CN115522223A - Fluorine-doped non-noble metal electrocatalyst and preparation method and application thereof - Google Patents
Fluorine-doped non-noble metal electrocatalyst and preparation method and application thereof Download PDFInfo
- Publication number
- CN115522223A CN115522223A CN202211115262.3A CN202211115262A CN115522223A CN 115522223 A CN115522223 A CN 115522223A CN 202211115262 A CN202211115262 A CN 202211115262A CN 115522223 A CN115522223 A CN 115522223A
- Authority
- CN
- China
- Prior art keywords
- noble metal
- fluorine
- catalyst
- electrocatalyst
- amorphous layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000510 noble metal Inorganic materials 0.000 title claims abstract description 42
- 239000010411 electrocatalyst Substances 0.000 title claims abstract description 24
- 238000002360 preparation method Methods 0.000 title claims abstract description 14
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 44
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 44
- 239000001301 oxygen Substances 0.000 claims abstract description 44
- 238000006243 chemical reaction Methods 0.000 claims abstract description 30
- 230000003647 oxidation Effects 0.000 claims abstract description 22
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 22
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 18
- 238000000034 method Methods 0.000 claims abstract description 17
- 239000000758 substrate Substances 0.000 claims abstract description 13
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 claims abstract description 6
- 239000011159 matrix material Substances 0.000 claims abstract description 4
- -1 fluoride ions Chemical class 0.000 claims description 28
- 239000011737 fluorine Substances 0.000 claims description 28
- 229910052731 fluorine Inorganic materials 0.000 claims description 28
- 239000000243 solution Substances 0.000 claims description 16
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims description 12
- 229910052759 nickel Inorganic materials 0.000 claims description 12
- 239000006260 foam Substances 0.000 claims description 11
- 229910052751 metal Inorganic materials 0.000 claims description 8
- 239000012876 carrier material Substances 0.000 claims description 7
- 239000002184 metal Substances 0.000 claims description 7
- 150000003839 salts Chemical class 0.000 claims description 7
- 239000012670 alkaline solution Substances 0.000 claims description 6
- 238000001027 hydrothermal synthesis Methods 0.000 claims description 6
- 229910052742 iron Inorganic materials 0.000 claims description 6
- 239000011698 potassium fluoride Substances 0.000 claims description 5
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 claims description 4
- 239000012018 catalyst precursor Substances 0.000 claims description 4
- 239000003456 ion exchange resin Substances 0.000 claims description 4
- 229920003303 ion-exchange polymer Polymers 0.000 claims description 4
- 239000002808 molecular sieve Substances 0.000 claims description 4
- 229910052750 molybdenum Inorganic materials 0.000 claims description 4
- NROKBHXJSPEDAR-UHFFFAOYSA-M potassium fluoride Chemical compound [F-].[K+] NROKBHXJSPEDAR-UHFFFAOYSA-M 0.000 claims description 4
- 230000008569 process Effects 0.000 claims description 4
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 claims description 4
- PUZPDOWCWNUUKD-UHFFFAOYSA-M sodium fluoride Chemical compound [F-].[Na+] PUZPDOWCWNUUKD-UHFFFAOYSA-M 0.000 claims description 4
- 150000004820 halides Chemical class 0.000 claims description 2
- 229910000000 metal hydroxide Inorganic materials 0.000 claims description 2
- 150000004692 metal hydroxides Chemical class 0.000 claims description 2
- 150000004706 metal oxides Chemical class 0.000 claims description 2
- 235000003270 potassium fluoride Nutrition 0.000 claims description 2
- 235000013024 sodium fluoride Nutrition 0.000 claims description 2
- 239000011775 sodium fluoride Substances 0.000 claims description 2
- 239000002904 solvent Substances 0.000 claims description 2
- 238000007743 anodising Methods 0.000 claims 1
- 238000000354 decomposition reaction Methods 0.000 claims 1
- 239000002086 nanomaterial Substances 0.000 claims 1
- 239000002055 nanoplate Substances 0.000 claims 1
- 239000003054 catalyst Substances 0.000 abstract description 65
- 230000000694 effects Effects 0.000 abstract description 22
- 238000004519 manufacturing process Methods 0.000 abstract description 9
- 238000005868 electrolysis reaction Methods 0.000 abstract description 7
- 239000002994 raw material Substances 0.000 abstract description 2
- 229910002640 NiOOH Inorganic materials 0.000 description 30
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 30
- 229910018661 Ni(OH) Inorganic materials 0.000 description 25
- 239000000523 sample Substances 0.000 description 23
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 21
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 15
- 229910052739 hydrogen Inorganic materials 0.000 description 15
- 239000001257 hydrogen Substances 0.000 description 15
- 230000003197 catalytic effect Effects 0.000 description 14
- 229910018916 CoOOH Inorganic materials 0.000 description 13
- 230000010287 polarization Effects 0.000 description 12
- 239000002243 precursor Substances 0.000 description 10
- 238000012360 testing method Methods 0.000 description 9
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 8
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 8
- 238000003786 synthesis reaction Methods 0.000 description 8
- 238000002048 anodisation reaction Methods 0.000 description 7
- 239000002135 nanosheet Substances 0.000 description 7
- 238000011161 development Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 238000001308 synthesis method Methods 0.000 description 5
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 239000008367 deionised water Substances 0.000 description 4
- 229910021641 deionized water Inorganic materials 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000011056 performance test Methods 0.000 description 4
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 description 4
- 239000003513 alkali Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000001889 high-resolution electron micrograph Methods 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 239000010970 precious metal Substances 0.000 description 3
- 230000001376 precipitating effect Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 2
- OSOVKCSKTAIGGF-UHFFFAOYSA-N [Ni].OOO Chemical compound [Ni].OOO OSOVKCSKTAIGGF-UHFFFAOYSA-N 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 238000000192 extended X-ray absorption fine structure spectroscopy Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000000543 intermediate Substances 0.000 description 2
- 239000006262 metallic foam Substances 0.000 description 2
- 229910000483 nickel oxide hydroxide Inorganic materials 0.000 description 2
- 238000004098 selected area electron diffraction Methods 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 229910003208 (NH4)6Mo7O24·4H2O Inorganic materials 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 229910002554 Fe(NO3)3·9H2O Inorganic materials 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- 241000080590 Niso Species 0.000 description 1
- 229910018553 Ni—O Inorganic materials 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 238000004998 X ray absorption near edge structure spectroscopy Methods 0.000 description 1
- 238000000026 X-ray photoelectron spectrum Methods 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000001805 chlorine compounds Chemical group 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 238000001566 impedance spectroscopy Methods 0.000 description 1
- 238000001453 impedance spectrum Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N nitrate group Chemical group [N+](=O)([O-])[O-] NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000009790 rate-determining step (RDS) Methods 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 239000013074 reference sample Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000013112 stability test Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000006276 transfer reaction Methods 0.000 description 1
- 150000003623 transition metal compounds Chemical class 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/073—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
- C25B11/091—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/02—Hydrogen or oxygen
- C25B1/04—Hydrogen or oxygen by electrolysis of water
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
- Y02P20/133—Renewable energy sources, e.g. sunlight
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Catalysts (AREA)
Abstract
本发明公开了一种氟掺杂的非贵金属电催化剂及其制备方法与应用。所述电催化剂包括活性非晶层和基体,所述活性非晶层分布于基体表面,所述活性非晶层为氟掺杂的非贵金属羟基氧化物。本发明通过电化学阳极氧化法将基体表面转化为羟基氧化物的同时进行氟离子的掺杂从而提高析氧电催化活性。本方法原料易得、操作简便、便于量产。所制得的催化剂兼具高本征性能和丰富的活性位点,可在碱性条件下高效且稳定地催化电解水析氧反应,催化性能优于目前报道单金属氧化物/羟基氧化物析氧电催化剂催化剂。
The invention discloses a fluorine-doped non-noble metal electrocatalyst, a preparation method and application thereof. The electrocatalyst comprises an active amorphous layer and a substrate, the active amorphous layer is distributed on the surface of the substrate, and the active amorphous layer is a fluorine-doped non-noble metal oxyhydroxide. In the present invention, the surface of the matrix is converted into oxyhydroxide by an electrochemical anodic oxidation method, and at the same time, the fluoride ion is doped to improve the electrocatalytic activity of oxygen evolution. The method has easy-to-obtain raw materials, simple operation and convenient mass production. The prepared catalyst has both high intrinsic performance and abundant active sites, and can efficiently and stably catalyze the oxygen evolution reaction in water electrolysis under alkaline conditions. Catalyst Catalyst.
Description
技术领域technical field
本发明属于制氢技术及材料技术领域,具体涉及一种氟掺杂的非贵金属电催化剂及其制备方法与应用。The invention belongs to the field of hydrogen production technology and material technology, and specifically relates to a fluorine-doped non-noble metal electrocatalyst and its preparation method and application.
背景技术Background technique
世界对能源不断增长的需求和对化石燃料的消耗是实现可持续发展的主要挑战。氢被普遍认为是一种清洁、高效的二次能源载体,其规模化产业应用有望根本性解决能源短缺、环境污染等全球性问题,因而发展氢能利用技术业已成为世界各国能源发展战略的重点。推动氢能产业化应用需构建包括制氢、储氢、氢燃料电池等环节的完整氢能产业链,其中制氢是源头。在现有制氢方式中,电解水制氢与太阳能、风能等一次可再生能源能源耦合可成为理想的大规模制氢技,是通向“氢经济”的最佳途径。电解水涉及阴极析氢和阳极析氧两个半反应,降低两个反应的过电位,即降低电解反应能耗是发展电解水技术的核心。而在这其中,处于阳极的析氧(OER)过程涉及四电子转移反应而成为电解水制氢的主要限速步骤,因此研发高活性电催化剂析氧电催化剂对电解水技术发展至关重要。The world's growing demand for energy and the consumption of fossil fuels are major challenges to achieving sustainable development. Hydrogen is generally considered to be a clean and efficient secondary energy carrier, and its large-scale industrial application is expected to fundamentally solve global problems such as energy shortage and environmental pollution. Therefore, the development of hydrogen energy utilization technology has become the focus of energy development strategies of countries around the world . To promote the industrial application of hydrogen energy, it is necessary to build a complete hydrogen energy industry chain including hydrogen production, hydrogen storage, hydrogen fuel cells and other links, of which hydrogen production is the source. Among the existing hydrogen production methods, the coupling of hydrogen production by electrolysis of water and primary renewable energy such as solar energy and wind energy can become an ideal large-scale hydrogen production technology, and it is the best way to lead to the "hydrogen economy". Electrolysis of water involves two half-reactions of hydrogen evolution at the cathode and oxygen evolution at the anode. Reducing the overpotential of the two reactions, that is, reducing the energy consumption of the electrolysis reaction is the core of the development of electrolysis water technology. Among them, the oxygen evolution (OER) process at the anode involves a four-electron transfer reaction and becomes the main rate-limiting step for hydrogen production from water electrolysis.
近年来,开发新型非贵金属催化剂,在降低材料成本的同时谋求优异的催化性能已成为电解水技术领域的主流趋势。据文献报道,3d过渡族金属化合物,例如氧化物/氢氧化物、氮化物、磷化物、硫化物、硼化物等多种类型材料具有良好的碱性电催化析氧活性,但总体而言,非贵过渡族金属析氧电催化剂由于其是四电子反应且只有活性位点对氧中间体(OH*、O*和OOH*)具有合适的吸附能,才能使得析氧反应的过电势最低。(T.H.Lee,S.A.Lee,H.Patk,M.J.Choi,D.Lee,H.W.Jang,ACS Appl.Energy Mater.2020,3,1634-1643.)。而异质原子掺杂可优化析氧催化剂活性位点的电子结构,从而优化活性位点与氧中间体的结合能,因此被认为是一种为获得高性能催化剂的重要手段。In recent years, the development of new non-precious metal catalysts to achieve excellent catalytic performance while reducing material costs has become the mainstream trend in the field of electrolysis of water. According to literature reports, 3d transition metal compounds, such as oxides/hydroxides, nitrides, phosphides, sulfides, borides and other types of materials have good basic electrocatalytic oxygen evolution activity, but in general, Non-noble transition metal oxygen evolution electrocatalysts can achieve the lowest overpotential for oxygen evolution reaction due to the four-electron reaction and only the active sites have suitable adsorption energies for oxygen intermediates (OH*, O*, and OOH*). (T. H. Lee, S. A. Lee, H. Patk, M. J. Choi, D. Lee, H. W. Jang, ACS Appl. Energy Mater. 2020, 3, 1634-1643.). The heteroatom doping can optimize the electronic structure of the active site of the oxygen evolution catalyst, thereby optimizing the binding energy between the active site and the oxygen intermediate, so it is considered as an important means to obtain high-performance catalysts.
发明内容Contents of the invention
针对现有技术存在的缺点和不足之处,本发明的首要目的在于提供一种氟掺杂的非贵金属电催化剂及其制备方法与应用。氟离子由于其极高的电子亲和力和电负性,可影响金属催化剂的电子结构和物理化学性质,从而改变催化剂的本征活性。因此可以通过氟离子掺杂对非贵金属催化剂进行改性并提高催化剂的OER活性。本发明所制备的催化剂兼具高本征活性,可在碱性条件下高效地催化电解水析氧反应,催化性能接近贵金属RuO2催化剂。In view of the shortcomings and deficiencies in the prior art, the primary purpose of the present invention is to provide a fluorine-doped non-noble metal electrocatalyst and its preparation method and application. Due to its high electron affinity and electronegativity, fluoride ions can affect the electronic structure and physicochemical properties of metal catalysts, thereby changing the intrinsic activity of the catalysts. Therefore, non-noble metal catalysts can be modified by fluoride ion doping and the OER activity of the catalysts can be improved. The catalyst prepared by the invention has high intrinsic activity, can efficiently catalyze the oxygen evolution reaction of electrolyzed water under alkaline conditions, and has a catalytic performance close to that of a noble metal RuO2 catalyst.
本发明目的通过以下技术方案实现:The object of the invention is achieved through the following technical solutions:
一种氟掺杂的非贵金属电催化析氧催化剂,所述电催化剂包括活性非晶层和基体,所述活性非晶层分布于基体表面,所述活性非晶层为氟掺杂的非贵金属羟基氧化物。所述活性非晶层为不定形态的羟基氧化物。A fluorine-doped non-noble metal electrocatalytic oxygen evolution catalyst, the electrocatalyst includes an active amorphous layer and a substrate, the active amorphous layer is distributed on the surface of the substrate, and the active amorphous layer is a fluorine-doped non-noble metal oxyhydroxide. The active amorphous layer is amorphous oxyhydroxide.
优选的,所述氟掺杂的非贵金属羟基氧化物中的非贵金属为Fe、Co和Ni中的至少一种。Preferably, the non-noble metal in the fluorine-doped non-noble metal oxyhydroxide is at least one of Fe, Co and Ni.
优选的,所述基体为非贵金属氧化物或金属氢氧化物,所述非贵金属为Fe、Co、Ni和Mo中的至少一种。Preferably, the substrate is a non-noble metal oxide or metal hydroxide, and the non-noble metal is at least one of Fe, Co, Ni and Mo.
优选的,所述活性非晶层的厚度为2-5纳米;所述活性非晶层是由基体在含氟离子的碱性溶液中电化学阳极氧化下转化得到。Preferably, the thickness of the active amorphous layer is 2-5 nanometers; the active amorphous layer is obtained by electrochemical anodic oxidation of the substrate in an alkaline solution containing fluorine ions.
优选的,所述基体以纳米片的形式存在;Preferably, the matrix exists in the form of nanosheets;
优选的,所述电催化剂还包括载体,基体负载在载体上;所述载体为泡沫金属、金属网、离子交换树脂和分子筛中的一种。Preferably, the electrocatalyst further includes a carrier on which the substrate is supported; the carrier is one of metal foam, metal mesh, ion exchange resin and molecular sieve.
优选的,所述基体为Ni(OH)2、Co(OH)2或NiMoO4。Preferably, the matrix is Ni(OH) 2 , Co(OH) 2 or NiMoO 4 .
上述的一种氟掺杂的非贵金属电催化剂的制备方法,包括以下步骤:The above-mentioned preparation method of a fluorine-doped non-noble metal electrocatalyst comprises the following steps:
(1)将载体材料加入到含有非贵金属盐的溶液中,水热反应,在载体材料表面生长纳米结构催化剂前驱体,(1) adding the carrier material to a solution containing a non-noble metal salt, hydrothermally reacting, and growing a nanostructured catalyst precursor on the surface of the carrier material,
(2)步骤(1)所述的催化剂前驱体,在含有氟离子的碱性溶液中电化学阳极氧化得到氟掺杂的非贵金属电催化剂。(2) The catalyst precursor described in step (1), is electrochemically anodized in an alkaline solution containing fluorine ions to obtain a fluorine-doped non-noble metal electrocatalyst.
优选的,步骤(1)所述非贵金属盐包括非贵金属的卤化物和含氧酸盐中的至少一种,所述非贵金属包括Fe、Ni、Co、Mo中的至少一种;Preferably, the non-noble metal salt in step (1) includes at least one of a non-noble metal halide and an oxo acid salt, and the non-noble metal includes at least one of Fe, Ni, Co, Mo;
进一步优选的,所述卤化物为氯化物;所述含氧酸盐为硝酸盐、碳酸盐、醋酸盐和硫酸盐;Further preferably, the halide is chloride; the oxo acid salt is nitrate, carbonate, acetate and sulfate;
优选的,步骤(1)所述的载体材料选自泡沫金属、金属网、离子交换树脂和分子筛中的一种。Preferably, the carrier material in step (1) is selected from one of metal foam, metal mesh, ion exchange resin and molecular sieve.
优选的,步骤(1)所述非贵金属盐的浓度为0.01~0.1M(非贵金属盐为多种时,为总浓度);所述溶液的溶剂为水;所述水热反应的温度为120-180℃;水热反应的时间为6-12小时。Preferably, the concentration of the non-noble metal salt in step (1) is 0.01-0.1M (when there are multiple non-noble metal salts, it is the total concentration); the solvent of the solution is water; the temperature of the hydrothermal reaction is 120 -180°C; the hydrothermal reaction time is 6-12 hours.
优选的,步骤(1)所述溶液中还含有沉淀剂;所述沉淀剂为CO(NH2)2;所述沉淀剂的浓度为0.1-1M。Preferably, the solution in step (1) also contains a precipitating agent; the precipitating agent is CO(NH 2 ) 2 ; the concentration of the precipitating agent is 0.1-1M.
优选的,步骤(2)所述氟离子为氟化钠和氟化钾中的至少一种;所述电化学阳极氧化的时间为0.5~1.5h,电流密度为5~20mA cm-2,所述氟离子的浓度为0.25~0.75M;所述碱性溶液的浓度为0.5M~1.5M。Preferably, the fluoride ion in step (2) is at least one of sodium fluoride and potassium fluoride; the electrochemical anodic oxidation time is 0.5-1.5 h, and the current density is 5-20 mA cm -2 , so The concentration of the fluoride ion is 0.25-0.75M; the concentration of the alkaline solution is 0.5M-1.5M.
上述的一种氟掺杂的非贵金属电催化剂在电催化水分解析氧中的应用。The application of the above-mentioned fluorine-doped non-noble metal electrocatalyst in the electrocatalytic water desorption oxygen.
本发明的设计原理是:Design principle of the present invention is:
本发明的原理为:对于电催化剂,本征活性、活性位数量、导电性是影响其表观催化活性的三个要素。而其中本征活性的提高可采用掺杂元素的方式,但是由于在析氧反应过程中许多掺杂过渡金属元素的化合物可能会发生相分离现象使得金属元素的可选范围是有限的。为了提高催化剂的活性并扩大掺杂元素的探索范围,本发明所提供的催化剂在设计思路上通过阴离子氟元素的掺杂改善催化剂的本征活性,并提供了简单易行的制备方法加以实现。首先,采用水热方法在载体材料表面生长含有催化剂活性组分且具高比表面积的纳米片前驱体,为合成高性能催化剂奠定材料组成与结构基础;随后,通过在含氟离子的溶液中电化学阳极氧化使得纳米片表面转化成具有高催化活性的羟基氧化物,在形成羟基氧化物的同时氟离子掺杂进入催化剂表面提高了催化剂的本征活性;综上所述,本发明所提供的电化学析氧催化剂兼具高本征活性和丰富的活性位。The principle of the present invention is: for an electrocatalyst, intrinsic activity, number of active sites, and electrical conductivity are three elements that affect its apparent catalytic activity. Among them, the improvement of intrinsic activity can be achieved by doping elements, but because many compounds doped with transition metal elements may undergo phase separation during the oxygen evolution reaction process, the optional range of metal elements is limited. In order to improve the activity of the catalyst and expand the exploration range of doping elements, the catalyst provided by the present invention is designed to improve the intrinsic activity of the catalyst through the doping of anionic fluorine element, and provides a simple and easy preparation method to realize it. First, a nanosheet precursor containing catalyst active components and a high specific surface area is grown on the surface of the carrier material by a hydrothermal method, laying the foundation for the composition and structure of the material for the synthesis of a high-performance catalyst; Chemical anodization converts the surface of nanosheets into oxyhydroxides with high catalytic activity, and fluoride ions are doped into the surface of the catalyst while forming oxyhydroxides to improve the intrinsic activity of the catalyst; in summary, the present invention provides Electrochemical oxygen evolution catalysts have both high intrinsic activity and abundant active sites.
本发明的优点及有益效果在于:Advantage of the present invention and beneficial effect are:
(1)本发明区别于传统方法的关键之处在于通过在含氟溶液中电化学阳极氧化制备催化剂,可在催化剂表面形成活性相羟基氧化物的同时将氟离子掺杂进入提高催化剂的本征活性;此外,水热合成的超薄纳米片暴露出大量的活性位点,从而获得高析氧反应催化活性。(1) The key difference between the present invention and the traditional method is that the catalyst is prepared by electrochemical anodic oxidation in a fluorine-containing solution, and the active phase oxyhydroxide can be formed on the surface of the catalyst while doping fluoride ions into the catalyst to improve the intrinsic properties of the catalyst. activity; in addition, the hydrothermally synthesized ultrathin nanosheets exposed a large number of active sites, resulting in high catalytic activity for the oxygen evolution reaction.
(2)本发明提供的一种氟离子掺杂的非贵金属析氧电催化剂的制备新方法原料易得、工艺简单、便于量产、全程无污染。(2) The new method for preparing a fluoride ion-doped non-precious metal oxygen evolution electrocatalyst provided by the present invention has easy-to-obtain raw materials, simple process, convenient mass production, and no pollution in the whole process.
(3)本发明提供了一种氟离子掺杂的非贵金属析氧电催化剂催化剂,可在碱性条件下高效催化电解水析氧反应,综合催化性能接近贵金属RuO2催化剂。(3) The present invention provides a non-precious metal oxygen evolution electrocatalyst doped with fluoride ions, which can efficiently catalyze the oxygen evolution reaction in electrolyzed water under alkaline conditions, and its comprehensive catalytic performance is close to that of noble metal RuO2 catalysts.
附图说明Description of drawings
图1为实施例1的水热态样品Ni(OH)2/NF、电化学阳极氧化后NiOOH/Ni(OH)2/NF和电化学阳极氧化掺杂氟离子后F-NiOOH/Ni(OH)2/NF的X射线衍射图。Figure 1 shows the hydrothermal sample Ni(OH) 2 /NF of Example 1, NiOOH/Ni(OH) 2 /NF after electrochemical anodization and F-NiOOH/Ni(OH) after electrochemical anodization doped with fluorine ions ) 2 /NF X-ray diffraction pattern.
图2为实施例1中(a)水热态Ni(OH)2/NF和(b)电化学阳极氧化掺杂氟离子后样品F-NiOOH/Ni(OH)2/NF的扫描电镜形貌图。Fig. 2 is the SEM morphology of sample F-NiOOH/Ni(OH) 2 /NF in Example 1 (a) hydrothermal state Ni(OH) 2 /NF and (b) electrochemical anodic oxidation doped with fluoride ions picture.
图3为实施例1中水热态Ni(OH)2/NF的(a)选区电子衍射图(b)高分辨电镜照片图,和电化学阳极氧化掺杂氟离子后F-NiOOH/Ni(OH)2/NF的(c)选区电子衍射图(d)高分辨电镜照片图。Figure 3 is the (a) selected area electron diffraction pattern (b) high-resolution electron micrograph of the hydrothermal state Ni(OH) 2 /NF in Example 1, and the F-NiOOH/Ni( (c) Selected area electron diffraction pattern (d) High-resolution electron micrograph of OH) 2 /NF.
图4为实施例1中Ni(OH)2/NF、NiOOH/Ni(OH)2/NF和电化学阳极氧化掺杂氟离子后样品F-NiOOH/Ni(OH)2/NF的X射线光电子能谱图。Figure 4 is the X-ray photoelectron of Ni(OH) 2 /NF, NiOOH/Ni(OH) 2 /NF and sample F-NiOOH/Ni(OH) 2 /NF after electrochemical anodic oxidation doping with fluorine ions in Example 1 Spectrum.
图5为实施例1中NiOOH/Ni(OH)2/NF和电化学阳极氧化掺杂氟离子后样品F-NiOOH/Ni(OH)2/NF的XANES谱图(a)和EXAFS分析结果(b)。Fig. 5 is the XANES spectrogram (a) and the EXAFS analysis result ( b).
图6为实施例1中NiOOH/Ni(OH)2/NF和电化学阳极氧化掺杂氟离子后样品F-NiOOH/Ni(OH)2/NF、RuO2/NF、NF析氧反应极化曲线对比图。Figure 6 shows the oxygen evolution reaction polarization of NiOOH/Ni(OH) 2 /NF and samples F-NiOOH/Ni(OH) 2 /NF, RuO 2 /NF, NF after electrochemical anodic oxidation doping with fluorine ions in Example 1 Curve comparison chart.
图7为实施例1中NiOOH/Ni(OH)2/NF和电化学阳极氧化掺杂氟离子后样品F-NiOOH/Ni(OH)2/NF(a)电流密度与电位扫速的关系图(b)在开路电位下的阻抗谱测试结果。Fig. 7 is a graph showing the relationship between the current density and the potential sweep rate of the sample F-NiOOH/Ni(OH) 2 /NF(a) after NiOOH/Ni(OH) 2 /NF and electrochemical anodization doped with fluoride ions in Example 1 (b) Impedance spectroscopy test results at open circuit potential.
图8为实施例1中电化学阳极氧化掺杂氟离子后样品F-NiOOH/Ni(OH)2/NF的在含有0.01M KF的1M KOH电解液中耐久性测试结果图。Fig. 8 is a diagram of the durability test results of the sample F-NiOOH/Ni(OH) 2 /NF in 1M KOH electrolyte containing 0.01M KF after electrochemical anodic oxidation doping with fluorine ions in Example 1.
图9为实施例2中电化学阳极氧化掺杂氟离子后样品F-CoOOH/Co(OH)2/NF的扫描电镜形貌图。FIG. 9 is a scanning electron microscope topography of the sample F-CoOOH/Co(OH) 2 /NF after electrochemical anodic oxidation doping with fluorine ions in Example 2. FIG.
图10为实施例2中电化学阳极氧化掺杂氟离子后样品F-CoOOH/Co(OH)2/NF的X射线衍射图。Fig. 10 is an X-ray diffraction pattern of the sample F-CoOOH/Co(OH) 2 /NF after electrochemical anodic oxidation doping with fluorine ions in Example 2.
图11为实施例2中电化学阳极氧化掺杂氟离子后样品F-CoOOH/Co(OH)2/NF的高分辨电镜照片图。Fig. 11 is a high-resolution electron micrograph of the sample F-CoOOH/Co(OH) 2 /NF after electrochemical anodic oxidation doping with fluorine ions in Example 2.
图12为实施例2中电化学阳极氧化掺杂氟离子后样品F-CoOOH/Co(OH)2/NF的X射线光电子能谱图。Fig. 12 is an X-ray photoelectron spectrum of the sample F-CoOOH/Co(OH) 2 /NF after electrochemical anodic oxidation doping with fluorine ions in Example 2.
图13为实施例2中电化学阳极氧化掺杂氟离子后样品F-CoOOH/Co(OH)2/NF与RuO2/NF的析氧反应极化曲线对比图。Fig. 13 is a graph comparing polarization curves of oxygen evolution reaction of samples F-CoOOH/Co(OH) 2 /NF and RuO 2 /NF after electrochemical anodic oxidation doping with fluorine ions in Example 2.
图14为实施例3中电化学阳极氧化掺杂氟离子后样品F-CoOOH/Co(OH)2/CF、CoOOH/Co(OH)2/CF与RuO2/NF的析氧反应极化曲线对比图。Figure 14 shows the oxygen evolution reaction polarization curves of samples F-CoOOH/Co(OH) 2 /CF, CoOOH/Co(OH) 2 /CF and RuO 2 /NF after electrochemical anodic oxidation doping with fluorine ions in Example 3 Comparison chart.
图15为实施例4中电化学阳极氧化掺杂氟离子后样品F-NiOOH/NiMoO4/NF、NiOOH/NiMoO4/NF与RuO2/NF的析氧反应极化曲线对比图。Fig. 15 is a comparison diagram of the oxygen evolution reaction polarization curves of samples F-NiOOH/NiMoO 4 /NF, NiOOH/NiMoO 4 /NF and RuO 2 /NF after electrochemical anodic oxidation doping with fluorine ions in Example 4.
图16为实施例5中电化学阳极氧化掺杂氟离子后样品F-NiOOH/NiMoO4/CF、NiOOH/NiMoO4/CF与RuO2/CF的析氧反应极化曲线对比图。Fig. 16 is a comparison diagram of polarization curves of oxygen evolution reaction of samples F-NiOOH/NiMoO 4 /CF, NiOOH/NiMoO 4 /CF and RuO 2 /CF after electrochemical anodic oxidation doping with fluorine ions in Example 5.
图17为实施例6中电化学阳极氧化掺杂氟离子后样品F-Ni1-xFexOOH/NiFeLDH/NF、Ni1-xFexOOH/NiFe LDH/NF的析氧反应极化曲线对比图。Figure 17 shows the oxygen evolution reaction polarization curves of samples F-Ni 1-x Fe x OOH/NiFeLDH/NF and Ni 1-x Fe x OOH/NiFe LDH/NF after electrochemical anodic oxidation doping with fluorine ions in Example 6 Comparison chart.
具体实施方式detailed description
下面结合实施例对本发明进行具体地描述,但本发明的实施方式和保护范围不限于以下实施例。The present invention will be specifically described below in conjunction with the examples, but the embodiments and protection scope of the present invention are not limited to the following examples.
以下通过具体实施例详述本发明。The present invention is described in detail below through specific examples.
实施例1Example 1
F-NiOOH/Ni(OH)2/NF催化剂的合成、结构与催化性能Synthesis, Structure and Catalytic Properties of F-NiOOH/Ni(OH) 2 /NF Catalyst
催化剂制备:Catalyst preparation:
(1)以泡沫镍(NF)为载体,其厚度为1.80mm,面密度为650g/m2,孔径为0.20~0.80mm。泡沫镍(1×4cm2)先后经乙醇超声清洗10分钟,1M盐酸溶液活化5分钟和去离子水超声清洗10分钟后,连同30mL含有NiSO4·6H2O(0.02M)的去离子水溶液置于容积为50mL的水热斧中,经140℃恒温处理6小时后自然冷却至室温,制得样品经充分清洗后在60℃进行真空干燥2小时,得到水热态样品Ni(OH)2/NF。(1) Nickel foam (NF) is used as the carrier, with a thickness of 1.80mm, a surface density of 650g/m 2 , and a pore diameter of 0.20-0.80mm. Nickel foam (1×4cm 2 ) was ultrasonically cleaned with ethanol for 10 minutes, activated with 1M hydrochloric acid solution for 5 minutes, and ultrasonically cleaned with deionized water for 10 minutes, and placed together with 30 mL of deionized aqueous solution containing NiSO 4 ·6H 2 O (0.02M). In a hydrothermal ax with a volume of 50mL, it was treated at a constant temperature of 140°C for 6 hours and then naturally cooled to room temperature. After the sample was fully cleaned, it was vacuum-dried at 60°C for 2 hours to obtain a hydrothermal sample Ni(OH) 2 / NF.
(2)将1×2cm2的水热态样品做为工作电极,对电极为碳板,参比电极为Hg/HgO,在1M KOH和0.5M KF混合溶液中进行电化学阳极氧化掺杂,电流密度为15mA cm-2。在电化学阳极氧化1h后得到目标催化剂F-NiOOH/Ni(OH)2/NF。(2) The 1×2cm 2 hydrothermal sample is used as the working electrode, the counter electrode is a carbon plate, and the reference electrode is Hg/HgO, and electrochemical anodic oxidation doping is carried out in a mixed solution of 1M KOH and 0.5M KF. The current density was 15 mA cm −2 . The target catalyst F-NiOOH/Ni(OH) 2 /NF was obtained after electrochemical anodization for 1h.
NiOOH/Ni(OH)2/NF的制备,与F-NiOOH/Ni(OH)2/NF区别:在1MKOH溶液中进行电化学阳极氧化掺杂;其他相同。The difference between the preparation of NiOOH/Ni(OH) 2 /NF and F-NiOOH/Ni(OH) 2 /NF is that electrochemical anodic oxidation doping is carried out in 1M KOH solution; the others are the same.
催化剂的物相/结构/元素化学态表征:Catalyst phase/structure/element chemical state characterization:
本实施例中所得水热态样品与电化学阳极氧化后样品的X射线衍射和扫描电镜图分别如图1和图2所示。根据XRD分析(图1),合成的水热态样品与电化学阳极氧化后样品为Ni(OH)2晶相。扫描电镜观察(图2中a、b)发现,该水热态样品为纳米片结构,电化学阳极氧化后,纳米片形貌未见明显改变,。透射电镜观察(图3中c、d)进一步确证了目标催化剂表面覆盖非晶相,基底仍然保持为Ni(OH)2。The X-ray diffraction and scanning electron microscope images of the hydrothermal sample obtained in this example and the sample after electrochemical anodization are shown in Fig. 1 and Fig. 2, respectively. According to the XRD analysis (Fig. 1), the synthesized hydrothermal sample and the electrochemical anodized sample are Ni(OH) 2 crystalline phase. Scanning electron microscope observation (a, b in Figure 2) found that the hydrothermal sample had a nanosheet structure, and the morphology of the nanosheets did not change significantly after electrochemical anodic oxidation. Transmission electron microscope observation (c, d in Fig. 3) further confirms that the surface of the target catalyst is covered with an amorphous phase, and the substrate remains Ni(OH) 2 .
根据X射线光电子能谱分析(图4),电化学阳极氧化后样品中出现Ni3+信号,而在氟元素掺杂后,Ni3+的结合能向高结合能偏移。根据图5中的b的EXAFS分析结果可知F掺杂后Ni-O(OH)键长缩短,F-替代了NiOOH中的O2-或者OH-的位置,而根据图5中的a可知F掺杂后价态升高,排除了F-替代O2-的可能性,因此F替代了NiOOH中的OH-的位置。由此证明了F离子掺杂进入羟基氧化镍中且替代了羟基氧化镍中的OH-的位置。以上分析,确认目标催化剂为泡沫镍负载的F-NiOOH/Ni(OH)2催化剂。According to the X-ray photoelectron spectroscopy analysis (Fig. 4), Ni 3+ signal appears in the sample after electrochemical anodization, while after fluorine element doping, the binding energy of Ni 3+ shifts to high binding energy. According to the EXAFS analysis results of b in Figure 5, it can be seen that the bond length of Ni-O(OH) is shortened after F doping, and F - replaces the position of O 2 - or OH - in NiOOH, and according to a in Figure 5, it can be known that F After doping, the valence state increases, excluding the possibility of F- replacing O 2- , so F replaces the position of OH- in NiOOH. This proves that F ions are doped into the nickel oxyhydroxide and replace the OH- position in the nickel oxyhydroxide. The above analysis confirms that the target catalyst is the F-NiOOH/Ni(OH ) catalyst supported by nickel foam.
催化剂的电催化性能测试:Catalyst electrocatalytic performance test:
析氧反应极化曲线测试结果(图6)表明,使用此方法进行氟掺杂后催化剂的析氧反应电催化活性提高,在1.0M氢氧化钾碱液中的10mA cm-2的电流密度下过电势相对未进行氟掺杂降低了30mV,催化活性优于贵金属RuO2催化剂;10mA cm-2的析氧过电位分别为,NiOOH/Ni(OH)2/NF:300mV,F-NiOOH/Ni(OH)2/NF:268mV,RuO2/NF:272mV,NF:340mV。The oxygen evolution reaction polarization curve test results (Figure 6) show that the electrocatalytic activity of the oxygen evolution reaction of the catalyst after fluorine doping is improved by using this method. The overpotential is 30mV lower than that without fluorine doping, and the catalytic activity is better than that of the noble metal RuO 2 catalyst; the oxygen evolution overpotential of 10mA cm -2 is respectively, NiOOH/Ni(OH) 2 /NF: 300mV, F-NiOOH/Ni (OH) 2 /NF: 268mV, RuO 2 /NF: 272mV, NF: 340mV.
图7中给出了目标催化剂F-NiOOH/Ni(OH)2/NF和参比样品的电流密度与电位扫速关系图和阻抗谱测试结果。未掺杂氟元素的样品与目标催化剂的电化学比表面积和传荷电阻未发生明显变化,即催化剂的活性位点数量和导电性未发生明显变化。而对于电催化剂,影响其表观催化活性的三个要素是:本征活性、活性位点数量和导电性。因此,该催化剂活性提升的原因是氟掺杂后催化剂本征活性的提升。Fig. 7 shows the relationship between the current density and the potential sweep rate and the impedance spectrum test results of the target catalyst F-NiOOH/Ni(OH) 2 /NF and the reference sample. The electrochemical specific surface area and load transfer resistance of the undoped sample and the target catalyst did not change significantly, that is, the number of active sites and conductivity of the catalyst did not change significantly. For electrocatalysts, three elements that affect their apparent catalytic activity are: intrinsic activity, number of active sites, and electrical conductivity. Therefore, the reason for the improvement of the catalyst activity is the improvement of the intrinsic activity of the catalyst after fluorine doping.
图8给出了F-NiOOH/Ni(OH)2/NF催化剂的稳定性测试结果,在含有0.01M KF的1MKOH溶液中经100小时恒流测量,催化剂活性未现明显衰退,说明催化剂具备优异的稳定性。Figure 8 shows the stability test results of the F-NiOOH/Ni(OH) 2 /NF catalyst. After 100 hours of constant flow measurement in the 1MKOH solution containing 0.01M KF, the catalyst activity did not decline significantly, indicating that the catalyst has excellent stability.
实施例2Example 2
F-CoOOH/Co(OH)2/NF催化剂的合成、结构与催化性能Synthesis, Structure and Catalytic Properties of F-CoOOH/Co(OH) 2 /NF Catalyst
催化剂制备:Catalyst preparation:
本实施例的合成方法中,与实施例1类似,区别在于前驱体的合成不同。The synthesis method of this example is similar to that of Example 1, except that the synthesis of the precursor is different.
氢氧化物前驱体由以下方法合成:泡沫镍(1×4cm2)先后经乙醇超声清洗10分钟,1M盐酸溶液活化5分钟和去离子水超声清洗10分钟后,连同30mL含有Co(NO3)2·6H2O(3mmol)、CO(NH2)2(12mmol)的去离子水溶液置于容积为50mL的水热斧中,经120℃恒温处理8小时后自然冷却至室温,制得样品经充分清洗后在60℃进行真空干燥2小时,得到氢氧化物前驱体Co(OH)2/NF。The hydroxide precursor was synthesized by the following method: nickel foam (1×4cm 2 ) was ultrasonically cleaned with ethanol for 10 minutes, activated with 1M hydrochloric acid solution for 5 minutes and ultrasonically cleaned with deionized water for 10 minutes, together with 30 mL of Co(NO 3 ) 2 ·6H 2 O (3mmol), CO(NH 2 ) 2 (12mmol) deionized aqueous solution was placed in a hydrothermal ax with a volume of 50mL, treated at a constant temperature of 120°C for 8 hours, and then naturally cooled to room temperature. After sufficient cleaning, vacuum drying was carried out at 60° C. for 2 hours to obtain a hydroxide precursor Co(OH) 2 /NF.
催化剂的物相/结构/元素化学态表征:Catalyst phase/structure/element chemical state characterization:
扫描电镜观察(图9)发现,目标催化剂为纳米片组成的3D纳米花球结构。Scanning electron microscope observation ( FIG. 9 ) revealed that the target catalyst was a 3D nano-curd structure composed of nano-sheets.
XRD结果表明(图10),合成的水热态样品与电化学阳极氧化后样品为Co(OH)2晶相。The XRD results show (Fig. 10) that the synthesized hydrothermal sample and the electrochemical anodized sample are Co(OH) 2 crystalline phases.
透射电镜观察(图11)进一步确证了目标催化剂中表面非晶相的存在.TEM observation (Figure 11) further confirmed the existence of the surface amorphous phase in the target catalyst.
XPS结果表明(图12)表面生成的是CoOOH且F掺杂进入CoOOH中。The XPS results showed (Fig. 12) that CoOOH was generated on the surface and F was doped into CoOOH.
催化剂的电催化性能测试:Catalyst electrocatalytic performance test:
析氧反应极化曲线测试结果(图13)表明,F-CoOOH/Co(OH)2/NF催化剂具有优异的析氧反应电催化活性,其在1.0M氢氧化钾碱液溶液中仅需245mV的析氧过电位即可达到10mA cm-2的电流密度。The oxygen evolution reaction polarization curve test results (Figure 13) show that the F-CoOOH/Co(OH) 2 /NF catalyst has excellent electrocatalytic activity for the oxygen evolution reaction, which requires only 245mV in 1.0M potassium hydroxide alkali solution The oxygen evolution overpotential can reach the current density of 10mA cm -2 .
实施例3Example 3
F-CoOOH/Co(OH)2/CF催化剂的合成、结构与催化性能Synthesis, Structure and Catalytic Properties of F-CoOOH/Co(OH) 2 /CF Catalyst
催化剂制备:Catalyst preparation:
本实施例的合成方法中,与实施例2类似,区别仅在将泡沫镍(NF)更换为泡沫钴(CF)。In the synthesis method of this example, it is similar to Example 2, the only difference is that nickel foam (NF) is replaced by cobalt foam (CF).
催化剂的电催化性能测试:Catalyst electrocatalytic performance test:
析氧反应极化曲线测试结果(图14)表明,F-CoOOH/Co(OH)2/CF催化剂具有优异的析氧反应电催化活性,其在1.0M氢氧化钾碱液中仅需248mV的析氧过电位即可达到10mAcm-2的电流密度。The oxygen evolution reaction polarization curve test results (Figure 14) show that the F-CoOOH/Co(OH) 2 /CF catalyst has excellent electrocatalytic activity for the oxygen evolution reaction, which requires only 248mV in 1.0M potassium hydroxide lye Oxygen evolution overpotential can reach a current density of 10mAcm -2 .
实施例4Example 4
F-NiOOH/NiMoO4/NF催化剂的合成、结构与催化性能Synthesis, Structure and Catalytic Properties of F-NiOOH/NiMoO 4 /NF Catalyst
催化剂制备:Catalyst preparation:
本实施例的合成方法中,与实施例1类似,区别仅在于氢氧化物/氧化物前驱体。In the synthesis method of this example, it is similar to that of Example 1, except that the hydroxide/oxide precursor is the only difference.
氧化物前驱体由以下方法合成:泡沫镍(1×4cm2)先后经乙醇超声清洗10分钟,1M盐酸溶液活化5分钟和去离子水超声清洗10分钟后,连同36mL含有Ni(NO3)2·6H2O(4mmol)、(NH4)6Mo7O24·4H2O(1mmol)、CO(NH2)2(10mmol)的去离子水溶液置于容积为50mL的水热斧中,经150℃恒温处理18小时后自然冷却至室温,制得样品经充分清洗后在60℃进行真空干燥2小时,得到氧化物前驱体NiMoO4/NF。The oxide precursor was synthesized by the following method: nickel foam (1×4cm 2 ) was ultrasonically cleaned with ethanol for 10 minutes, activated with 1M hydrochloric acid solution for 5 minutes and ultrasonically cleaned with deionized water for 10 minutes, together with 36 mL of Ni(NO 3 ) 2 · 6H 2 O (4mmol), (NH 4 ) 6 Mo 7 O 24 · 4H 2 O (1mmol), CO(NH 2 ) 2 (10mmol) deionized aqueous solution was placed in a water heating ax with a volume of 50mL, and the After being treated at a constant temperature of 150°C for 18 hours, it was naturally cooled to room temperature, and the prepared sample was fully cleaned and then vacuum-dried at 60°C for 2 hours to obtain the oxide precursor NiMoO 4 /NF.
催化剂的电催化性能测试:Catalyst electrocatalytic performance test:
析氧反应极化曲线测试结果(图15)表明,F-NiOOH/NiMoO4/NF催化剂具有优异的析氧反应电催化活性,其在1.0M氢氧化钾碱液中仅需252mV的析氧过电位即可达到10mAcm-2的电流密度。The oxygen evolution reaction polarization curve test results (Figure 15) show that the F-NiOOH/NiMoO 4 /NF catalyst has excellent electrocatalytic activity for the oxygen evolution reaction, and it only needs 252mV of oxygen evolution reaction in 1.0M potassium hydroxide alkali solution. Potential can reach the current density of 10mAcm -2 .
实施例5Example 5
F-NiOOH/NiMoO4/CF催化剂的合成、结构与催化性能Synthesis, Structure and Catalytic Properties of F-NiOOH/NiMoO 4 /CF Catalyst
催化剂制备:Catalyst preparation:
本实施例的合成方法中,与实施例4类似,仅在将泡沫镍(NF)更换为泡沫钴(CF)。In the synthesis method of this example, similar to Example 4, only nickel foam (NF) is replaced with cobalt foam (CF).
析氧反应极化曲线测试结果(图16)表明,F-NiOOH/NiMoO4/CF催化剂具有优异的析氧反应电催化活性,其在1.0M氢氧化钾碱液中仅需253mV的析氧过电位即可达到10mAcm-2的电流密度。The oxygen evolution reaction polarization curve test results (Figure 16) show that the F-NiOOH/NiMoO 4 /CF catalyst has excellent electrocatalytic activity for the oxygen evolution reaction, and it only needs a 253mV oxygen evolution reaction in 1.0M potassium hydroxide alkali solution. Potential can reach the current density of 10mAcm -2 .
实施例6Example 6
F-Ni1-xFexOOH/NiFe LDH/NF催化剂的合成、结构与催化性能Synthesis, Structure and Catalytic Properties of F-Ni 1-x Fe x OOH/NiFe LDH/NF Catalyst
催化剂制备:Catalyst preparation:
本实施例的合成方法中,与实施例1类似,区别仅在于氢氧化物/氧化物前驱体。In the synthesis method of this example, it is similar to that of Example 1, except that the hydroxide/oxide precursor is the only difference.
氧化物前驱体由以下方法合成:泡沫镍(1×4cm2)先后经乙醇超声清洗10分钟,1M盐酸溶液活化5分钟和去离子水超声清洗10分钟后,连同36mL含有Ni(NO3)2·6H2O(4mmol)、Fe(NO3)3·9H2O(1mmol)、CO(NH2)2(10mmol)的去离子水溶液置于容积为50mL的水热斧中,经150℃恒温处理18小时后自然冷却至室温,制得样品经充分清洗后在60℃进行真空干燥2小时,得到氧化物前驱体NiFe LDH/NF。The oxide precursor was synthesized by the following method: nickel foam (1×4cm 2 ) was ultrasonically cleaned with ethanol for 10 minutes, activated with 1M hydrochloric acid solution for 5 minutes and ultrasonically cleaned with deionized water for 10 minutes, together with 36 mL of Ni(NO 3 ) 2 · 6H 2 O (4mmol), Fe(NO 3 ) 3 · 9H 2 O (1mmol), CO(NH 2 ) 2 (10mmol) deionized aqueous solution was placed in a water heating ax with a volume of 50mL, and kept at 150°C After 18 hours of treatment, it was naturally cooled to room temperature, and the prepared sample was fully cleaned and then vacuum-dried at 60°C for 2 hours to obtain the oxide precursor NiFe LDH/NF.
析氧反应极化曲线测试结果(图17)表明,F-Ni1-xFexOOH/NiFe LDH/NF催化剂具有优异的析氧反应电催化活性,其在1.0M氢氧化钾碱液中仅需260mV的析氧过电位即可达到100mA cm-2的电流密度。The oxygen evolution reaction polarization curve test results (Figure 17) show that the F-Ni 1-x Fe x OOH/NiFe LDH/NF catalyst has excellent electrocatalytic activity for the oxygen evolution reaction, which is only The current density of 100mA cm -2 can be reached with an oxygen evolution overpotential of 260mV.
以上实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。The above embodiment is a preferred embodiment of the present invention, but the embodiment of the present invention is not limited by the above embodiment, and any other changes, modifications, substitutions, combinations, Simplifications should be equivalent replacement methods, and all are included in the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211115262.3A CN115522223B (en) | 2022-09-13 | 2022-09-13 | Fluorine-doped non-noble metal electrocatalyst and preparation method and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211115262.3A CN115522223B (en) | 2022-09-13 | 2022-09-13 | Fluorine-doped non-noble metal electrocatalyst and preparation method and application thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115522223A true CN115522223A (en) | 2022-12-27 |
CN115522223B CN115522223B (en) | 2024-11-01 |
Family
ID=84698242
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211115262.3A Active CN115522223B (en) | 2022-09-13 | 2022-09-13 | Fluorine-doped non-noble metal electrocatalyst and preparation method and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115522223B (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102689948A (en) * | 2011-03-24 | 2012-09-26 | 同济大学 | A SnO2 Electrode for Treating Fluorinated Organic Pollutants |
US20130192588A1 (en) * | 2010-03-23 | 2013-08-01 | Odb-Tec Gmbh & Co. Kg | Method and Device for Producing a Highly Selectively Absorbing Coating on a Solar Absorber Component and Solar Absorber Having Such Coating |
CN108704649A (en) * | 2018-06-21 | 2018-10-26 | 厦门大学 | A kind of base metal base electrolysis water oxygen evolution reaction elctro-catalyst and preparation method thereof |
CN109247031A (en) * | 2016-01-19 | 2019-01-18 | 辉光能源公司 | Thermal Photovoltaic Generator |
CN112808274A (en) * | 2019-10-29 | 2021-05-18 | 湖南师范大学 | High-performance iron-doped nickel or cobalt-based amorphous oxyhydroxide catalyst prepared by room temperature method and research on efficient water electrolysis hydrogen production thereof |
CN114694979A (en) * | 2020-12-30 | 2022-07-01 | 华东理工大学 | A kind of fluorinated reconstituted electrode material and its preparation method and application |
-
2022
- 2022-09-13 CN CN202211115262.3A patent/CN115522223B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130192588A1 (en) * | 2010-03-23 | 2013-08-01 | Odb-Tec Gmbh & Co. Kg | Method and Device for Producing a Highly Selectively Absorbing Coating on a Solar Absorber Component and Solar Absorber Having Such Coating |
CN102689948A (en) * | 2011-03-24 | 2012-09-26 | 同济大学 | A SnO2 Electrode for Treating Fluorinated Organic Pollutants |
CN109247031A (en) * | 2016-01-19 | 2019-01-18 | 辉光能源公司 | Thermal Photovoltaic Generator |
CN108704649A (en) * | 2018-06-21 | 2018-10-26 | 厦门大学 | A kind of base metal base electrolysis water oxygen evolution reaction elctro-catalyst and preparation method thereof |
CN112808274A (en) * | 2019-10-29 | 2021-05-18 | 湖南师范大学 | High-performance iron-doped nickel or cobalt-based amorphous oxyhydroxide catalyst prepared by room temperature method and research on efficient water electrolysis hydrogen production thereof |
CN114694979A (en) * | 2020-12-30 | 2022-07-01 | 华东理工大学 | A kind of fluorinated reconstituted electrode material and its preparation method and application |
Non-Patent Citations (5)
Title |
---|
CHEN, PENGZUO等: ""Dynamic Migration of Surface Fluorine Anions on Cobalt-Based Materials to Achieve Enhanced Oxygen Evolution Catalysis"", 《ANGEWANDTE CHEMIE-INTERNATIONAL EDITION》, vol. 57, no. 47, 4 January 2019 (2019-01-04), pages 15471 * |
WANG, JIAJUN等: ""(Fe, F) co-doped nickel oxyhydroxide for highly efficient oxygen evolution reaction"", 《JOURNAL OF MATERIALS CHEMISTRY A》, vol. 11, no. 9, 27 February 2023 (2023-02-27), pages 4619 - 4626 * |
WANG, JIAJUN等: ""A core-shell structured CoMoO4•nH2O@Co1-xFexOOH nanocatalyst for electrochemical evolution of oxygen"", 《ELECTROCHIMICA ACTA》, vol. 345, 16 July 2020 (2020-07-16), pages 2 * |
WANG, JIAJUN等: ""Fluorine-doped nickel oxyhydroxide as a robust electrocatalyst for oxygen evolution reaction"", 《ELECTROCHIMICA ACTA》, vol. 437, 1 January 2023 (2023-01-01), pages 141475 * |
任艳梅 等: ""二硫化钼析氢电催化剂"", 《化学进展》, 24 August 2021 (2021-08-24), pages 1270 - 1279 * |
Also Published As
Publication number | Publication date |
---|---|
CN115522223B (en) | 2024-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110055557B (en) | A three-dimensional nickel-doped iron-based oxygen evolution catalyst and its preparation method and application | |
Yang et al. | Molybdenum selenide nanosheets surrounding nickel selenides sub-microislands on nickel foam as high-performance bifunctional electrocatalysts for water splitting | |
CN112044458B (en) | A kind of multi-level metal phosphide and its preparation method and application | |
CN109954503B (en) | Nickel selenide and ternary nickel-iron selenide composite electrocatalyst, preparation method and application | |
CN111871421A (en) | Nickel-iron-molybdenum hydrotalcite nanowire bifunctional electrocatalyst and preparation method thereof | |
CN112553642B (en) | Non-noble metal hydrogen evolution electrocatalyst based on synergistic modification and preparation method thereof | |
CN114657591B (en) | Ferronickel hydrotalcite-like compound/ferronickel sulfide heterostructure seawater oxidation electrocatalyst and preparation method thereof | |
CN110433833A (en) | A kind of base metal Electrocatalytic Activity for Hydrogen Evolution Reaction agent and preparation method thereof based on modified synergic | |
CN108910962A (en) | A kind of ternary CoFeCr hydrotalcite nano stick and the preparation method and application thereof | |
CN112921351B (en) | A kind of preparation method and application of self-supporting catalytic electrode | |
CN110711583A (en) | A kind of high-efficiency electrocatalyst material with three-dimensional structure, preparation method and application thereof | |
CN116005192A (en) | Ferronickel oxyhydroxide oxygen evolution electrode and preparation method thereof | |
Liu et al. | Regulation of the morphology and electrochemical properties of Ni 0.85 Se via Fe doping for overall water splitting and supercapacitors | |
CN113403628B (en) | Non-noble metal hydrogen evolution electrocatalyst based on structural nanocrystallization combination synergistic modification and preparation method and application thereof | |
CN115505961A (en) | A low-cost catalytic electrode for rapid full-electrolysis hydrogen production from seawater, its preparation and application | |
CN115094457B (en) | In-situ growth type composite transition metal oxide oxygen evolution catalytic electrode material and preparation method and application thereof | |
CN115928135A (en) | Iron-doped nickel hydroxide composite nickel selenide material and preparation method and application thereof | |
CN113832489B (en) | Foam nickel-supported nickel-copper-manganese metal nanometer electrocatalyst and preparation method thereof | |
CN111974398B (en) | Thermally-induced full-reconstruction nanowire array and preparation method and application thereof | |
CN115522223B (en) | Fluorine-doped non-noble metal electrocatalyst and preparation method and application thereof | |
CN114318410B (en) | A kind of cobalt-based electrolyzed water catalyst and its preparation method and application in electrolyzed water | |
CN116180128A (en) | Self-supporting non-noble metal electrocatalyst material, and preparation method and application thereof | |
CN116590719A (en) | Electric field driven preparation M 1II (M 2III ) Method for OOH material | |
CN114016066A (en) | Ni-Fe bimetal boride nanosheet array catalyst, and preparation method and application thereof | |
CN114990619B (en) | An amorphous NiOOH/Ni3S2 heterostructure nickel-based composite catalyst and its preparation method and application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |