accuracy, stability index and wheel slip rate of the unmanned vehicle under different operating conditions, it is determined that the unmanned vehicle tracks the target vehicle speed and the reference speed in a steady state under different operating conditions. The front wheel angle and wheel torque of trajectory information driving, including: constructing an objective function based on trajectory tracking accuracy, stability index and wheel slip rate; determining the constraints of the objective function; determining the unmanned The steering angle and wheel torque of the driving vehicle track the target vehicle speed and the reference trajectory information in a steady state under different operating conditions.
在一些实施例中,上述控制量确定模块1002还用于:获取无人驾驶车辆的目标车速和参考轨迹信息;根据无人驾驶车辆的目标车速和参考轨迹信息,确定无人驾驶车辆跟踪目标车速和参考轨迹信息行驶的前轮转角;根据无人驾驶车辆的目标车速和实际车速,确定无人驾驶车辆跟踪目标车速所需的总驱动或制动力矩;根据无人驾驶车辆的前后轴垂直载荷分布情况,将无人驾驶车辆跟踪目标车速所需的总驱动或制动力矩分配到各个车轮,得到各个车轮的纵向驱动或制动力矩;根据无人驾驶车辆在不同运行工况下的车轮滑移率,对各个车轮的纵向驱动或制动力矩进行约束。In some embodiments, the above-mentioned control
在一些实施例中,上述控制量确定模块1002还用于:获取无人驾驶车辆上电机输出的最大驱动或制动力矩;根据无人驾驶车辆上电机输出的最大驱动或制动力矩,对无人驾驶车辆跟踪目标车速所需的总驱动或制动力矩进行限幅处理。In some embodiments, the above-mentioned control
在一些实施例中,上述控制量确定模块1002还用于:获取无人驾驶车辆在不同运行工况下跟踪目标车速和参考轨迹信息的侧向位移偏差量和航向角偏差量;根据无人驾驶车辆在不同运行工况下跟踪目标车速和参考轨迹信息的侧向位移偏差量和航向角偏差量,确定无人驾驶车辆在不同运行工况下跟踪目标车速和参考轨迹信息行驶的的轨迹跟踪精度。In some embodiments, the above-mentioned control
在一些实施例中,上述控制量确定模块1002还用于:获取无人驾驶车辆在不同运行工况下的侧向车速、横摆角速度和前后轴车轮侧偏角;根据无人驾驶车辆在不同运行工况下的侧向车速、横摆角速度和前后轴车轮侧偏角,确定无人驾驶车辆在不同运行工况下跟踪目标车速和参考轨迹信息行驶的的稳定性指标。In some embodiments, the above-mentioned control
在一些实施例中,上述控制量确定模块1002还用于:将侧向速度、横摆角速度、侧向位移偏差、航向角偏差、车轮滑移率和前后轴车轮侧偏角确定为状态变量,建立状态空间表达式;根据无人驾驶车辆在不同运行工况下的车辆稳定状态,自适应调整侧向车速、横摆角速度与跟踪偏差量的权重系数。In some embodiments, the above-mentioned control
在一些实施例中,上述控制量确定模块1002还用于:若无人驾驶车辆处于稳定状态,则减小侧向车速的权重系数,增大横摆角度度与跟踪偏差量的权重系数;若无人驾驶车辆处于非稳定状态,则增大侧向车速的权重系数,减小横摆角度度与跟踪偏差量的权重系数。In some embodiments, the above-mentioned control
所属技术领域的技术人员能够理解,本公开的各个方面可以实现为系统、方法或程序产品。因此,本公开的各个方面可以具体实现为以下形式,即:完全的硬件实施方式、完全的软件实施方式(包括固件、微代码等),或硬件和软件方面结合的实施方式,这里可以统称为“电路”、“模块”或“系统”。Those skilled in the art can understand that various aspects of the present disclosure can be implemented as a system, method or program product. Therefore, various aspects of the present disclosure can be embodied in the following forms, namely: a complete hardware implementation, a complete software implementation (including firmware, microcode, etc.), or a combination of hardware and software, which can be collectively referred to herein as "circuit", "module" or "system".
下面参照图11来描述根据本公开的这种实施方式的电子设备1100。图11显示的电子设备1100仅仅是一个示例,不应对本公开实施例的功能和使用范围带来任何限制。An
如图11所示,电子设备1100以通用计算设备的形式表现。电子设备1100的组件可以包括但不限于:上述至少一个处理单元1110、上述至少一个存储单元1120、连接不同系统组件(包括存储单元1120和处理单元1110)的总线1130。As shown in FIG. 11 ,
其中,所述存储单元存储有程序代码,所述程序代码可以被所述处理单元1110执行,使得所述处理单元1110执行本说明书上述“示例性方法”部分中描述的根据本公开各种示例性实施方式的步骤。例如,所述处理单元1110可以执行上述方法实施例的如下步骤:获取无人驾驶车辆在不同运行工况下的轨迹跟踪精度、稳定性指标和车轮滑移率;根据无人驾驶车辆在不同运行工况下的轨迹跟踪精度、稳定性指标和车轮滑移率,确定无人驾驶车辆在不同运行工况下以稳定状态跟踪目标车速和参考轨迹信息行驶的前轮转角和车轮力矩;根据确定的前轮转角和车轮力矩,控制无人驾驶车辆行驶。Wherein, the storage unit stores program codes, and the program codes can be executed by the
存储单元1120可以包括易失性存储单元形式的可读介质,例如随机存取存储单元(RAM)11201和/或高速缓存存储单元11202,还可以进一步包括只读存储单元(ROM)11203。The
存储单元1120还可以包括具有一组(至少一个)程序模块11205的程序/实用工具11204,这样的程序模块11205包括但不限于:操作系统、一个或者多个应用程序、其它程序模块以及程序数据,这些示例中的每一个或某种组合中可能包括网络环境的实现。
总线1130可以为表示几类总线结构中的一种或多种,包括存储单元总线或者存储单元控制器、外围总线、图形加速端口、处理单元或者使用多种总线结构中的任意总线结构的局域总线。
电子设备1100也可以与一个或多个外部设备1140(例如键盘、指向设备、蓝牙设备等)通信,还可与一个或者多个使得用户能与该电子设备1100交互的设备通信,和/或与使得该电子设备1100能与一个或多个其它计算设备进行通信的任何设备(例如路由器、调制解调器等等)通信。这种通信可以通过输入/输出(I/O)接口1150进行。并且,电子设备1100还可以通过网络适配器1160与一个或者多个网络(例如局域网(LAN),广域网(WAN)和/或公共网络,例如因特网)通信。如图所示,网络适配器1160通过总线1130与电子设备1100的其它模块通信。应当明白,尽管图中未示出,可以结合电子设备1100使用其它硬件和/或软件模块,包括但不限于:微代码、设备驱动器、冗余处理单元、外部磁盘驱动阵列、RAID系统、磁带驱动器以及数据备份存储系统等。The
通过以上的实施方式的描述,本领域的技术人员易于理解,这里描述的示例实施方式可以通过软件实现,也可以通过软件结合必要的硬件的方式来实现。因此,根据本公开实施方式的技术方案可以以软件产品的形式体现出来,该软件产品可以存储在一个非易失性存储介质(可以是CD-ROM,U盘,移动硬盘等)中或网络上,包括若干指令以使得一台计算设备(可以是个人计算机、服务器、终端装置、或者网络设备等)执行根据本公开实施方式的方法。Through the description of the above implementations, those skilled in the art can easily understand that the example implementations described here can be implemented by software, or by combining software with necessary hardware. Therefore, the technical solutions according to the embodiments of the present disclosure can be embodied in the form of software products, and the software products can be stored in a non-volatile storage medium (which can be CD-ROM, U disk, mobile hard disk, etc.) or on the network , including several instructions to make a computing device (which may be a personal computer, a server, a terminal device, or a network device, etc.) execute the method according to the embodiments of the present disclosure.
在本公开的示例性实施例中,还提供了一种计算机可读存储介质,该计算机可读存储介质可以是可读信号介质或者可读存储介质。图12示出本公开实施例中一种计算机可读存储介质示意图,如图12所示,该计算机可读存储介质1200上存储有能够实现本公开上述方法的程序产品。在一些可能的实施方式中,本公开的各个方面还可以实现为一种程序产品的形式,其包括程序代码,当所述程序产品在终端设备上运行时,所述程序代码用于使所述终端设备执行本说明书上述“示例性方法”部分中描述的根据本公开各种示例性实施方式的步骤。In an exemplary embodiment of the present disclosure, a computer-readable storage medium is also provided, and the computer-readable storage medium may be a readable signal medium or a readable storage medium. FIG. 12 shows a schematic diagram of a computer-readable storage medium in an embodiment of the present disclosure. As shown in FIG. 12 , the computer-
本公开中的计算机可读存储介质的更具体的例子可以包括但不限于:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机访问存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。More specific examples of computer-readable storage media in this disclosure may include, but are not limited to: electrical connections with one or more wires, portable computer disks, hard disks, random access memory (RAM), read only memory (ROM), Erasable programmable read-only memory (EPROM or flash memory), optical fiber, portable compact disk read-only memory (CD-ROM), optical storage device, magnetic storage device, or any suitable combination of the above.
在本公开中,计算机可读存储介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了可读程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。可读信号介质还可以是可读存储介质以外的任何可读介质,该可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。In the present disclosure, a computer-readable storage medium may include a data signal carrying readable program code in baseband or as part of a carrier wave traveling as a data signal. Such propagated data signals may take many forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing. A readable signal medium may also be any readable medium other than a readable storage medium that can transmit, propagate, or transport a program for use by or in conjunction with an instruction execution system, apparatus, or device.
可选地,计算机可读存储介质上包含的程序代码可以用任何适当的介质传输,包括但不限于无线、有线、光缆、RF等等,或者上述的任意合适的组合。Alternatively, program code contained on a computer-readable storage medium may be transmitted using any appropriate medium, including but not limited to wireless, cable, optical cable, RF, etc., or any suitable combination of the above.
在具体实施时,可以以一种或多种程序设计语言的任意组合来编写用于执行本公开操作的程序代码,所述程序设计语言包括面向对象的程序设计语言—诸如Java、C++等,还包括常规的过程式程序设计语言—诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算设备上执行、部分地在用户设备上执行、作为一个独立的软件包执行、部分在用户计算设备上部分在远程计算设备上执行、或者完全在远程计算设备或服务器上执行。在涉及远程计算设备的情形中,远程计算设备可以通过任意种类的网络,包括局域网(LAN)或广域网(WAN),连接到用户计算设备,或者,可以连接到外部计算设备(例如利用因特网服务提供商来通过因特网连接)。During specific implementation, the program code for performing the operations of the present disclosure may be written in any combination of one or more programming languages, and the programming language includes an object-oriented programming language—such as Java, C++, etc., or Includes conventional procedural programming languages - such as the "C" language or similar programming languages. The program code may execute entirely on the user's computing device, partly on the user's device, as a stand-alone software package, partly on the user's computing device and partly on a remote computing device, or entirely on the remote computing device or server to execute. In cases involving a remote computing device, the remote computing device may be connected to the user computing device through any kind of network, including a local area network (LAN) or a wide area network (WAN), or may be connected to an external computing device (e.g., using an Internet service provider). business to connect via the Internet).
应当注意,尽管在上文详细描述中提及了用于动作执行的设备的若干模块或者单元,但是这种划分并非强制性的。实际上,根据本公开的实施方式,上文描述的两个或更多模块或者单元的特征和功能可以在一个模块或者单元中具体化。反之,上文描述的一个模块或者单元的特征和功能可以进一步划分为由多个模块或者单元来具体化。It should be noted that although several modules or units of the device for action execution are mentioned in the above detailed description, this division is not mandatory. Actually, according to the embodiment of the present disclosure, the features and functions of two or more modules or units described above may be embodied in one module or unit. Conversely, the features and functions of one module or unit described above can be further divided to be embodied by a plurality of modules or units.
此外,尽管在附图中以特定顺序描述了本公开中方法的各个步骤,但是,这并非要求或者暗示必须按照该特定顺序来执行这些步骤,或是必须执行全部所示的步骤才能实现期望的结果。附加的或备选的,可以省略某些步骤,将多个步骤合并为一个步骤执行,以及/或者将一个步骤分解为多个步骤执行等。In addition, although steps of the methods of the present disclosure are depicted in the drawings in a particular order, there is no requirement or implication that the steps must be performed in that particular order, or that all illustrated steps must be performed to achieve the desired result. Additionally or alternatively, certain steps may be omitted, multiple steps may be combined into one step for execution, and/or one step may be decomposed into multiple steps for execution, etc.
通过以上实施方式的描述,本领域的技术人员易于理解,这里描述的示例实施方式可以通过软件实现,也可以通过软件结合必要的硬件的方式来实现。因此,根据本公开实施方式的技术方案可以以软件产品的形式体现出来,该软件产品可以存储在一个非易失性存储介质(可以是CD-ROM,U盘,移动硬盘等)中或网络上,包括若干指令以使得一台计算设备(可以是个人计算机、服务器、移动终端、或者网络设备等)执行根据本公开实施方式的方法。Through the description of the above embodiments, those skilled in the art can easily understand that the example embodiments described here can be implemented by software, or by combining software with necessary hardware. Therefore, the technical solutions according to the embodiments of the present disclosure can be embodied in the form of software products, and the software products can be stored in a non-volatile storage medium (which can be CD-ROM, U disk, mobile hard disk, etc.) or on the network , including several instructions to make a computing device (which may be a personal computer, a server, a mobile terminal, or a network device, etc.) execute the method according to the embodiments of the present disclosure.
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由所附的权利要求指出。Other embodiments of the present disclosure will be readily apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. The present disclosure is intended to cover any modification, use or adaptation of the present disclosure. These modifications, uses or adaptations follow the general principles of the present disclosure and include common knowledge or conventional technical means in the technical field not disclosed in the present disclosure. . The specification and examples are to be considered exemplary only, with the true scope and spirit of the disclosure indicated by the appended claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211248390.5A CN115542813A (en) | 2022-10-12 | 2022-10-12 | Unmanned vehicle control method, device, electronic device and storage medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211248390.5A CN115542813A (en) | 2022-10-12 | 2022-10-12 | Unmanned vehicle control method, device, electronic device and storage medium |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115542813A true CN115542813A (en) | 2022-12-30 |
Family
ID=84734073
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211248390.5A Pending CN115542813A (en) | 2022-10-12 | 2022-10-12 | Unmanned vehicle control method, device, electronic device and storage medium |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115542813A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116461508A (en) * | 2023-04-27 | 2023-07-21 | 广州汽车集团股份有限公司 | Vehicle control method, device, terminal and medium |
CN117068138A (en) * | 2023-09-13 | 2023-11-17 | 中国人民解放军32806部队 | Whole vehicle steady-state drift control method based on safety boundary constraint |
WO2025081911A1 (en) * | 2023-10-19 | 2025-04-24 | 比亚迪股份有限公司 | Vehicle control method, medium, and vehicle |
-
2022
- 2022-10-12 CN CN202211248390.5A patent/CN115542813A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116461508A (en) * | 2023-04-27 | 2023-07-21 | 广州汽车集团股份有限公司 | Vehicle control method, device, terminal and medium |
CN116461508B (en) * | 2023-04-27 | 2024-04-02 | 广州汽车集团股份有限公司 | Vehicle control method, device, terminal and medium |
CN117068138A (en) * | 2023-09-13 | 2023-11-17 | 中国人民解放军32806部队 | Whole vehicle steady-state drift control method based on safety boundary constraint |
WO2025081911A1 (en) * | 2023-10-19 | 2025-04-24 | 比亚迪股份有限公司 | Vehicle control method, medium, and vehicle |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zha et al. | A survey of intelligent driving vehicle trajectory tracking based on vehicle dynamics | |
CN115542813A (en) | Unmanned vehicle control method, device, electronic device and storage medium | |
CN108454623B (en) | A four-wheel independent drive unmanned electric vehicle trajectory tracking control method | |
CN107943071B (en) | Formation maintaining control method and system for unmanned vehicle | |
CN113320542A (en) | Tracking control method for automatic driving vehicle | |
CN111497826A (en) | Coordinated control method and system for yaw stability of electric automobile | |
CN108099900A (en) | The laterally stable four-wheel steering control method of automobile is kept under a kind of limiting condition | |
US11938923B1 (en) | Longitudinal and lateral vehicle motion cooperative control method based on fast solving algorithm | |
CN112829766B (en) | Adaptive path tracking method based on distributed driving electric vehicle | |
CN114572251A (en) | High-speed automatic driving automobile track tracking method based on predictive control | |
Li et al. | Trajectory tracking of four-wheel driving and steering autonomous vehicle under extreme obstacle avoidance condition | |
CN108058601A (en) | A kind of electric vehicle anti-lock control method based on linear time-varying | |
Kebbati et al. | Coordinated PSO-PID based longitudinal control with LPV-MPC based lateral control for autonomous vehicles | |
CN108099876A (en) | A kind of electric vehicle anti-lock control method based on model prediction | |
CN113954833B (en) | Full-electric-drive distributed unmanned vehicle path tracking and stability coordination control method | |
CN114889446B (en) | A method, device and storage medium for allocating torque vectors in two directions of off-road vehicles | |
Raji et al. | A tricycle model to accurately control an autonomous racecar with locked differential | |
CN114889447B (en) | In-situ steering control method, system, device and medium for vehicle driven by wheel hub motor | |
Geng et al. | A Study on Lateral Stability Control of Distributed Drive Electric Vehicle Based on Fuzzy Adaptive Sliding Mode Control | |
Wang et al. | Integrated path tracking control based on the dimension reduction model for improving real-time performance | |
CN115346366B (en) | Intelligent network coupled vehicle team control method and system considering road adhesion coefficient | |
CN117962866A (en) | Vehicle motion control method for longitudinal and transverse sagging cooperative control | |
CN116743819A (en) | A hierarchical centralized fleet collaborative driving method based on cloud computing | |
Zhao et al. | A review of drive torque distribution control for distributed drive electric vehicles | |
CN113327457B (en) | Vehicle collision avoidance system and method based on vehicle-road cooperation technology |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |