CN115528690B - 一种海上风电场黑启动服务成本综合优化方法 - Google Patents

一种海上风电场黑启动服务成本综合优化方法 Download PDF

Info

Publication number
CN115528690B
CN115528690B CN202211502819.9A CN202211502819A CN115528690B CN 115528690 B CN115528690 B CN 115528690B CN 202211502819 A CN202211502819 A CN 202211502819A CN 115528690 B CN115528690 B CN 115528690B
Authority
CN
China
Prior art keywords
cost
black start
offshore wind
reactive
node
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211502819.9A
Other languages
English (en)
Other versions
CN115528690A (zh
Inventor
周浩然
周吉
钱俊良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liyang Research Institute of Southeast University
Original Assignee
Liyang Research Institute of Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liyang Research Institute of Southeast University filed Critical Liyang Research Institute of Southeast University
Priority to CN202211502819.9A priority Critical patent/CN115528690B/zh
Publication of CN115528690A publication Critical patent/CN115528690A/zh
Application granted granted Critical
Publication of CN115528690B publication Critical patent/CN115528690B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/25Design optimisation, verification or simulation using particle-based methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/067Enterprise or organisation modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/008Circuit arrangements for ac mains or ac distribution networks involving trading of energy or energy transmission rights
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/48Controlling the sharing of the in-phase component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/50Controlling the sharing of the out-of-phase component
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/04Constraint-based CAD
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/06Multi-objective optimisation, e.g. Pareto optimisation using simulated annealing [SA], ant colony algorithms or genetic algorithms [GA]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/06Wind turbines or wind farms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Power Engineering (AREA)
  • Strategic Management (AREA)
  • Economics (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Human Resources & Organizations (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Marketing (AREA)
  • Tourism & Hospitality (AREA)
  • Entrepreneurship & Innovation (AREA)
  • General Business, Economics & Management (AREA)
  • General Engineering & Computer Science (AREA)
  • Development Economics (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • Primary Health Care (AREA)
  • Water Supply & Treatment (AREA)
  • Public Health (AREA)
  • Educational Administration (AREA)
  • General Health & Medical Sciences (AREA)
  • Game Theory and Decision Science (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

本发明公开了一种海上风电场黑启动服务成本综合优化方法,属于电力市场建设规划领域,包括以下步骤:步骤1、根据当下电力市场交易机制,结合海上风电场特点,构建黑启动市场电价竞价模型;步骤2、考虑海底电缆传输的大量无功需求,构建海上风电场黑启动服务无功成本模型;步骤3、考虑黑启动过程辅助装置的建造维护成本以及风电场主设备的损耗,建立设备成本模型;步骤4、设计目标优化函数,采用粒子群算法进行迭代求解,实现海上风电场承接黑启动服务综合成本最低;该海上风电场黑启动服务成本综合优化方法,在未来电力市场逐步完善的背景下,将成为国内利用海上风电资源承接黑启动服务的尝试,有效降低了服务成本。

Description

一种海上风电场黑启动服务成本综合优化方法
技术领域
本发明属于电力市场建设规划领域,具体涉及含双馈风机的海上风电场承担电网黑启动服务的成本优化方法。
背景技术
海上风电从近海逐渐向远洋发展,并网方式也从传统高压交流输电发展为交流、传统直流、柔性直流、交直混合等多元化的模式,根据实际需求配合针对性方案,成本得到进一步降低。随着大量的海上风力发电项目建设、并网投运,将不可避免地带来大量的新难题、新挑战。例如大规模的海上风电场投入运行而显著提高沿海局域电力系统的风电渗透率,高风电渗透率将增加电力系统稳定风险,甚至会导致电网大停电事故。今年英国8.9大停电事故起因中,就包含大规模海上风电场脱网,导致系统频率下跌越限而切负荷。除此之外,还有各种复杂的特殊运行工况也会逐渐出现。
随着电力市场改革的深入实践研究,电力系统辅助安全运行服务越来越受到人们的广泛关注。电力系统运行时发生的最严重故障是局部或者全网大停电事故,所以如何在大停电后迅速恢复供电具有重要的理论和实际意义。关于黑启动的研究很多基于陆上抽水蓄能电站或者陆地风电场,然而在一些近海地区完全可以依据快速发展的海上风电承担附近负荷的黑启动服务,进而探索海上风电场承担黑启动服务的市场竞争机制,完善电力市场的建设与发展。
发明内容
本发明的目的在于提供一种海上风电场黑启动服务成本综合优化方法,达到探索海上风电场承担承担附近负荷黑启动服务时的市场竞争机制,降低服务成本的目的。
为实现上述目的,本发明提供如下技术方案,一种海上风电场黑启动服务成本综合优化方法,包括以下步骤:
步骤1、根据当下电力市场交易机制,结合海上风电场特点,构建黑启动市场电价竞价模型;
步骤2、考虑海底电缆传输的大量无功需求,构建海上风电场黑启动服务无功成本模型;
步骤3、考虑黑启动过程辅助装置的建造维护成本以及风电场主设备的损耗,建立设备成本模型;
步骤4、设计目标优化函数,采用粒子群算法进行迭代求解,实现海上风电场承接黑启动服务综合成本最低。
优选的,步骤1中,依据当前电力市场交易机制,目标为满足海上风电场附近负荷需求,建立市场竞价模型;
其中,以购电成本最小为目标:
Figure 100002_DEST_PATH_IMAGE001
式中:
Figure 233597DEST_PATH_IMAGE002
Figure 100002_DEST_PATH_IMAGE003
时刻节点
Figure 86147DEST_PATH_IMAGE004
处海上风电场报价;
Figure 100002_DEST_PATH_IMAGE005
Figure 269DEST_PATH_IMAGE003
时刻节点
Figure 467023DEST_PATH_IMAGE004
处海上风电场竞标出力;
Figure 519292DEST_PATH_IMAGE006
Figure 847637DEST_PATH_IMAGE003
时刻节点
Figure 100002_DEST_PATH_IMAGE007
处常规发电机组报价;
Figure 737970DEST_PATH_IMAGE008
Figure 516570DEST_PATH_IMAGE003
时刻节点
Figure 915191DEST_PATH_IMAGE007
处常规发电机组竞标出力;
Figure 100002_DEST_PATH_IMAGE009
当前电力市场时间集合,
Figure 516067DEST_PATH_IMAGE010
为常规发电机组节点集合;
其中海上风电场的市场报价均以常规发电机组最低报价进行设定,以促进风电渗透率的提高。
优选的,常规发电机组,其常规出力约束和爬坡约束方程:
Figure 100002_DEST_PATH_IMAGE011
式中:
Figure 152585DEST_PATH_IMAGE012
为节点
Figure 213338DEST_PATH_IMAGE007
处常规发电机组最小出力;
Figure 100002_DEST_PATH_IMAGE013
为节点
Figure 302517DEST_PATH_IMAGE007
Figure 238243DEST_PATH_IMAGE003
时刻常规发电机组出力;
Figure 526005DEST_PATH_IMAGE014
为节点
Figure 380828DEST_PATH_IMAGE007
处常规发电机组最大出力;
Figure 100002_DEST_PATH_IMAGE015
为节点
Figure 596784DEST_PATH_IMAGE007
处常规发电机组下爬坡速率;
Figure 195256DEST_PATH_IMAGE016
为节点
Figure 88256DEST_PATH_IMAGE007
处常规发电机组上爬坡速率。
优选的, 步骤2中,考虑海底电缆传输的大量无功需求,构建海上风电场黑启动服务无功成本模型,其中考虑有功网损、柴油发电机无功折算费用以及双馈风机无功折算费用,对于柴油发电机无功折算费用,其表达式为:
Figure 100002_DEST_PATH_IMAGE017
式中:
Figure 707456DEST_PATH_IMAGE018
为不同的柴油发电机边界无功价格;
Figure 100002_DEST_PATH_IMAGE019
为柴油发电机有功出力边界价格;
Figure 148058DEST_PATH_IMAGE020
为柴油发电机黑启动过程输出的无功功率;
Figure 100002_DEST_PATH_IMAGE021
为柴油发电机因增发无功而减少的有功输出。
优选的,对于双馈风机无功折算费用,其表达式为:
Figure 100002_DEST_PATH_IMAGE023
式中:
Figure 956746DEST_PATH_IMAGE024
为不同的双馈风机边界无功价格;
Figure 100002_DEST_PATH_IMAGE025
为双馈风机有功出力边界价格;
Figure 671630DEST_PATH_IMAGE026
为双馈风机黑启动过程输出的无功功率;
Figure 100002_DEST_PATH_IMAGE027
为双馈风机因增发无功而减少的有功输出。
优选的,步骤3中,考虑黑启动过程辅助装置的建造维护成本以及风电场主设备的损耗,建立设备成本模型,其表达式为:
Figure 727310DEST_PATH_IMAGE028
式中:
Figure 100002_DEST_PATH_IMAGE029
分别为黑启动设备折旧费和对应黑启动分配系数;
Figure 763531DEST_PATH_IMAGE030
分别为黑启动设备运行维护费用和对应黑启动分配系数;
Figure 100002_DEST_PATH_IMAGE031
分别为黑启动管理和行政费用和对应黑启动分配系数;
Figure 951409DEST_PATH_IMAGE032
分别为黑启动相关税费和对应黑启动分配系数。
优选的,步骤4中,设计目标优化函数,采用粒子群算法进行迭代求解,实现海上风电场承接黑启动服务综合成本最低,其中优化目标函数为:
Figure 100002_DEST_PATH_IMAGE033
式中:
Figure 271532DEST_PATH_IMAGE034
为双馈风机有功出力边界价格;
Figure 100002_DEST_PATH_IMAGE035
为有功网损;
Figure 983267DEST_PATH_IMAGE036
为双馈风机无功折算费用;
Figure 100002_DEST_PATH_IMAGE037
为柴油发电机无功折算费用;
Figure 129952DEST_PATH_IMAGE038
为黑启动需要的设备成本费用;
Figure 100002_DEST_PATH_IMAGE039
为海上风电场购电成本费用;
Figure 467393DEST_PATH_IMAGE040
为第
Figure 100002_DEST_PATH_IMAGE041
个节点电压。
优选的,步骤4中,以有功网损价格、双馈风机无功折算费用、柴油发电机无功折算费用、黑启动设备成本模型以及市场购电成本最低,构造多目标函数,
其中利用归一化方法设置的目标函数为:
Figure 127176DEST_PATH_IMAGE042
式中:
Figure 100002_DEST_PATH_IMAGE043
为归一化后的目标函数,
Figure 901490DEST_PATH_IMAGE044
为层次分析法计算的目标函数权重比例。
优选的,步骤4中,优化模型的等式约束条件为:
Figure 833674DEST_PATH_IMAGE046
式中:
Figure 100002_DEST_PATH_IMAGE047
分别为节点i注入的有功功率和无功功率;
Figure 584592DEST_PATH_IMAGE048
分别为节点
Figure 100002_DEST_PATH_IMAGE049
和节点
Figure 879307DEST_PATH_IMAGE041
的电压;
Figure 962539DEST_PATH_IMAGE050
分别为节点i注入的有功负荷和无功负荷;
Figure 100002_DEST_PATH_IMAGE051
分别为节点
Figure 975494DEST_PATH_IMAGE049
Figure 936628DEST_PATH_IMAGE041
之间的电导和电纳;
Figure 100002_DEST_PATH_IMAGE053
为节点
Figure 85849DEST_PATH_IMAGE054
Figure 100002_DEST_PATH_IMAGE055
之间的电压相角差;
其中优化模型的不等式约束条件为:
Figure 100002_DEST_PATH_IMAGE057
,
式中:
Figure 139650DEST_PATH_IMAGE058
为黑启动柴油发电机有功输出;
Figure 100002_DEST_PATH_IMAGE059
为黑启动柴油发电机无功输出;
Figure 125054DEST_PATH_IMAGE060
为第
Figure 139147DEST_PATH_IMAGE054
个节点电压;
Figure 100002_DEST_PATH_IMAGE061
为承担黑启动的双馈风机有功输出;
Figure 392142DEST_PATH_IMAGE062
为承担黑启动的双馈风机无功输出;
Figure 100002_DEST_PATH_IMAGE063
分别为黑启动柴油发电机有功输出下限和上限;
Figure 302329DEST_PATH_IMAGE064
分别为黑启动柴油发电机无功输出下限和上限;
Figure 100002_DEST_PATH_IMAGE065
分别为第i个节点电压的下限和上限;
Figure 899664DEST_PATH_IMAGE066
分别为承担黑启动的双馈风机有功输出下限和上限;
Figure 100002_DEST_PATH_IMAGE067
分别为承担黑启动的双馈风机无功输出下限和上限;
对采用的粒子群优化算法对不同的等式和不等式约束条件,使用不同的惯性权重分配,表达式如下:
Figure 172907DEST_PATH_IMAGE068
式中:
Figure 100002_DEST_PATH_IMAGE069
为当前分配的惯性权重;
Figure 31141DEST_PATH_IMAGE070
为变量类型;
Figure DEST_PATH_IMAGE071
为当前迭代次数;
Figure 987596DEST_PATH_IMAGE072
分别设计的对应权重的最小值和最大值;
Figure DEST_PATH_IMAGE073
为当前最大迭代次数。
本发明的技术效果和优点:1)该海上风电场黑启动服务成本综合优化方法,考虑以海上风电作为附近负荷的黑启动电源时带来的经济成本问题,通过结合电力市场专业领域的成本计算以及人工智能领域的优化算法,进而设计出对于海上风电场承接黑启动服务的综合成本优化方法。解决了远海近海风电场承接黑启动服务的经济性问题,同时也为海上风电的普及以及成本降低提供了重要的参考价值。探索了大规模海上风电场除承接电网调峰调频外的其他服务方式,具有重要学术意义和工程实用价值;2)本发明考虑承接黑启动服务的海上风电场成本综合优化方法,以典型的双馈风机为风电场主体,利用海上风电场在黑启动时的有功无功出力进行折算成本,同时充分考虑黑启动特有设备比如柴油发电机等的设备维护折旧成本。创新性的考虑利用双馈风机网侧变流器输出无功,为风电场以及海底电缆传输提供大量无功支撑。在着重考虑了风机的折旧损耗费用的基础上再添加电力市场的购电成本来评估风机发电价格。综合考虑了有功网损价格、双馈风机无功折算费用、柴油发电机无功折算费用、黑启动设备成本模型以及市场购电成本五大因素后构建优化目标函数,利用粒子群算法进行迭代寻优,最终求解最低成本以及对应的各自变量取值;3)本发明将海上风电场黑启动服务需要考虑的诸多因素统一归纳为成本问题,把多维度多目标的规划问题统一为系统参数优化问题,有助于促进大规模海上风电场的建设,同时为电力市场黑启动服务的标准化流程提供案例和依据。
附图说明
图1为本发明的流程示意图;
图2为本发明海上风电场黑启动服务成本综合优化方法流程图;
图3为本发明粒子群优化算法流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1:本发明提供了如图1、图2中所示的海上风电场黑启动服务成本综合优化方法,包括以下步骤:
步骤1、根据当下电力市场交易机制,结合海上风电场特点,构建黑启动市场电价竞价模型;
其中,以购电成本最小为目标:
Figure 914970DEST_PATH_IMAGE074
式中:
Figure DEST_PATH_IMAGE075
Figure 739706DEST_PATH_IMAGE076
时刻节点
Figure DEST_PATH_IMAGE077
处海上风电场报价;
Figure 593393DEST_PATH_IMAGE078
Figure 251907DEST_PATH_IMAGE076
时刻节点
Figure 720105DEST_PATH_IMAGE077
处海上风电场竞标出力;
Figure DEST_PATH_IMAGE079
Figure 82953DEST_PATH_IMAGE076
时刻节点
Figure 197671DEST_PATH_IMAGE080
处常规发电机组报价;
Figure DEST_PATH_IMAGE081
Figure 620562DEST_PATH_IMAGE076
时刻节点
Figure 319265DEST_PATH_IMAGE080
处常规发电机组竞标出力;
Figure 282542DEST_PATH_IMAGE082
当前电力市场时间集合,
Figure DEST_PATH_IMAGE083
为常规发电机组节点集合;
其中海上风电场的市场报价均以常规发电机组最低报价进行设定,以促进风电渗透率的提高。
其中海上风电场的市场报价均以常规发电机组最低报价进行设定,以促进风电渗透率的提高。
所述常规发电机组,其常规出力约束和爬坡约束方程:
Figure 720608DEST_PATH_IMAGE084
式中:
Figure DEST_PATH_IMAGE085
为节点
Figure 314400DEST_PATH_IMAGE080
处常规发电机组最小出力;
Figure 503329DEST_PATH_IMAGE086
为节点
Figure 739139DEST_PATH_IMAGE080
Figure 218661DEST_PATH_IMAGE076
时刻常规发电机组出力;
Figure DEST_PATH_IMAGE087
为节点
Figure 593142DEST_PATH_IMAGE080
处常规发电机组最大出力;
Figure 158116DEST_PATH_IMAGE088
为节点
Figure 446883DEST_PATH_IMAGE080
处常规发电机组下爬坡速率;
Figure DEST_PATH_IMAGE089
为节点
Figure 374388DEST_PATH_IMAGE080
处常规发电机组上爬坡速率。
步骤2、考虑海底电缆传输的大量无功需求,构建海上风电场黑启动服务无功成本模型;考虑海底电缆传输的大量无功需求,构建海上风电场黑启动服务无功成本模型,其中考虑有功网损、柴油发电机无功折算费用以及双馈风机无功折算费用。对于柴油发电机无功折算费用,其表达式为:
Figure 591874DEST_PATH_IMAGE090
式中:
Figure DEST_PATH_IMAGE091
为不同的柴油发电机边界无功价格;
Figure 706461DEST_PATH_IMAGE092
为柴油发电机有功出力边界价格;
Figure DEST_PATH_IMAGE093
为柴油发电机黑启动过程输出的无功功率;
Figure 395324DEST_PATH_IMAGE094
为柴油发电机因增发无功而减少的有功输出。
对于双馈风机无功折算费用,其表达式为:
Figure DEST_PATH_IMAGE095
式中:
Figure 928068DEST_PATH_IMAGE096
为不同的双馈风机边界无功价格;
Figure DEST_PATH_IMAGE097
为双馈风机有功出力边界价格;
Figure 768985DEST_PATH_IMAGE098
为双馈风机黑启动过程输出的无功功率;
Figure DEST_PATH_IMAGE099
为双馈风机因增发无功而减少的有功输出。
步骤3、考虑黑启动过程辅助装置的建造维护成本以及风电场主设备的损耗,建立设备成本模型;考虑黑启动过程辅助装置的建造维护成本以及风电场主设备的损耗,建立设备成本模型,其表达式为:
Figure 744769DEST_PATH_IMAGE100
式中:
Figure 1438DEST_PATH_IMAGE101
分别为黑启动设备折旧费和对应黑启动分配系数;
Figure 185426DEST_PATH_IMAGE102
分别为黑启动设备运行维护费用和对应黑启动分配系数;
Figure DEST_PATH_IMAGE103
分别为黑启动管理和行政费用和对应黑启动分配系数;
Figure 197244DEST_PATH_IMAGE104
分别为黑启动相关税费和对应黑启动分配系数。
步骤4、设计目标优化函数,采用粒子群算法进行迭代求解,实现海上风电场承接黑启动服务综合成本最低,其中优化目标函数为:
Figure 335358DEST_PATH_IMAGE106
式中:
Figure DEST_PATH_IMAGE107
为双馈风机有功出力边界价格;
Figure 723614DEST_PATH_IMAGE108
为有功网损;
Figure DEST_PATH_IMAGE109
为双馈风机无功折算费用;
Figure 355583DEST_PATH_IMAGE110
为柴油发电机无功折算费用;
Figure DEST_PATH_IMAGE111
为黑启动需要的设备成本费用;
Figure 53150DEST_PATH_IMAGE112
为海上风电场购电成本费用;
Figure DEST_PATH_IMAGE113
为第
Figure 364045DEST_PATH_IMAGE055
个节点电压。
优选的,步骤4中,以有功网损价格、双馈风机无功折算费用、柴油发电机无功折算费用、黑启动设备成本模型以及市场购电成本最低,构造多目标函数,
其中利用归一化方法设置的目标函数为:
Figure 103462DEST_PATH_IMAGE114
式中:
Figure DEST_PATH_IMAGE115
为归一化后的目标函数,
Figure 714572DEST_PATH_IMAGE116
为层次分析法计算的目标函数权重比例。
优选的,步骤4中,优化模型的等式约束条件为:
Figure DEST_PATH_IMAGE117
式中:
Figure 456743DEST_PATH_IMAGE118
分别为节点i注入的有功功率和无功功率;
Figure DEST_PATH_IMAGE119
分别为节点
Figure 271246DEST_PATH_IMAGE054
和节点
Figure 798043DEST_PATH_IMAGE055
的电压;
Figure 670184DEST_PATH_IMAGE120
分别为节点i注入的有功负荷和无功负荷;
Figure DEST_PATH_IMAGE121
分别为节点
Figure 834187DEST_PATH_IMAGE054
Figure 791778DEST_PATH_IMAGE055
之间的电导和电纳;
Figure 872998DEST_PATH_IMAGE053
为节点
Figure 724279DEST_PATH_IMAGE054
Figure 357386DEST_PATH_IMAGE055
之间的电压相角差;
其中优化模型的不等式约束条件为:
Figure 179105DEST_PATH_IMAGE122
,
式中:
Figure 47704DEST_PATH_IMAGE058
为黑启动柴油发电机有功输出;
Figure 504224DEST_PATH_IMAGE059
为黑启动柴油发电机无功输出;
Figure 308232DEST_PATH_IMAGE060
为第
Figure 365050DEST_PATH_IMAGE054
个节点电压;
Figure 286607DEST_PATH_IMAGE061
为承担黑启动的双馈风机有功输出;
Figure 722268DEST_PATH_IMAGE062
为承担黑启动的双馈风机无功输出;
Figure 821811DEST_PATH_IMAGE063
分别为黑启动柴油发电机有功输出下限和上限;
Figure 116657DEST_PATH_IMAGE064
分别为黑启动柴油发电机无功输出下限和上限;
Figure 202425DEST_PATH_IMAGE065
分别为第i个节点电压的下限和上限;
Figure 882805DEST_PATH_IMAGE066
分别为承担黑启动的双馈风机有功输出下限和上限;
Figure 405446DEST_PATH_IMAGE067
分别为承担黑启动的双馈风机无功输出下限和上限;
对采用的粒子群优化算法对不同的等式和不等式约束条件,使用不同的惯性权重分配,表达式如下:
Figure 171277DEST_PATH_IMAGE068
式中:
Figure 326315DEST_PATH_IMAGE069
为当前分配的惯性权重;
Figure 877513DEST_PATH_IMAGE070
为变量类型,
Figure 194225DEST_PATH_IMAGE071
为当前迭代次数;
Figure 447352DEST_PATH_IMAGE072
分别设计的对应权重的最小值和最大值;
Figure 514402DEST_PATH_IMAGE073
为当前最大迭代次数,其中具体的粒子群算法流程图如图3所示。
最后应说明的是:以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (3)

1.一种海上风电场黑启动服务成本综合优化方法,其特征在于:包括以下步骤:
步骤1、根据当下电力市场交易机制,结合海上风电场特点,构建黑启动市场电价竞价模型;
步骤2、考虑海底电缆传输的大量无功需求,构建海上风电场黑启动服务无功成本模型;
步骤3、考虑黑启动过程辅助装置的建造维护成本以及风电场主设备的损耗,建立设备成本模型;
步骤4、设计目标优化函数,采用粒子群算法进行迭代求解,实现海上风电场承接黑启动服务综合成本最低;
步骤1中,依据当前电力市场交易机制,目标为满足海上风电场附近负荷需求,建立市场竞价模型;
其中,以购电成本最小为目标:
Figure DEST_PATH_IMAGE001
式中:
Figure DEST_PATH_IMAGE002
Figure DEST_PATH_IMAGE003
时刻节点
Figure DEST_PATH_IMAGE004
处海上风电场报价;
Figure DEST_PATH_IMAGE005
Figure 37991DEST_PATH_IMAGE003
时刻节点
Figure 96077DEST_PATH_IMAGE004
处海上风电场竞标出力;
Figure DEST_PATH_IMAGE006
Figure 521154DEST_PATH_IMAGE003
时刻节点
Figure DEST_PATH_IMAGE007
处常规发电机组报价;
Figure DEST_PATH_IMAGE008
Figure 57308DEST_PATH_IMAGE003
时刻节点
Figure 573478DEST_PATH_IMAGE007
处常规发电机组竞标出力;
Figure DEST_PATH_IMAGE009
当前电力市场时间集合,
Figure DEST_PATH_IMAGE010
为常规发电机组节点集合;
其中海上风电场的市场报价均以常规发电机组最低报价进行设定,以促进风电渗透率的提高;
常规发电机组,其常规出力约束和爬坡约束方程:
Figure DEST_PATH_IMAGE011
式中:
Figure DEST_PATH_IMAGE012
为节点
Figure 379629DEST_PATH_IMAGE007
处常规发电机组最小出力;
Figure DEST_PATH_IMAGE013
为节点
Figure 787608DEST_PATH_IMAGE007
Figure 924191DEST_PATH_IMAGE003
时刻常规发电机组出力;
Figure DEST_PATH_IMAGE014
为节点
Figure 170233DEST_PATH_IMAGE007
处常规发电机组最大出力;
Figure DEST_PATH_IMAGE015
为节点
Figure 304543DEST_PATH_IMAGE007
处常规发电机组下爬坡速率;
Figure DEST_PATH_IMAGE016
为节点
Figure 778248DEST_PATH_IMAGE007
处常规发电机组上爬坡速率;
步骤2中,考虑海底电缆传输的大量无功需求,构建海上风电场黑启动服务无功成本模型,其中考虑有功网损、柴油发电机无功折算费用以及双馈风机无功折算费用,对于柴油发电机无功折算费用,其表达式为:
Figure DEST_PATH_IMAGE017
式中:
Figure DEST_PATH_IMAGE018
为不同的柴油发电机边界无功价格;
Figure DEST_PATH_IMAGE019
为柴油发电机有功出力边界价格;
Figure DEST_PATH_IMAGE020
为柴油发电机黑启动过程输出的无功功率;
Figure DEST_PATH_IMAGE021
为柴油发电机因增发无功而减少的有功输出;
对于双馈风机无功折算费用,其表达式为:
Figure DEST_PATH_IMAGE022
式中:
Figure DEST_PATH_IMAGE023
为不同的双馈风机边界无功价格;
Figure DEST_PATH_IMAGE024
为双馈风机有功出力边界价格;
Figure DEST_PATH_IMAGE025
为双馈风机黑启动过程输出的无功功率;
Figure DEST_PATH_IMAGE026
为双馈风机因增发无功而减少的有功输出;
步骤3中,考虑黑启动过程辅助装置的建造维护成本以及风电场主设备的损耗,建立设备成本模型,其表达式为:
Figure DEST_PATH_IMAGE027
式中:
Figure DEST_PATH_IMAGE028
分别为黑启动设备折旧费和对应黑启动分配系数;
Figure DEST_PATH_IMAGE029
分别为黑启动设备运行维护费用和对应黑启动分配系数;
Figure DEST_PATH_IMAGE030
分别为黑启动管理和行政费用和对应黑启动分配系数;
Figure DEST_PATH_IMAGE031
分别为黑启动相关税费和对应黑启动分配系数;
步骤4中,设计目标优化函数,采用粒子群算法进行迭代求解,实现海上风电场承接黑启动服务综合成本最低,其中优化目标函数为:
Figure DEST_PATH_IMAGE032
式中:
Figure DEST_PATH_IMAGE033
为双馈风机有功出力边界价格;
Figure DEST_PATH_IMAGE034
为有功网损;
Figure DEST_PATH_IMAGE035
为双馈风机无功折算费用;
Figure DEST_PATH_IMAGE036
为柴油发电机无功折算费用;
Figure DEST_PATH_IMAGE037
为黑启动需要的设备成本费用;
Figure DEST_PATH_IMAGE038
为海上风电场购电成本费用;
Figure DEST_PATH_IMAGE039
为第
Figure DEST_PATH_IMAGE040
个节点电压。
2.根据权利要求1所述的一种海上风电场黑启动服务成本综合优化方法,其特征在于:以有功网损价格、双馈风机无功折算费用、柴油发电机无功折算费用、黑启动设备成本模型以及市场购电成本最低,构造多目标函数,
其中利用归一化方法设置的目标函数为:
Figure DEST_PATH_IMAGE041
式中:
Figure DEST_PATH_IMAGE042
为归一化后的目标函数,
Figure DEST_PATH_IMAGE043
为层次分析法计算的目标函数权重比例。
3.根据权利要求2所述的一种海上风电场黑启动服务成本综合优化方法,其特征在于:步骤4中,优化模型的等式约束条件为:
Figure DEST_PATH_IMAGE044
式中:
Figure DEST_PATH_IMAGE045
分别为节点i注入的有功功率和无功功率;
Figure DEST_PATH_IMAGE046
分别为节点
Figure DEST_PATH_IMAGE047
和节点
Figure 938096DEST_PATH_IMAGE040
的电压;
Figure DEST_PATH_IMAGE048
分别为节点i注入的有功负荷和无功负荷;
Figure DEST_PATH_IMAGE049
分别为节点
Figure 868006DEST_PATH_IMAGE047
Figure 728209DEST_PATH_IMAGE040
之间的电导和电纳;
Figure DEST_PATH_IMAGE050
为节点
Figure DEST_PATH_IMAGE051
Figure DEST_PATH_IMAGE052
之间的电压相角差;
其中优化模型的不等式约束条件为:
Figure DEST_PATH_IMAGE053
式中:
Figure DEST_PATH_IMAGE054
为黑启动柴油发电机有功输出;
Figure DEST_PATH_IMAGE055
为黑启动柴油发电机无功输出;
Figure DEST_PATH_IMAGE056
为第
Figure 235414DEST_PATH_IMAGE051
个节点电压;
Figure DEST_PATH_IMAGE057
为承担黑启动的双馈风机有功输出;
Figure DEST_PATH_IMAGE058
为承担黑启动的双馈风机无功输出;
Figure DEST_PATH_IMAGE059
分别为黑启动柴油发电机有功输出下限和上限;
Figure DEST_PATH_IMAGE060
分别为黑启动柴油发电机无功输出下限和上限;
Figure DEST_PATH_IMAGE061
分别为第i个节点电压的下限和上限;
Figure DEST_PATH_IMAGE062
分别为承担黑启动的双馈风机有功输出下限和上限;
Figure DEST_PATH_IMAGE063
分别为承担黑启动的双馈风机无功输出下限和上限;
对采用的粒子群优化算法对不同的等式和不等式约束条件,使用不同的惯性权重分配,表达式如下:
Figure DEST_PATH_IMAGE064
式中:
Figure DEST_PATH_IMAGE065
为当前分配的惯性权重;
Figure DEST_PATH_IMAGE066
为变量类型;
Figure DEST_PATH_IMAGE067
为当前迭代次数;
Figure DEST_PATH_IMAGE068
分别设计的对应权重的最小值和最大值;
Figure DEST_PATH_IMAGE069
为当前最大迭代次数。
CN202211502819.9A 2022-11-29 2022-11-29 一种海上风电场黑启动服务成本综合优化方法 Active CN115528690B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211502819.9A CN115528690B (zh) 2022-11-29 2022-11-29 一种海上风电场黑启动服务成本综合优化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211502819.9A CN115528690B (zh) 2022-11-29 2022-11-29 一种海上风电场黑启动服务成本综合优化方法

Publications (2)

Publication Number Publication Date
CN115528690A CN115528690A (zh) 2022-12-27
CN115528690B true CN115528690B (zh) 2023-04-07

Family

ID=84704850

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211502819.9A Active CN115528690B (zh) 2022-11-29 2022-11-29 一种海上风电场黑启动服务成本综合优化方法

Country Status (1)

Country Link
CN (1) CN115528690B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115102219A (zh) * 2022-05-18 2022-09-23 国网上海市电力公司 一种基于多类型分布式资源的配电网黑启动方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115102219A (zh) * 2022-05-18 2022-09-23 国网上海市电力公司 一种基于多类型分布式资源的配电网黑启动方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Chao Yuan等.Research on Black Start Coordinated Control Technology of Offshore Wind Power, Diesel, and Storage Combined System.《Proceedings of 12th IEEE International Conference on CYBER Technology in Automation, Control, and Intelligent Systems》.2022,第185-190页. *
郭世刚.含分布式电源配电网黑启动辅助服务定价策略.《南方电网技术》.2020,第第14卷卷(第第14卷期),第62-72页. *

Also Published As

Publication number Publication date
CN115528690A (zh) 2022-12-27

Similar Documents

Publication Publication Date Title
CN109325608B (zh) 考虑储能并计及光伏随机性的分布式电源优化配置方法
Wu et al. A multi-agent-based energy-coordination control system for grid-connected large-scale wind–photovoltaic energy storage power-generation units
CN108446796A (zh) 考虑电动汽车负荷需求响应的网-源-荷协调规划方法
CN112132363A (zh) 一种增强系统运行鲁棒性的储能选址定容方法
CN111769543A (zh) 一种含多微网的区域配电网自律协同运行优化方法
Lou et al. Two-stage congestion management considering virtual power plant with cascade hydro-photovoltaic-pumped storage hybrid generation
CN116187019A (zh) 一种考虑阶梯碳价的含风光储的虚拟电厂经济调度方法
El-Bahay et al. Computational methods to mitigate the effect of high penetration of renewable energy sources on power system frequency regulation: a comprehensive review
Li et al. Optimized energy storage system configuration for voltage regulation of distribution network with PV access
Lazaroiu et al. Energy trading optimization of a virtual power plant on electricity market
Zhang et al. Optimized scheduling model for isolated microgrid of wind-photovoltaic-thermal-energy storage system with demand response
CN106780119A (zh) 基于多主动管理的配电网可再生能源消纳方法
Krishnamurthy et al. Microgrid system design, modeling, and simulation
CN118040685A (zh) 针对突发事件的虚拟电厂优化调度方法及其系统
CN115528690B (zh) 一种海上风电场黑启动服务成本综合优化方法
Shayeghi et al. Potentiometric of the renewable hybrid system for electrification of gorgor station
Zhao et al. Wind farm reactive power output optimization for loss reduction and voltage profile improvements
Anusha et al. Energy Management of an Off-Grid and Grid Connected Hybrid Renewable Energy Source Micro-Grid System for Commercial Load
Koutroulis et al. Optimal design and economic evaluation of a battery energy storage system for the maximization of the energy generated by wind farms in isolated electric grids
Kumar et al. Optimal Sizing of Grid-Connected Hybrid Solar, Wind, and Battery Energy Storage Systems
Eggleston et al. System non-synchronous penetration (SNSP) metric and potential alternatives in low-carbon grids
Saad et al. Minimizing the losses and cost of a radial network connected to DG, PV and batteries using firefly algorithm in Al-Bayda city, Libya
Huang et al. Reactive power and voltage optimization model of distribution network based on source-load interaction
Wenyue et al. Optimal scheduling strategy for virtual power plant considering voltage control
Kayalvizhi et al. Optimal operation of autonomous microgrid for minimization of energy loss, cost and voltage deviation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant