CN115514004A - An Adaptive Control Method for Subsynchronous Oscillation of Direct-Drive Wind Power Gentle Delivery System - Google Patents

An Adaptive Control Method for Subsynchronous Oscillation of Direct-Drive Wind Power Gentle Delivery System Download PDF

Info

Publication number
CN115514004A
CN115514004A CN202211244122.6A CN202211244122A CN115514004A CN 115514004 A CN115514004 A CN 115514004A CN 202211244122 A CN202211244122 A CN 202211244122A CN 115514004 A CN115514004 A CN 115514004A
Authority
CN
China
Prior art keywords
direct
control
subsynchronous oscillation
wind power
delivery system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211244122.6A
Other languages
Chinese (zh)
Other versions
CN115514004B (en
Inventor
吴熙
邹子骁
徐珊珊
陈曦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN202211244122.6A priority Critical patent/CN115514004B/en
Publication of CN115514004A publication Critical patent/CN115514004A/en
Application granted granted Critical
Publication of CN115514004B publication Critical patent/CN115514004B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for AC mains or AC distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for AC mains or AC distribution networks
    • H02J3/002Flicker reduction, e.g. compensation of flicker introduced by non-linear load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for AC mains or AC distribution networks
    • H02J3/24Arrangements for preventing or reducing oscillations of power in networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for AC mains or AC distribution networks
    • H02J3/36Arrangements for transfer of electric power between AC networks via a high-tension DC link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for AC mains or AC distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/50Controlling the sharing of the out-of-phase component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for AC mains or AC distribution networks
    • H02J3/36Arrangements for transfer of electric power between AC networks via a high-tension DC link
    • H02J2003/365Reducing harmonics or oscillations in HVDC
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

The invention discloses a sub-synchronous oscillation control method of a self-adaptive direct-drive wind power soft and direct delivery system, which comprises the steps of establishing a model of the direct-drive wind power soft and direct delivery system, analyzing a control link strongly related to a sub-synchronous oscillation mode, and providing an additional position scheme of self-adaptive control of sub-synchronous oscillation; designing an adaptive control method for inhibiting subsynchronous oscillation of a direct-drive wind power soft and direct delivery system; respectively establishing an optimization model of parameters of the self-adaptive control method by adopting different additional position schemes, and determining optimal control parameters of a control strategy at each additional position; and comparing the subsynchronous oscillation control effects of the additional position schemes, establishing an evaluation index, determining the optimal additional position of the controller, and realizing subsynchronous oscillation suppression.

Description

一种自适应的直驱风电柔直送出系统次同步振荡控制方法An Adaptive Control Method for Subsynchronous Oscillation of Direct-Drive Wind Power Gentle Delivery System

技术领域technical field

本发明涉及电力系统稳定及控制技术领域,具体的是一种自适应的直驱风电柔直送出系统次同步振荡控制方法。The invention relates to the technical field of power system stability and control, in particular to an adaptive subsynchronous oscillation control method for a direct-drive wind power soft direct delivery system.

背景技术Background technique

风电系统经柔性直流输电存在次同步振荡的风险,危及电力系统的稳定、安全运行,逐渐成为了近期研究的热点,该次同步振荡问题的产生机理已经得到了相关揭示,主要涉及风电系统与柔性直流传输系统电力电子设备之间的复杂交互。然而,直驱风电柔直送出系统的次同步振荡控制方法研究较少,且通常侧重于单一运行点下的次同步振荡控制,缺乏多工况下的抑制效果的分析和对比。考虑到风机的运行状态变化大、工况复杂,如何在复杂工况下实现直驱风电柔直送出系统的次同步振荡控制,仍有待进一步探索。The wind power system has the risk of sub-synchronous oscillation through flexible DC transmission, which endangers the stable and safe operation of the power system. It has gradually become a hot spot in recent research. Complex interactions between power electronics in DC transmission systems. However, there are few studies on subsynchronous oscillation control methods for direct-drive wind power soft direct delivery systems, and usually focus on subsynchronous oscillation control under a single operating point, lacking analysis and comparison of suppression effects under multiple operating conditions. Considering that the operating state of wind turbines changes greatly and the working conditions are complex, how to realize the subsynchronous oscillation control of the direct-drive wind power soft direct delivery system under complex working conditions still needs to be further explored.

发明内容Contents of the invention

为解决上述背景技术中提到的不足,本发明的目的在于提供一种自适应的直驱风电柔直送出系统次同步振荡控制方法,In order to solve the above-mentioned deficiencies mentioned in the background technology, the object of the present invention is to provide an adaptive direct-drive wind power soft direct delivery system subsynchronous oscillation control method,

本发明的目的可以通过以下技术方案实现:一种自适应的直驱风电柔直送出系统次同步振荡控制方法,方法包括以下步骤:The purpose of the present invention can be achieved through the following technical solutions: an adaptive direct-drive wind power soft direct delivery system subsynchronous oscillation control method, the method includes the following steps:

建立直驱风电柔直送出系统模型,用于分析与次同步振荡模态强相关的控制环节,提出次同步振荡自适应控制的附加位置方案;Establish a direct-drive wind power soft direct delivery system model to analyze the control link strongly related to the subsynchronous oscillation mode, and propose an additional location scheme for the subsynchronous oscillation adaptive control;

设计自适应控制方法,用于抑制直驱风电柔直送出系统次同步振荡;Design an adaptive control method to suppress the subsynchronous oscillation of the direct drive wind power soft direct delivery system;

采用不同附加位置方案分别建立不同自适应控制方法参数的优化模型,通过不同自适应控制方法参数的优化模型确定各附加位置方案下控制方法的最优控制参数;Different additional position schemes are used to establish optimization models of parameters of different adaptive control methods, and the optimal control parameters of the control methods under each additional position scheme are determined through the optimization models of parameters of different adaptive control methods;

利用得出的最优控制参数,对比各附加位置方案的次同步振荡控制效果,建立评价指标,确定控制器的最优附加位置,实现次同步振荡抑制。Using the obtained optimal control parameters, the subsynchronous oscillation control effect of each additional position scheme is compared, the evaluation index is established, the optimal additional position of the controller is determined, and the subsynchronous oscillation suppression is realized.

优选地,所述建立直驱风电柔直送出系统模型的过程包括以下步骤:Preferably, the process of establishing a direct-drive wind power soft direct delivery system model includes the following steps:

直驱风电柔直送出系统包括:永磁直驱风电场、交流线路、柔性直流传输系统和无穷大电源;其中,永磁直驱风电场由永磁直驱风机、风机机侧变流器、背靠背变流器的直流环节和风机网侧变流器组成;柔性直流传输系统由柔直风机侧换流站、直流传输电缆和柔直网侧换流站组成;Direct drive wind power flexible direct delivery system includes: permanent magnet direct drive wind farm, AC line, flexible DC transmission system and infinite power supply; among them, permanent magnet direct drive wind farm consists of permanent magnet direct drive fan, fan side converter, back-to-back The DC link of the converter is composed of the wind turbine grid-side converter; the flexible DC transmission system is composed of a flexible DC fan-side converter station, a DC transmission cable and a flexible DC grid-side converter station;

所述永磁直驱风机的电压方程、磁链方程、转矩方程和运动方程公式如下所示:The voltage equation, flux linkage equation, torque equation and motion equation formula of the permanent magnet direct drive fan are as follows:

Figure BDA0003885060390000021
Figure BDA0003885060390000021

Figure BDA0003885060390000022
Figure BDA0003885060390000022

Te=ψfiqs (3)T e = ψ f i qs (3)

Figure BDA0003885060390000023
Figure BDA0003885060390000023

其中,ψds和ψqs分别表示定子dq轴磁链,uds,uqs,ids,iqs,分别为直驱风机定子电压与定子电流的dq轴分量,Rs,Ls分别为直驱风机的定子电阻和定子电感,J表示直驱风机轴系的惯量,D为直驱风机转子的阻尼,ωsr分别为同步磁场角速度与双馈风机转子旋转角速度标幺值,Tm,Te分别为直驱风机的机械转矩和电磁转矩;Among them, ψ ds and ψ qs represent the stator dq-axis flux linkage respectively, u ds , u qs , i ds , i qs are the dq-axis components of the stator voltage and stator current of the direct drive fan, respectively, R s , L s are the direct drive fan The stator resistance and stator inductance of the drive fan, J represents the inertia of the direct drive fan shaft, D is the damping of the direct drive fan rotor, ω s , ω r are the angular velocity of the synchronous magnetic field and the rotational angular velocity of the double-fed fan rotor per unit, T m , T e are the mechanical torque and electromagnetic torque of the direct drive fan, respectively;

风机机侧变流器采用零d轴的双闭环矢量控制,外环q轴以PI控制直驱风机实际有功出力P,内环dq轴以PI分别控制ids,iqs,如下式:The fan-side converter adopts double closed-loop vector control with zero d-axis, the outer ring q-axis controls the actual active output P of the direct drive fan with PI, and the inner ring dq-axis controls i ds and i qs respectively with PI, as follows:

Figure BDA0003885060390000033
Figure BDA0003885060390000033

其中,

Figure BDA0003885060390000035
分别表示变量ids,iqs的参考值,上标*表示对应变量的参考值;Kpa和Kia分别表示PIa控制器的比例系数和积分系数,下标a=1,2,3…表示第a个PI控制器的比例系数和积分系数;ud1,uq1分别表示风机机侧变流器交流侧的dq轴电压;in,
Figure BDA0003885060390000035
respectively represent the reference values of the variables i ds and i qs , the superscript * represents the reference value of the corresponding variable; K pa and K ia represent the proportional coefficient and integral coefficient of the PI a controller respectively, and the subscript a=1,2,3... Indicates the proportional coefficient and integral coefficient of the a-th PI controller; u d1 , u q1 respectively indicate the dq axis voltage of the AC side of the converter on the fan side;

风机网侧变流器采用定直流电压和定无功功率的控制策略,外环dq轴以PI控制直流环节电压与网侧无功功率Qg、内环dq轴以PI分别控制网侧电流的dq轴分量idg,iqg,如下式:The grid-side converter of the wind turbine adopts the control strategy of constant DC voltage and constant reactive power. The dq axis of the outer ring controls the DC link voltage and the reactive power Q g of the grid side by PI, and the dq axis of the inner ring controls the grid-side current by PI respectively. The dq axis components i dg , i qg are as follows:

Figure BDA0003885060390000038
Figure BDA0003885060390000038

其中,udc为背靠背直流环节电压,ud2,uq2分别表示风机网侧变流器交流侧的dq轴电压;PI4~PI7用于风机网侧变流器控制;Among them, u dc is the back-to-back DC link voltage, u d2 and u q2 respectively represent the dq axis voltage of the AC side of the fan grid side converter; PI 4 ~ PI 7 are used for the control of the fan grid side converter;

柔直风机侧送端换流站次采用定交流电压控制策略,外环dq轴以PI控制换流站交流侧dq轴电压uwfd0,uwfq0,内环dq轴以PI分别控制交流侧dq轴电流iwfd,iwfq,如下式:The converter station at the sending end of the soft direct wind turbine adopts a constant AC voltage control strategy. The dq axes of the outer ring control the dq axes voltage u wfd0 , u wfq0 of the converter station with PI, and the dq axes of the inner ring control the dq axes of the AC side respectively with PI The current i wfd , i wfq is as follows:

Figure BDA0003885060390000043
Figure BDA0003885060390000043

其中,uwfd,uwfq分别表示换流站交流量测点的dq轴电压;PI8~PI11用于柔直风机侧送端换流站控制;Among them, u wfd and u wfq respectively represent the dq axis voltage of the AC measurement point of the converter station; PI 8 ~ PI 11 are used for the control of the converter station at the side sending end of the soft direct wind turbine;

优选地,所述次同步振荡自适应控制的附加位置方案由影响次同步振荡的关键变量和主要控制参数确定:Preferably, the additional position scheme of the adaptive control of subsynchronous oscillation is determined by key variables and main control parameters affecting subsynchronous oscillation:

依据直驱风机柔直送出系统模型建立状态空间方程,分析影响直驱风电柔直送出系统次同步振荡的关键变量,以式(8)的能控性指标mci对比次同步振荡控制附加位置的优劣:The state space equation is established based on the model of the direct-drive fan flexible direct delivery system, the key variables affecting the subsynchronous oscillation of the direct-drive wind power flexible direct delivery system are analyzed, and the controllability index m ci of formula (8) is used to compare the control position of the additional position of the subsynchronous oscillation Pros and cons:

Figure BDA0003885060390000045
Figure BDA0003885060390000045

其中,i和k分别表示状态变量的编号和特征值的编号,bi表示对应于控制矩阵中对应于控制变量ui的列向量,βk表示对应于第k特征值的左特征向量;Among them, i and k represent the number of the state variable and the number of the eigenvalue respectively, b i represents the column vector corresponding to the control variable u i in the control matrix, and β k represents the left eigenvector corresponding to the kth eigenvalue;

以式(9)的能观性指标moi对比次同步振荡控制量测位置的优劣:Using the observability index m oi of formula (9) to compare the advantages and disadvantages of the subsynchronous oscillation control measurement position:

Figure BDA0003885060390000051
Figure BDA0003885060390000051

其中,j表示控制变量的编号,cj表示对应于输出矩阵中对应于输出变量yj的行向量,αk表示对应于第k特征值的右特征向量;Among them, j represents the serial number of the control variable, c j represents the row vector corresponding to the output variable y j in the output matrix, and α k represents the right eigenvector corresponding to the kth eigenvalue;

依据直驱风电柔直送出系统次同步振荡的特征值分析和建模仿真,获取对次同步振荡模态影响大的控制参数。According to the eigenvalue analysis and modeling simulation of the subsynchronous oscillation of the direct-drive wind power soft direct delivery system, the control parameters that have a great influence on the subsynchronous oscillation mode are obtained.

优选地,所述自适应控制方法如下:Preferably, the adaptive control method is as follows:

设定直驱风电柔直送出系统附加控制器的输入信号和输出信号为y和u,则离散时间下的控制器的输入信号和输出信号分别为y(k)和u(k);Set the input signal and output signal of the additional controller of the direct drive wind power soft direct delivery system as y and u, then the input signal and output signal of the controller under discrete time are y(k) and u(k) respectively;

基于自适应控制方法的输入信号与输出信号,实现直驱风电柔直送出系统的动态线性化,如式(10)所示:Based on the input signal and output signal of the adaptive control method, the dynamic linearization of the direct-drive wind power soft direct delivery system is realized, as shown in formula (10):

y(k+1)=y(k)+Φ(k)Δu(k) (10)y(k+1)=y(k)+Φ(k)Δu(k) (10)

Φ(k)表示系统的伪偏导数,Δu(k)=u(k)-u(k-1);Φ(k) represents the pseudo partial derivative of the system, Δu(k)=u(k)-u(k-1);

建立次同步振荡控制器输入输出数据的偏导数估计准则函数,如式(11)所示。Establish the partial derivative estimation criterion function of the input and output data of the subsynchronous oscillation controller, as shown in formula (11).

Figure BDA0003885060390000052
Figure BDA0003885060390000052

μ为表示伪偏导数变化量的惩罚系数,

Figure BDA0003885060390000053
表示风电送出系统的伪偏导数的估计值;μ is the penalty coefficient representing the amount of change in the pseudo partial derivative,
Figure BDA0003885060390000053
Represents the estimated value of the pseudo partial derivative of the wind power delivery system;

对式(11)求偏导,获得直驱风电柔直送出系统的伪偏导数估计式如式(12)所示:Calculate the partial derivative of formula (11), and obtain the pseudo partial derivative estimation formula of the direct-drive wind power soft direct delivery system, as shown in formula (12):

Figure BDA0003885060390000054
Figure BDA0003885060390000054

其中,

Figure BDA0003885060390000055
为输出的估计误差,F=1-γ,η为表示伪偏导数估计算法的步长因子,γ为估计误差e0(k)误差增益;in,
Figure BDA0003885060390000055
For the estimated error of the output, F=1-γ, η is the step factor representing the pseudo partial derivative estimation algorithm, and γ is the estimated error e 0 (k) error gain;

所建立的控制器输出的准则函数如式(13)所示:The criterion function of the established controller output is shown in formula (13):

Figure BDA0003885060390000061
Figure BDA0003885060390000061

自适应控制方法的控制律如式(14)所示:The control law of the adaptive control method is shown in formula (14):

Figure BDA0003885060390000062
Figure BDA0003885060390000062

其中,ρ0,ρ1为调节控制速率的步长因子;λ表示系统输入信号的惩罚系数。Among them, ρ 0 , ρ 1 are the step size factors for adjusting the control rate; λ represents the penalty coefficient of the system input signal.

优选地,所述偏导数估计准则函数以极小化动态线性化输出与真实输出作为目标,同时添加带惩罚项的偏导数变化量。Preferably, the partial derivative estimation criterion function takes the minimization of the dynamic linearization output and the real output as a target, and meanwhile adds a partial derivative variation with a penalty term.

优选地,所述自适应控制方法参数的优化模型包括:Preferably, the optimization model of the parameters of the adaptive control method includes:

目标函数objective function

将风机网侧变流器外环dq轴误差信号和柔直送端换流站外环dq轴误差信号的平方在时间上积累量之和作为性能指标,建立目标函数如式(15)所示:The sum of the square of the dq-axis error signal of the outer ring of the wind turbine grid-side converter and the dq-axis error signal of the outer ring of the soft direct-feeding end converter station in time is used as the performance index, and the objective function is established as shown in formula (15):

Figure BDA0003885060390000063
Figure BDA0003885060390000063

其中,J为优化目标函数,t为时间,ewd(t),ewq(t),evd(t),evq(t)分别为风机网侧变流器d轴外环直流电压控制的误差信号、风机网侧变流器q轴外环无功控制的误差信号、柔直风机侧送端换流站d轴外环交流电压控制的误差信号和柔直风机侧送端换流站q轴外环交流电压控制的误差信号;Among them, J is the optimization objective function, t is the time, e wd (t), e wq (t), e vd (t), e vq (t) are respectively the d-axis outer ring DC voltage control The error signal of the wind turbine grid-side converter q-axis outer ring reactive power control error signal, the error signal of the d-axis outer ring AC voltage control of the soft straight fan side send-end converter station and the soft straight fan side send-end converter station The error signal of the q-axis outer ring AC voltage control;

优化参数optimization parameters

待优化的控制器参数有:伪偏导数变化量的惩罚系数μ,调节控制速率的步长因子ρ0和ρ1,统输入信号的惩罚系数λ,伪偏导数估计的步长因子η,估计误差增益γ;The controller parameters to be optimized include: penalty coefficient μ of pseudo partial derivative variation, step factors ρ 0 and ρ 1 for adjusting control rate, penalty coefficient λ of system input signal, step factor η of pseudo partial derivative estimation, estimated error gain γ;

约束条件Restrictions

根据次同步振荡的自适应控制方法的设计原则,控制器参数的可行范围有以下约束,如式(16)所示:According to the design principle of the adaptive control method of subsynchronous oscillation, the feasible range of controller parameters has the following constraints, as shown in equation (16):

Figure BDA0003885060390000071
Figure BDA0003885060390000071

其中,

Figure BDA0003885060390000072
为伪偏导数估计值
Figure BDA0003885060390000073
的上界。in,
Figure BDA0003885060390000072
Estimated values for the pseudo partial derivatives
Figure BDA0003885060390000073
upper bound.

优选地,所述自适应控制方法参数的优化模型采用粒子群算法优化模型参数,包括:Preferably, the optimization model of the parameters of the adaptive control method adopts the particle swarm optimization algorithm to optimize the model parameters, including:

首先,初始化粒子群并计算各粒子的适应度;其次,更新粒子的速度和位置并重新计算适应度,找到全局最优的粒子;最后,判断粒子群算法是否收敛,若未收敛,返回上一步,继续更新粒子速度和位置,若已收敛,说明控制器参数优化完成,成功得到附加位置下控制器的最优参数。First, initialize the particle swarm and calculate the fitness of each particle; second, update the speed and position of the particle and recalculate the fitness to find the globally optimal particle; finally, judge whether the particle swarm algorithm converges, if not, return to the previous step , continue to update the particle velocity and position, if it has converged, it means that the optimization of the controller parameters is completed, and the optimal parameters of the controller under the additional position are successfully obtained.

优选地,所述实现次同步振荡抑制的过程如下:Preferably, the process of realizing subsynchronous oscillation suppression is as follows:

确定次同步振荡自适应控制的附加位置方案;Determine additional location schemes for adaptive control of subsynchronous oscillations;

确定各附加位置下的最优控制参数;Determine the optimal control parameters for each additional position;

建立n个直驱风电柔直送出系统次同步振荡复杂工况场景;Establish n direct-drive wind power soft direct delivery system subsynchronous oscillation complex working conditions scenarios;

对于各附加位置的次同步振荡控制器,分别开展复杂工况场景下的次同步振荡抑制验证,获得各附加位置、各工况场景的目标函数Jl,s,其中,下标l和s分别表示附加位置和工况场景编号;For the subsynchronous oscillation controllers at each additional position, the verification of subsynchronous oscillation suppression under complex working conditions is carried out respectively, and the objective function J l,s of each additional position and each working condition scene is obtained, where the subscripts l and s are respectively Indicates the additional location and working condition scene number;

求取各附加位置下的次同步振荡控制综合评价指标,表示为

Figure BDA0003885060390000081
Obtain the comprehensive evaluation index of subsynchronous oscillation control at each additional position, expressed as
Figure BDA0003885060390000081

选定次同步振荡控制综合评价指标最小的附加位置作为所选位置,实现次同步振荡抑制。The additional position with the minimum comprehensive evaluation index of subsynchronous oscillation control is selected as the selected position to realize subsynchronous oscillation suppression.

优选地,一种设备,包括:Preferably, a device comprising:

一个或多个处理器;one or more processors;

存储器,用于存储一个或多个程序;memory for storing one or more programs;

当一个或多个所述程序被一个或多个所述处理器执行,使得一个或多个所述处理器实现如上所述的一种自适应的直驱风电柔直送出系统次同步振荡控制方法。When one or more of the programs are executed by one or more of the processors, one or more of the processors implement the above-mentioned adaptive direct-drive wind power soft output system subsynchronous oscillation control method .

优选地,所述计算机可执行指令在由计算机处理器执行时用于执行如上所述的一种自适应的直驱风电柔直送出系统次同步振荡控制方法。Preferably, when the computer executable instructions are executed by a computer processor, they are used to implement the above-mentioned adaptive direct-drive wind power soft output system subsynchronous oscillation control method.

本发明的有益效果:Beneficial effects of the present invention:

本发明的自适应控制方法基于该策略的输入、输出数据对直驱风电柔直系统实现动态线性化,所需的系统信息少,对系统建模的依赖程度低,且在风速、风电出力、风机台数变化的多种工况场景下均能实现次同步振荡有效抑制,具有很强的自适应性。Based on the input and output data of the strategy, the adaptive control method of the present invention realizes dynamic linearization of the direct-drive wind power flexible straight system, requires less system information, and has low dependence on system modeling. Under various working conditions where the number of fans changes, the subsynchronous oscillation can be effectively suppressed, and it has strong adaptability.

附图说明Description of drawings

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图;In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, for those of ordinary skill in the art, In other words, on the premise of not paying creative work, other drawings can also be obtained based on these drawings;

图1为本发明的方法流程图;Fig. 1 is method flowchart of the present invention;

图2为本发明的直驱风电柔直并网系统案例示意图;Fig. 2 is a schematic diagram of a case of the direct-drive wind power flexible straight grid-connected system of the present invention;

图3为本发明的次同步振荡自适应控制结构示意图;Fig. 3 is a schematic diagram of the subsynchronous oscillation adaptive control structure of the present invention;

图4为本发明的粒子群控制参数优化方法流程图;Fig. 4 is the flow chart of particle swarm control parameter optimization method of the present invention;

图5为本发明的自适应控制附加位置应用示意图;Fig. 5 is a schematic diagram of the application of the adaptive control additional position of the present invention;

图6为本发明的自适应控制应用效果图;Fig. 6 is the effect diagram of the adaptive control application of the present invention;

图7为本发明自适应控制过程中伪偏导数估计值变化图。Fig. 7 is a change diagram of estimated values of pseudo partial derivatives in the adaptive control process of the present invention.

具体实施方式detailed description

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。The following will clearly and completely describe the technical solutions in the embodiments of the present invention with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some, not all, embodiments of the present invention. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without creative efforts fall within the protection scope of the present invention.

如图1所示,一种自适应的直驱风电柔直送出系统次同步振荡控制方法,包括如下步骤:As shown in Fig. 1, an adaptive subsynchronous oscillation control method for direct-drive wind power soft direct delivery system includes the following steps:

步骤一:建立直驱风电柔直送出系统的数学模型Step 1: Establish the mathematical model of the direct-drive wind power soft direct delivery system

如图1所示,直驱风电柔直送出系统包括:永磁直驱风电场、交流线路、柔性直流传输系统和无穷大电源。其中,永磁直驱风电场由永磁直驱风机、风机机侧变流器、背靠背变流器的直流环节、风机网侧变流器组成;柔性直流传输系统由柔直风机侧换流站、直流传输电缆、柔直网侧换流站组成。As shown in Figure 1, the direct drive wind power transmission system includes: permanent magnet direct drive wind farm, AC line, flexible DC transmission system and infinite power supply. Among them, the permanent magnet direct drive wind farm is composed of the permanent magnet direct drive fan, the fan side converter, the DC link of the back-to-back converter, and the fan grid side converter; the flexible DC transmission system consists of the flexible DC fan side converter station , DC transmission cables, and flexible direct grid side converter stations.

永磁直驱风机的电压方程、磁链方程、转矩方程和运动方程如式(1)-(4)所示:The voltage equation, flux equation, torque equation and motion equation of the permanent magnet direct drive fan are shown in equations (1)-(4):

Figure BDA0003885060390000092
Figure BDA0003885060390000092

Figure BDA0003885060390000101
Figure BDA0003885060390000101

Te=ψfiqs (3)T e = ψ f i qs (3)

Figure BDA0003885060390000102
Figure BDA0003885060390000102

其中,ψds和ψqs分别表示定子dq轴磁链,uds,uqs,ids,iqs,分别为直驱风机定子电压与定子电流的dq轴分量,Rs,Ls分别为直驱风机的定子电阻和定子电感,J表示直驱风机轴系的惯量,D为直驱风机转子的阻尼,ωsr分别为同步磁场角速度与双馈风机转子旋转角速度标幺值,Tm,Te分别为直驱风机的机械转矩和电磁转矩。Among them, ψ ds and ψ qs represent the stator dq-axis flux linkage respectively, u ds , u qs , i ds , i qs are the dq-axis components of the stator voltage and stator current of the direct drive fan, respectively, R s , L s are the direct drive fan The stator resistance and stator inductance of the drive fan, J represents the inertia of the direct drive fan shaft, D is the damping of the direct drive fan rotor, ω s , ω r are the angular velocity of the synchronous magnetic field and the rotational angular velocity of the double-fed fan rotor per unit, T m , T e are the mechanical torque and electromagnetic torque of the direct drive fan, respectively.

风机机侧变流器采用零d轴的双闭环矢量控制策略,外环q轴以PI控制直驱风机实际有功出力P,内环dq轴以PI分别控制ids,iqs,,即式(5):The converter on the fan side adopts a double-closed-loop vector control strategy with zero d-axis. The outer ring q-axis uses PI to control the actual active output P of the direct-drive fan, and the inner ring dq-axis uses PI to control i ds , i qs , respectively, that is, the formula ( 5):

Figure BDA0003885060390000105
Figure BDA0003885060390000105

其中,

Figure BDA0003885060390000107
分别表示变量ids,iqs的参考值,上标*表示对应变量的参考值,该表示方法下文相同;Kpa和Kia分别表示PIa控制器的比例系数和积分系数,其下标a=1,2,3…表示第a个PI控制器的比例系数和积分系数,该表示方法下文相同;ud1,uq1分别表示风机机侧变流器交流侧的dq轴电压;in,
Figure BDA0003885060390000107
represent the reference values of the variables i ds and i qs respectively, the superscript * represents the reference value of the corresponding variable, and the expression method is the same below; K pa and K ia represent the proportional coefficient and integral coefficient of the PI a controller respectively, and the subscript a = 1, 2, 3... represents the proportional coefficient and integral coefficient of the a-th PI controller, and the expression method is the same below; u d1 , u q1 represent the dq axis voltages of the AC side of the converter on the fan side respectively;

风机网侧变流器采用定直流电压和定无功功率的控制策略,外环dq轴以PI控制直流环节电压与网侧无功功率Qg、内环dq轴以PI分别控制网侧电流的dq轴分量idg,iqg,即式(6):The grid-side converter of the wind turbine adopts the control strategy of constant DC voltage and constant reactive power. The dq axis of the outer ring controls the DC link voltage and the reactive power Q g of the grid side by PI, and the dq axis of the inner ring controls the grid-side current by PI respectively. dq-axis components i dg , i qg , namely formula (6):

Figure BDA0003885060390000113
Figure BDA0003885060390000113

其中,udc为背靠背直流环节电压,ud2,uq2分别表示风机网侧变流器交流侧的dq轴电压;PI4~PI7用于风机网侧变流器控制;Among them, u dc is the back-to-back DC link voltage, u d2 and u q2 respectively represent the dq axis voltage of the AC side of the fan grid side converter; PI 4 ~ PI 7 are used for the control of the fan grid side converter;

柔直风机侧送端换流站次采用定交流电压控制策略,外环dq轴以PI控制换流站交流侧dq轴电压uwfd0,uwfq0,内环dq轴以PI分别控制交流侧dq轴电流iwfd,iwfq,即式(7):The converter station at the sending end of the soft direct wind turbine adopts a constant AC voltage control strategy. The dq axes of the outer ring control the dq axes voltage u wfd0 , u wfq0 of the converter station with PI, and the dq axes of the inner ring control the dq axes of the AC side respectively with PI Current i wfd , i wfq , namely formula (7):

Figure BDA0003885060390000117
Figure BDA0003885060390000117

其中,uwfd,uwfq分别表示换流站交流量测点的dq轴电压;PI8~PI11用于柔直风机侧送端换流站控制;Among them, u wfd and u wfq respectively represent the dq axis voltage of the AC measurement point of the converter station; PI 8 ~ PI 11 are used for the control of the converter station at the side sending end of the soft direct wind turbine;

柔直网侧受端换流站的控制策略与直驱风电场的网侧变流器的控制策略相同,均为定直流电压和定无功功率的控制策略,在此不再赘述。The control strategy of the receiving-end converter station on the soft DC grid side is the same as that of the grid-side converter of the direct-drive wind farm, both of which are constant DC voltage and constant reactive power, and will not be repeated here.

步骤二:获取影响次同步振荡的关键变量和主要控制参数,确定次同步振荡自适应控制的附加位置方案Step 2: Obtain the key variables and main control parameters that affect the subsynchronous oscillation, and determine the additional location scheme for the adaptive control of the subsynchronous oscillation

首先,依据直驱风机柔直送出系统的数学模型建立状态空间方程,分析影响直驱风电柔直送出系统次同步振荡的关键变量。以式(8)的能控性指标mci对比次同步振荡控制附加位置的优劣:Firstly, the state space equation is established based on the mathematical model of the direct drive wind turbine direct delivery system, and the key variables affecting the subsynchronous oscillation of the direct drive wind power direct delivery system are analyzed. Using the controllability index m ci of formula (8) to compare the advantages and disadvantages of the additional position of subsynchronous oscillation control:

Figure BDA0003885060390000121
Figure BDA0003885060390000121

其中,i和k分别表示状态变量的编号和特征值的编号,bi表示对应于控制矩阵中对应于控制变量ui的列向量,βk表示对应于第k特征值的左特征向量。Among them, i and k represent the number of the state variable and the number of the eigenvalue respectively, b i represents the column vector corresponding to the control variable u i in the control matrix, and β k represents the left eigenvector corresponding to the kth eigenvalue.

以式(9)的能观性指标moi对比次同步振荡控制量测位置的优劣:Using the observability index m oi of formula (9) to compare the advantages and disadvantages of the subsynchronous oscillation control measurement position:

Figure BDA0003885060390000122
Figure BDA0003885060390000122

其中,j表示控制变量的编号,cj表示对应于输出矩阵中对应于输出变量yj的行向量,αk表示对应于第k特征值的右特征向量。Among them, j represents the number of the control variable, c j represents the row vector corresponding to the output variable y j in the output matrix, and α k represents the right eigenvector corresponding to the kth eigenvalue.

需要进行说明的是,本实施方案中所获得的次同步振荡较优附加位置有:u

Figure BDA0003885060390000123
本实施方案中所获得的次同步振荡较优量测位置有:
Figure BDA0003885060390000124
It should be noted that the optimal additional positions of the subsynchronous oscillation obtained in this embodiment are: u
Figure BDA0003885060390000123
The preferred measurement positions of the subsynchronous oscillation obtained in this embodiment are:
Figure BDA0003885060390000124

其次,依据直驱风电柔直送出系统次同步振荡的特征值分析和建模仿真,获取对次同步振荡模态影响较大的控制器参数。Secondly, based on the eigenvalue analysis and modeling simulation of the subsynchronous oscillation of the direct-drive wind power soft direct delivery system, the controller parameters that have a greater impact on the subsynchronous oscillation mode are obtained.

本实施方案中所获得的影响次同步振荡的主要控制参数有:Kp4,Ki4,Kp5,Ki5,Kp8,Ki8,Kp9,Ki9The main control parameters affecting subsynchronous oscillation obtained in this embodiment include: K p4 , K i4 , K p5 , K i5 , K p8 , K i8 , K p9 , and K i9 .

进而,将附加控制方案可以用(A,B)来表示,A为输入控制器的信号,B为输出控制器的信号。排除附加信号和量测信号不存在于同一变流器或换流站的组合方案,因而有:

Figure BDA0003885060390000125
Figure BDA0003885060390000131
等多种配对方案。Furthermore, the additional control scheme can be represented by (A, B), where A is the signal input to the controller, and B is the signal output from the controller. Combinations in which the additional signal and the measurement signal do not exist in the same converter or converter station are excluded, thus:
Figure BDA0003885060390000125
Figure BDA0003885060390000131
and other matching schemes.

步骤三:设计直驱风电柔直送出系统次同步振荡的自适应控制方法Step 3: Design an adaptive control method for the subsynchronous oscillation of the direct-drive wind power soft direct delivery system

假定直驱风电柔直送出系统附加控制器的输入信号和输出信号为y和u,则离散时间下的控制器的输入信号和输出信号分别为y(k)和u(k).Assuming that the input signal and output signal of the additional controller of the direct-drive wind power transmission system are y and u, then the input signal and output signal of the controller in discrete time are y(k) and u(k) respectively.

基于控制策略是输入信号与输出信号,实现直驱风电柔直送出系统的动态线性化,如式(10)所示:Based on the control strategy is the input signal and output signal, the dynamic linearization of the direct-drive wind power soft direct delivery system is realized, as shown in formula (10):

y(k+1)=y(k)+Φ(k)Δu(k) (10)y(k+1)=y(k)+Φ(k)Δu(k) (10)

Φ(k)表示系统的伪偏导数,Δu(k)=u(k)-u(k-1)。Φ(k) represents the pseudo partial derivative of the system, Δu(k)=u(k)-u(k-1).

进一步地,建立次同步振荡控制器输入输出数据的偏导数估计准则函数,如式(11)所示。Further, the partial derivative estimation criterion function of the input and output data of the subsynchronous oscillation controller is established, as shown in formula (11).

Figure BDA0003885060390000132
Figure BDA0003885060390000132

该准则函数以极小化动态线性化输出与真实输出作为目标,同时添加带惩罚项的偏导数变化量以降低干扰对控制策略的影响。μ为表示伪偏导数变化量的惩罚系数,

Figure BDA0003885060390000133
表示风电送出系统的伪偏导数的估计值。The objective of this criterion function is to minimize the dynamic linearization output and the real output, and at the same time add the partial derivative variation with a penalty item to reduce the influence of disturbance on the control strategy. μ is the penalty coefficient representing the amount of change in the pseudo partial derivative,
Figure BDA0003885060390000133
Represents the estimated value of the pseudo partial derivative of the wind power sending system.

对式(11)求偏导,获得直驱风电柔直送出系统的伪偏导数估计式如式(12)所示:Calculate the partial derivative of formula (11), and obtain the pseudo partial derivative estimation formula of the direct-drive wind power soft direct delivery system, as shown in formula (12):

Figure BDA0003885060390000134
Figure BDA0003885060390000134

其中,Γ(k)=η/(Δu(k)2+μ),

Figure BDA0003885060390000135
为输出的估计误差,F=1-γ。η为表示伪偏导数估计的步长因子,γ为估计误差e0(k)误差增益。where Γ(k)=η/(Δu(k) 2 +μ),
Figure BDA0003885060390000135
is the estimation error of the output, F=1-γ. η is the step size factor representing the estimation of the pseudo partial derivative, and γ is the error gain of the estimation error e 0 (k).

直驱风电柔直送出系统次同步振荡控制的最终目标为系统稳定,而对系统变流器的某个相关控制环节而言,即表现为PI控制器的输入误差趋近于零。所建立的控制器输出的准则函数如式(13)所示:The ultimate goal of the subsynchronous oscillation control of the direct-drive wind power output system is to stabilize the system, and for a certain control link of the system converter, it means that the input error of the PI controller approaches zero. The criterion function of the established controller output is shown in formula (13):

Figure BDA0003885060390000136
Figure BDA0003885060390000136

进一步推导出控制策略的控制律如式(14)所示:The control law of the control strategy is further deduced as shown in formula (14):

Figure BDA0003885060390000141
Figure BDA0003885060390000141

其中,ρ0,ρ1为调节控制速率的步长因子;λ表示系统输入信号的惩罚系数。Among them, ρ 0 , ρ 1 are the step size factors for adjusting the control rate; λ represents the penalty coefficient of the system input signal.

自适应控制方法的结构框图如图2所示。The block diagram of the adaptive control method is shown in Figure 2.

步骤四:建立控制参数优化模型Step 4: Establish control parameter optimization model

1)目标函数1) Objective function

将风机网侧变流器外环dq轴误差信号和柔直送端换流站外环dq轴误差信号的平方在时间上积累量之和最小作为性能指标,建立目标函数如式(15)所示:Taking the sum of the dq-axis error signal of the outer ring of the wind turbine grid-side converter and the square of the dq-axis error signal of the outer ring of the soft direct-feeding converter station as the performance index, the objective function is established as shown in formula (15) :

Figure BDA0003885060390000142
Figure BDA0003885060390000142

其中,J为优化目标函数,t为时间,ewd(t),ewq(t),evd(t),evq(t)分别为风机网侧变流器d轴外环直流电压控制的误差信号、风机网侧变流器q轴外环无功控制的误差信号、柔直风机侧送端换流站d轴外环交流电压控制的误差信号和柔直风机侧送端换流站q轴外环交流电压控制的误差信号。Among them, J is the optimization objective function, t is the time, e wd (t), e wq (t), e vd (t), e vq (t) are respectively the d-axis outer ring DC voltage control The error signal of the wind turbine grid-side converter q-axis outer ring reactive power control error signal, the error signal of the d-axis outer ring AC voltage control of the soft straight fan side send-end converter station and the soft straight fan side send-end converter station The error signal of the q-axis outer ring AC voltage control.

2)优化参数2) Optimize parameters

待优化的控制器参数有:伪偏导数变化量的惩罚系数μ,调节控制速率的步长因子ρ0和ρ1,统输入信号的惩罚系数λ,伪偏导数估计的步长因子η,估计误差增益γ。The controller parameters to be optimized include: penalty coefficient μ of pseudo partial derivative variation, step factors ρ 0 and ρ 1 for adjusting control rate, penalty coefficient λ of system input signal, step factor η of pseudo partial derivative estimation, estimated Error gain γ.

3)约束条件3) Constraints

根据次同步振荡的自适应控制方法的设计原则,控制器参数的可行范围有以下约束,如式(16)所示:According to the design principle of the adaptive control method of subsynchronous oscillation, the feasible range of controller parameters has the following constraints, as shown in equation (16):

Figure BDA0003885060390000151
Figure BDA0003885060390000151

其中,

Figure BDA0003885060390000152
为伪偏导数
Figure BDA0003885060390000153
的上界。in,
Figure BDA0003885060390000152
is the pseudo partial derivative
Figure BDA0003885060390000153
upper bound.

步骤五:采用粒子群算法优化模型参数Step 5: Use particle swarm optimization algorithm to optimize model parameters

首先,初始化粒子群并计算各粒子的适应度;其次,更新粒子的速度和位置并重新计算适应度,找到全局最优的粒子;最后,判断粒子群算法是否收敛,若未收敛,返回上一步,继续更新粒子速度和位置,若已收敛,说明控制器参数优化完成,成功得到该附加位置下控制器的最优参数。粒子群控制参数优化方法流程如图3所示。First, initialize the particle swarm and calculate the fitness of each particle; second, update the speed and position of the particle and recalculate the fitness to find the globally optimal particle; finally, judge whether the particle swarm algorithm converges, if not, return to the previous step , continue to update the particle velocity and position, if it has converged, it means that the optimization of the controller parameters is completed, and the optimal parameters of the controller at this additional position are successfully obtained. The flow chart of particle swarm control parameter optimization method is shown in Fig.3.

步骤六:评价各附加位置方案的控制器的次同步振荡控制效果Step 6: Evaluate the subsynchronous oscillation control effect of the controller for each additional position scheme

各附加位置方案的次同步振荡控制效果评价方法主要有以下步骤:The evaluation method of subsynchronous oscillation control effect of each additional location scheme mainly has the following steps:

1)基于S1所述的直驱风电柔直送出系统的分析方法,确定次同步振荡自适应控制的附加位置方案;1) Based on the analysis method of the direct drive wind power soft direct delivery system described in S1, determine the additional position scheme of the subsynchronous oscillation adaptive control;

2)基于S3所述的参数优化方法,确定各附加位置下的最优控制参数;2) Based on the parameter optimization method described in S3, determine the optimal control parameters under each additional position;

3)建立n个直驱风电柔直送出系统次同步振荡复杂工况场景;3) Establish n direct-drive wind power soft direct delivery system subsynchronous oscillation complex working conditions scenarios;

4)对于各附加位置的次同步振荡控制器,分别开展复杂工况场景下的次同步振荡抑制验证,获得各附加位置、各工况场景的目标函数Jl,s,下标l和s分别表示附加位置和工况场景编号;4) For the subsynchronous oscillation controllers at each additional position, the verification of subsynchronous oscillation suppression under complex working conditions is carried out respectively, and the objective function J l,s of each additional position and each working condition scene is obtained, and the subscripts l and s are respectively Indicates the additional location and working condition scene number;

5)求取各附加位置下的次同步振荡控制综合评价指标,表示为

Figure BDA0003885060390000161
5) Obtain the comprehensive evaluation index of subsynchronous oscillation control at each additional position, expressed as
Figure BDA0003885060390000161

6)选定次同步振荡控制综合评价指标最小的附加位置作为所选位置,实现次同步振荡抑制。6) The additional position with the smallest comprehensive evaluation index of subsynchronous oscillation control is selected as the selected position to realize subsynchronous oscillation suppression.

经过控制器在复杂工况下的次同步振荡控制效果评价,选定自适应控制附加位置如图4所示。附加位置位于柔直风机侧送端换流站q轴控制回路。After evaluating the subsynchronous oscillation control effect of the controller under complex working conditions, the additional position of the adaptive control is selected as shown in Figure 4. The additional position is located in the q-axis control loop of the converter station at the sending end of the soft straight fan side.

需要进一步进行说明的是,在具体实施过程中,建立100MW直驱风电场经柔性直流系统并网仿真,并应用本发明所提自适应次同步振荡控制器,其振荡抑制效果如图5所示。该场景在4~6s有v=7m/s,P=0.1933p.u.,6~8s有v=8m/s,P=0.2885p.u.,8~10s有v=10m/s,P=0.5635p.u.,10~12s有v=11m/s,P=0.75p.u.。可以看出,若无次同步振荡控制,系统有功出力波形在t=8s切换高风速、高有功出力时开始振荡,10~12s工况时振荡更加剧烈。本发明自适应控制方法在各个工况下系统均不产生次同步振荡现象,说明本发明自适应控制方法在抑制次同步振荡时的有效性。本发明次同步振荡控制过程中伪偏导数变化值如图6所示。What needs to be further explained is that in the specific implementation process, a 100MW direct-drive wind farm is established and simulated through the grid connection of the flexible DC system, and the self-adaptive subsynchronous oscillation controller proposed by the present invention is applied, and the oscillation suppression effect is shown in Figure 5 . In this scene, v=7m/s, P=0.1933p.u. in 4~6s, v=8m/s, P=0.2885p.u. in 6~8s, v=10m/s, P=0.5635p.u., 10~10s 12s has v=11m/s, P=0.75p.u. It can be seen that if there is no subsynchronous oscillation control, the active output waveform of the system will start to oscillate when switching between high wind speed and high active output at t=8s, and the oscillation will be more severe at 10-12s. The self-adaptive control method of the present invention does not generate subsynchronous oscillation phenomenon in the system under each working condition, which illustrates the effectiveness of the self-adaptive control method of the present invention in suppressing subsynchronous oscillation. The change value of the pseudo partial derivative in the subsynchronous oscillation control process of the present invention is shown in FIG. 6 .

基于同一种发明构思,本发明还提供一种计算机设备,该计算机设备包括包括:一个或多个处理器,以及存储器,用于存储一个或多个计算机程序;程序包括程序指令,处理器用于执行存储器存储的程序指令。处理器可能是中央处理单元(Central ProcessingUnit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor、DSP)、专用集成电路(Application SpecificIntegrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable GateArray,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等,其是终端的计算核心以及控制核心,其用于实现一条或一条以上指令,具体用于加载并执行计算机存储介质内一条或一条以上指令从而实现上述方法。Based on the same inventive concept, the present invention also provides a computer device, which includes: one or more processors, and a memory for storing one or more computer programs; the program includes program instructions, and the processor is used to execute Program instructions stored in memory. The processor may be a central processing unit (Central Processing Unit, CPU), or other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application specific integrated circuits (Application Specific Integrated Circuit, ASIC), field programmable gate arrays (Field-Programmable GateArray, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc., which are the computing core and control core of the terminal, which are used to implement one or more instructions, specifically for Load and execute one or more instructions in the computer storage medium to realize the above method.

需要进一步进行说明的是,基于同一种发明构思,本发明还提供一种计算机存储介质,该存储介质上存储有计算机程序,所述计算机程序被处理器运行时执行上述方法。该存储介质可以采用一个或多个计算机可读的介质的任意组合。计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质。计算机可读存储介质例如可以是但不限于电、磁、光、电、磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本发明中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。It should be further explained that, based on the same inventive concept, the present invention also provides a computer storage medium, on which a computer program is stored, and when the computer program is run by a processor, the above method is executed. The storage medium may be any combination of one or more computer-readable media. The computer readable medium may be a computer readable signal medium or a computer readable storage medium. A computer-readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electrical, magnetic, infrared, or semiconductor system, device, or device, or any combination thereof. More specific examples (non-exhaustive list) of computer readable storage media include: electrical connections with one or more leads, portable computer disks, hard disks, random access memory (RAM), read only memory (ROM), Erasable programmable read-only memory (EPROM or flash memory), optical fiber, portable compact disk read-only memory (CD-ROM), optical storage device, magnetic storage device, or any suitable combination of the above. In the present invention, a computer-readable storage medium may be any tangible medium that contains or stores a program that can be used by or in conjunction with an instruction execution system, apparatus, or device.

在本说明书的描述中,参考术语“一个实施例”、“示例”、“具体示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。In the description of this specification, descriptions referring to the terms "one embodiment", "example", "specific example" and the like mean that specific features, structures, materials or characteristics described in conjunction with the embodiment or example are included in at least one of the present disclosure. In an embodiment or example. In this specification, schematic representations of the above terms do not necessarily refer to the same embodiment or example. Furthermore, the specific features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples.

以上显示和描述了本公开的基本原理、主要特征和本公开的优点。本行业的技术人员应该了解,本公开不受上述实施例的限制,上述实施例和说明书中描述的只是说明本公开的原理,在不脱离本公开精神和范围的前提下,本公开还会有各种变化和改进,这些变化和改进都落入要求保护的本公开范围内容。The basic principles, main features and advantages of the present disclosure have been shown and described above. Those skilled in the industry should understand that the present disclosure is not limited by the above-mentioned embodiments. The above-mentioned embodiments and descriptions only illustrate the principle of the present disclosure. Variations and improvements all fall within the scope of the claimed disclosure.

Claims (10)

1.一种自适应的直驱风电柔直送出系统次同步振荡控制方法,其特征在于,方法包括以下步骤:1. An adaptive direct-drive wind power soft direct delivery system subsynchronous oscillation control method is characterized in that the method comprises the following steps: 建立直驱风电柔直送出系统模型,用于分析与次同步振荡模态强相关的控制环节,提出次同步振荡自适应控制的附加位置方案;Establish a direct-drive wind power soft direct delivery system model to analyze the control link strongly related to the subsynchronous oscillation mode, and propose an additional location scheme for the subsynchronous oscillation adaptive control; 设计自适应控制方法,用于抑制直驱风电柔直送出系统次同步振荡;Design an adaptive control method to suppress the subsynchronous oscillation of the direct drive wind power soft direct delivery system; 采用不同附加位置方案分别建立不同自适应控制方法参数的优化模型,通过不同自适应控制方法参数的优化模型确定各附加位置方案下控制方法的最优控制参数;Different additional position schemes are used to establish optimization models of parameters of different adaptive control methods, and the optimal control parameters of the control methods under each additional position scheme are determined through the optimization models of parameters of different adaptive control methods; 利用得出的最优控制参数,对比各附加位置方案的次同步振荡控制效果,建立评价指标,确定控制器的最优附加位置,实现次同步振荡抑制。Using the obtained optimal control parameters, the subsynchronous oscillation control effect of each additional position scheme is compared, the evaluation index is established, the optimal additional position of the controller is determined, and the subsynchronous oscillation suppression is realized. 2.根据权利要求1所述的一种自适应的直驱风电柔直送出系统次同步振荡控制方法,其特征在于,所述建立直驱风电柔直送出系统模型的过程包括以下步骤:2. The subsynchronous oscillation control method of an adaptive direct-drive wind power flexible direct delivery system according to claim 1, wherein the process of establishing a direct-drive wind power flexible direct delivery system model comprises the following steps: 直驱风电柔直送出系统包括:永磁直驱风电场、交流线路、柔性直流传输系统和无穷大电源;其中,永磁直驱风电场由永磁直驱风机、风机机侧变流器、背靠背变流器的直流环节和风机网侧变流器组成;柔性直流传输系统由柔直风机侧换流站、直流传输电缆和柔直网侧换流站组成;Direct drive wind power flexible direct delivery system includes: permanent magnet direct drive wind farm, AC line, flexible DC transmission system and infinite power supply; among them, permanent magnet direct drive wind farm consists of permanent magnet direct drive fan, fan side converter, back-to-back The DC link of the converter is composed of the wind turbine grid-side converter; the flexible DC transmission system is composed of a flexible DC fan-side converter station, a DC transmission cable and a flexible DC grid-side converter station; 所述永磁直驱风机的电压方程、磁链方程、转矩方程和运动方程公式如下所示:The voltage equation, flux linkage equation, torque equation and motion equation formula of the permanent magnet direct drive fan are as follows:
Figure FDA0003885060380000011
Figure FDA0003885060380000011
Figure FDA0003885060380000021
Figure FDA0003885060380000021
Te=ψfiqs (3)T e = ψ f i qs (3)
Figure FDA0003885060380000022
Figure FDA0003885060380000022
其中,ψds和ψqs分别表示定子dq轴磁链,uds,uqs,ids,iqs,分别为直驱风机定子电压与定子电流的dq轴分量,Rs,Ls分别为直驱风机的定子电阻和定子电感,J表示直驱风机轴系的惯量,D为直驱风机转子的阻尼,ωsr分别为同步磁场角速度与双馈风机转子旋转角速度标幺值,Tm,Te分别为直驱风机的机械转矩和电磁转矩;Among them, ψ ds and ψ qs represent the stator dq-axis flux linkage respectively, u ds , u qs , i ds , i qs are the dq-axis components of the stator voltage and stator current of the direct drive fan, respectively, R s , L s are the direct drive fan The stator resistance and stator inductance of the drive fan, J represents the inertia of the direct drive fan shaft, D is the damping of the direct drive fan rotor, ω s , ω r are the angular velocity of the synchronous magnetic field and the rotational angular velocity of the double-fed fan rotor per unit, T m , T e are the mechanical torque and electromagnetic torque of the direct drive fan, respectively; 风机机侧变流器采用零d轴的双闭环矢量控制,外环q轴以PI控制直驱风机实际有功出力P,内环dq轴以PI分别控制ids,iqs,如下式:The fan-side converter adopts double closed-loop vector control with zero d-axis, the outer ring q-axis controls the actual active output P of the direct drive fan with PI, and the inner ring dq-axis controls i ds and i qs respectively with PI, as follows:
Figure FDA0003885060380000023
Figure FDA0003885060380000023
其中,
Figure FDA0003885060380000024
分别表示变量ids,iqs的参考值,上标*表示对应变量的参考值;Kpa和Kia分别表示PIa控制器的比例系数和积分系数,下标a=1,2,3…表示第a个PI控制器的比例系数和积分系数;ud1,uq1分别表示风机机侧变流器交流侧的dq轴电压;
in,
Figure FDA0003885060380000024
respectively represent the reference values of the variables i ds and i qs , the superscript * represents the reference value of the corresponding variable; K pa and K ia represent the proportional coefficient and integral coefficient of the PI a controller respectively, and the subscript a=1,2,3... Indicates the proportional coefficient and integral coefficient of the a-th PI controller; u d1 , u q1 respectively indicate the dq axis voltage of the AC side of the converter on the fan side;
风机网侧变流器采用定直流电压和定无功功率的控制策略,外环dq轴以PI控制直流环节电压与网侧无功功率Qg、内环dq轴以PI分别控制网侧电流的dq轴分量idg,iqg,如下式:The grid-side converter of the wind turbine adopts the control strategy of constant DC voltage and constant reactive power. The dq axis of the outer ring controls the DC link voltage and the reactive power Q g of the grid side by PI, and the dq axis of the inner ring controls the grid-side current by PI respectively. The dq axis components i dg , i qg are as follows:
Figure FDA0003885060380000031
Figure FDA0003885060380000031
其中,udc为背靠背直流环节电压,ud2,uq2分别表示风机网侧变流器交流侧的dq轴电压;PI4~PI7用于风机网侧变流器控制;Among them, u dc is the back-to-back DC link voltage, u d2 and u q2 respectively represent the dq axis voltage of the AC side of the fan grid side converter; PI 4 ~ PI 7 are used for the control of the fan grid side converter; 柔直风机侧送端换流站次采用定交流电压控制策略,外环dq轴以PI控制换流站交流侧dq轴电压uwfd0,uwfq0,内环dq轴以PI分别控制交流侧dq轴电流iwfd,iwfq,如下式:The converter station at the sending end of the soft direct wind turbine adopts a constant AC voltage control strategy. The dq axes of the outer ring control the dq axes voltage u wfd0 , u wfq0 of the converter station with PI, and the dq axes of the inner ring control the dq axes of the AC side respectively with PI The current i wfd , i wfq is as follows:
Figure FDA0003885060380000032
Figure FDA0003885060380000032
其中,uwfd,uwfq分别表示换流站交流量测点的dq轴电压;PI8~PI11用于柔直风机侧送端换流站控制。Among them, u wfd and u wfq represent the dq axis voltages of the AC measurement points of the converter station respectively; PI 8 ~ PI 11 are used for the control of the converter station at the sending end of the flexible direct wind turbine.
3.根据权利要求1所述的一种自适应的直驱风电柔直送出系统次同步振荡控制方法,其特征在于,所述次同步振荡自适应控制的附加位置方案由影响次同步振荡的关键变量和主要控制参数确定:3. A method for subsynchronous oscillation control of an adaptive direct-drive wind power soft direct delivery system according to claim 1, characterized in that the additional position scheme of the adaptive control of subsynchronous oscillation consists of a key that affects subsynchronous oscillation Variables and main control parameters determined: 依据直驱风机柔直送出系统模型建立状态空间方程,分析影响直驱风电柔直送出系统次同步振荡的关键变量,以式(8)的能控性指标mci对比次同步振荡控制附加位置的优劣:The state space equation is established based on the model of the direct-drive fan flexible direct delivery system, the key variables affecting the subsynchronous oscillation of the direct-drive wind power flexible direct delivery system are analyzed, and the controllability index m ci of formula (8) is used to compare the control position of the additional position of the subsynchronous oscillation Pros and cons:
Figure FDA0003885060380000041
Figure FDA0003885060380000041
其中,i和k分别表示状态变量的编号和特征值的编号,bi表示对应于控制矩阵中对应于控制变量ui的列向量,βk表示对应于第k特征值的左特征向量;Among them, i and k represent the number of the state variable and the number of the eigenvalue respectively, b i represents the column vector corresponding to the control variable u i in the control matrix, and β k represents the left eigenvector corresponding to the kth eigenvalue; 以式(9)的能观性指标moi对比次同步振荡控制量测位置的优劣:Using the observability index m oi of formula (9) to compare the advantages and disadvantages of the subsynchronous oscillation control measurement position:
Figure FDA0003885060380000042
Figure FDA0003885060380000042
其中,j表示控制变量的编号,cj表示对应于输出矩阵中对应于输出变量yj的行向量,αk表示对应于第k特征值的右特征向量;Among them, j represents the serial number of the control variable, c j represents the row vector corresponding to the output variable y j in the output matrix, and α k represents the right eigenvector corresponding to the kth eigenvalue; 依据直驱风电柔直送出系统次同步振荡的特征值分析和建模仿真,获取对次同步振荡模态影响大的控制参数。According to the eigenvalue analysis and modeling simulation of the subsynchronous oscillation of the direct-drive wind power soft direct delivery system, the control parameters that have a great influence on the subsynchronous oscillation mode are obtained.
4.根据权利要求1所述的一种自适应的直驱风电柔直送出系统次同步振荡控制方法,其特征在于,所述自适应控制方法如下:4. The subsynchronous oscillation control method of an adaptive direct-drive wind power soft direct delivery system according to claim 1, wherein the adaptive control method is as follows: 设定直驱风电柔直送出系统附加控制器的输入信号和输出信号为y和u,则离散时间下的控制器的输入信号和输出信号分别为y(k)和u(k);Set the input signal and output signal of the additional controller of the direct drive wind power soft direct delivery system as y and u, then the input signal and output signal of the controller under discrete time are y(k) and u(k) respectively; 基于自适应控制方法的输入信号与输出信号,实现直驱风电柔直送出系统的动态线性化,如式(10)所示:Based on the input signal and output signal of the adaptive control method, the dynamic linearization of the direct-drive wind power soft direct delivery system is realized, as shown in formula (10): y(k+1)=y(k)+Φ(k)Δu(k) (10)y(k+1)=y(k)+Φ(k)Δu(k) (10) Φ(k)表示系统的伪偏导数,Δu(k)=u(k)-u(k-1);Φ(k) represents the pseudo partial derivative of the system, Δu(k)=u(k)-u(k-1); 建立次同步振荡控制器输入输出数据的偏导数估计准则函数,如式(11)所示,Establish the partial derivative estimation criterion function of the input and output data of the subsynchronous oscillation controller, as shown in formula (11),
Figure FDA0003885060380000051
Figure FDA0003885060380000051
μ为表示伪偏导数变化量的惩罚系数,
Figure FDA0003885060380000052
表示风电送出系统的伪偏导数的估计值;
μ is the penalty coefficient representing the variation of the pseudo partial derivative,
Figure FDA0003885060380000052
Represents the estimated value of the pseudo partial derivative of the wind power delivery system;
对式(11)求偏导,获得直驱风电柔直送出系统的伪偏导数估计式如式(12)所示:Calculate the partial derivative of formula (11), and obtain the pseudo partial derivative estimation formula of the direct-drive wind power soft direct delivery system, as shown in formula (12):
Figure FDA0003885060380000053
Figure FDA0003885060380000053
其中,Γ(k)=η/(Δu(k)2+μ),
Figure FDA0003885060380000054
为输出的估计误差,F=1-γ,η为表示伪偏导数估计算法的步长因子,γ为估计误差e0(k)误差增益;
where Γ(k)=η/(Δu(k) 2 +μ),
Figure FDA0003885060380000054
For the estimated error of the output, F=1-γ, η is the step factor representing the pseudo partial derivative estimation algorithm, and γ is the estimated error e 0 (k) error gain;
所建立的控制器输出的准则函数如式(13)所示:The criterion function of the established controller output is shown in formula (13):
Figure FDA0003885060380000055
Figure FDA0003885060380000055
自适应控制方法的控制律如式(14)所示:The control law of the adaptive control method is shown in formula (14):
Figure FDA0003885060380000056
Figure FDA0003885060380000056
其中,ρ0,ρ1为调节控制速率的步长因子;λ表示系统输入信号的惩罚系数。Among them, ρ 0 , ρ 1 are the step size factors for adjusting the control rate; λ represents the penalty coefficient of the system input signal.
5.根据权利要求4所述的一种自适应的直驱风电柔直送出系统次同步振荡控制方法,其特征在于,所述偏导数估计准则函数以极小化动态线性化输出与真实输出作为目标,同时添加带惩罚项的偏导数变化量。5. The subsynchronous oscillation control method of an adaptive direct-drive wind power output system according to claim 4, wherein the partial derivative estimation criterion function uses the minimized dynamic linearization output and the real output as objective, while adding the amount of partial derivative change with a penalty term. 6.根据权利要求1所述的一种自适应的直驱风电柔直送出系统次同步振荡控制方法,其特征在于,所述自适应控制方法参数的优化模型包括:6. The subsynchronous oscillation control method of an adaptive direct-drive wind power output system according to claim 1, wherein the optimization model of parameters of the adaptive control method comprises: 目标函数objective function 将风机网侧变流器外环dq轴误差信号和柔直送端换流站外环dq轴误差信号的平方在时间上积累量之和作为性能指标,建立目标函数如式(15)所示:The sum of the square of the dq-axis error signal of the outer ring of the wind turbine grid-side converter and the dq-axis error signal of the outer ring of the soft direct-feeding end converter station in time is used as the performance index, and the objective function is established as shown in formula (15):
Figure FDA0003885060380000061
Figure FDA0003885060380000061
Figure FDA0003885060380000062
Figure FDA0003885060380000062
其中,J为优化目标函数,t为时间,ewd(t),ewq(t),evd(t),evq(t)分别为风机网侧变流器d轴外环直流电压控制的误差信号、风机网侧变流器q轴外环无功控制的误差信号、柔直风机侧送端换流站d轴外环交流电压控制的误差信号和柔直风机侧送端换流站q轴外环交流电压控制的误差信号;Among them, J is the optimization objective function, t is the time, e wd (t), e wq (t), e vd (t), e vq (t) are respectively the d-axis outer ring DC voltage control The error signal of the wind turbine grid-side converter q-axis outer ring reactive power control error signal, the error signal of the d-axis outer ring AC voltage control of the soft straight fan side send-end converter station and the soft straight fan side send-end converter station The error signal of the q-axis outer ring AC voltage control; 优化参数optimization parameters 待优化的控制器参数有:伪偏导数变化量的惩罚系数μ,调节控制速率的步长因子ρ0和ρ1,统输入信号的惩罚系数λ,伪偏导数估计的步长因子η,估计误差增益γ;The controller parameters to be optimized include: penalty coefficient μ of pseudo partial derivative variation, step factors ρ 0 and ρ 1 for adjusting control rate, penalty coefficient λ of system input signal, step factor η of pseudo partial derivative estimation, estimated error gain γ; 约束条件Restrictions 根据次同步振荡的自适应控制方法的设计原则,控制器参数的可行范围有以下约束,如式(16)所示:According to the design principle of the adaptive control method of subsynchronous oscillation, the feasible range of controller parameters has the following constraints, as shown in equation (16):
Figure FDA0003885060380000063
Figure FDA0003885060380000063
其中,
Figure FDA0003885060380000071
为伪偏导数估计值
Figure FDA0003885060380000072
的上界。
in,
Figure FDA0003885060380000071
Estimated values for the pseudo partial derivatives
Figure FDA0003885060380000072
upper bound.
7.根据权利要求6所述的一种自适应的直驱风电柔直送出系统次同步振荡控制方法,其特征在于,所述自适应控制方法参数的优化模型采用粒子群算法优化模型参数,包括:7. The subsynchronous oscillation control method of a kind of self-adaptive direct drive wind power soft direct delivery system according to claim 6, characterized in that, the optimization model of the parameters of the self-adaptive control method adopts the particle swarm optimization algorithm to optimize the model parameters, including : 首先,初始化粒子群并计算各粒子的适应度;其次,更新粒子的速度和位置并重新计算适应度,找到全局最优的粒子;最后,判断粒子群算法是否收敛,若未收敛,返回上一步,继续更新粒子速度和位置,若已收敛,说明控制器参数优化完成,成功得到附加位置下控制器的最优参数。First, initialize the particle swarm and calculate the fitness of each particle; second, update the speed and position of the particle and recalculate the fitness to find the globally optimal particle; finally, judge whether the particle swarm algorithm converges, if not, return to the previous step , continue to update the particle velocity and position, if it has converged, it means that the optimization of the controller parameters is completed, and the optimal parameters of the controller under the additional position are successfully obtained. 8.根据权利要求1所述的一种自适应的直驱风电柔直送出系统次同步振荡控制方法,其特征在于,所述实现次同步振荡抑制的过程如下:8. A method for controlling subsynchronous oscillation of an adaptive direct-drive wind power soft direct delivery system according to claim 1, wherein the process for realizing subsynchronous oscillation suppression is as follows: 确定次同步振荡自适应控制的附加位置方案;Determine additional location schemes for adaptive control of subsynchronous oscillations; 确定各附加位置下的最优控制参数;Determine the optimal control parameters for each additional position; 建立n个直驱风电柔直送出系统次同步振荡复杂工况场景;Establish n direct-drive wind power soft direct delivery system subsynchronous oscillation complex working conditions scenarios; 对于各附加位置的次同步振荡控制器,分别开展复杂工况场景下的次同步振荡抑制验证,获得各附加位置、各工况场景的目标函数Jl,s,其中,下标l和s分别表示附加位置和工况场景编号;For the subsynchronous oscillation controllers at each additional position, the verification of subsynchronous oscillation suppression under complex working conditions is carried out respectively, and the objective function J l,s of each additional position and each working condition scene is obtained, where the subscripts l and s are respectively Indicates the additional location and working condition scene number; 求取各附加位置下的次同步振荡控制综合评价指标,表示为
Figure FDA0003885060380000073
Obtain the comprehensive evaluation index of subsynchronous oscillation control at each additional position, expressed as
Figure FDA0003885060380000073
选定次同步振荡控制综合评价指标最小的附加位置作为所选位置,实现次同步振荡抑制。The additional position with the minimum comprehensive evaluation index of subsynchronous oscillation control is selected as the selected position to realize subsynchronous oscillation suppression.
9.一种设备,其特征在于,包括:9. A device, characterized in that it comprises: 一个或多个处理器;one or more processors; 存储器,用于存储一个或多个程序;memory for storing one or more programs; 当一个或多个所述程序被一个或多个所述处理器执行,使得一个或多个所述处理器实现如权利要求1-8中任一所述的一种自适应的直驱风电柔直送出系统次同步振荡控制方法。When one or more of the programs are executed by one or more of the processors, the one or more of the processors realizes an adaptive direct-drive wind power flexible device according to any one of claims 1-8. Straight out of the system subsynchronous oscillation control method. 10.一种包含计算机可执行指令的存储介质,其特征在于,所述计算机可执行指令在由计算机处理器执行时用于执行如权利要求1-8中任一所述的一种自适应的直驱风电柔直送出系统次同步振荡控制方法。10. A storage medium comprising computer-executable instructions, wherein the computer-executable instructions are used to perform an adaptive method according to any one of claims 1-8 when executed by a computer processor. Subsynchronous oscillation control method for direct drive wind power soft direct output system.
CN202211244122.6A 2022-10-11 2022-10-11 An adaptive subsynchronous oscillation control method for direct-drive wind power flexible transmission system Active CN115514004B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211244122.6A CN115514004B (en) 2022-10-11 2022-10-11 An adaptive subsynchronous oscillation control method for direct-drive wind power flexible transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211244122.6A CN115514004B (en) 2022-10-11 2022-10-11 An adaptive subsynchronous oscillation control method for direct-drive wind power flexible transmission system

Publications (2)

Publication Number Publication Date
CN115514004A true CN115514004A (en) 2022-12-23
CN115514004B CN115514004B (en) 2024-12-06

Family

ID=84509993

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211244122.6A Active CN115514004B (en) 2022-10-11 2022-10-11 An adaptive subsynchronous oscillation control method for direct-drive wind power flexible transmission system

Country Status (1)

Country Link
CN (1) CN115514004B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112448399A (en) * 2019-08-29 2021-03-05 南京理工大学 Doubly-fed wind power plant subsynchronous oscillation suppression method based on analog inductance
US20220021321A1 (en) * 2020-07-15 2022-01-20 North China Electric Power University Active damping control method and system for sub-synchronous oscillation of DFIG, and storage medium
US20220021211A1 (en) * 2020-07-15 2022-01-20 North China Electric Power University Method, system and storage medium for suppressing sub/super-synchronous oscillation for direct-drive wind turbine based on energy compensation
CN114759577A (en) * 2022-02-10 2022-07-15 华北电力大学 Subsynchronous oscillation suppression method and subsynchronous oscillation suppression system for direct-drive wind power flexible and direct delivery system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112448399A (en) * 2019-08-29 2021-03-05 南京理工大学 Doubly-fed wind power plant subsynchronous oscillation suppression method based on analog inductance
US20220021321A1 (en) * 2020-07-15 2022-01-20 North China Electric Power University Active damping control method and system for sub-synchronous oscillation of DFIG, and storage medium
US20220021211A1 (en) * 2020-07-15 2022-01-20 North China Electric Power University Method, system and storage medium for suppressing sub/super-synchronous oscillation for direct-drive wind turbine based on energy compensation
CN114759577A (en) * 2022-02-10 2022-07-15 华北电力大学 Subsynchronous oscillation suppression method and subsynchronous oscillation suppression system for direct-drive wind power flexible and direct delivery system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
陆静 等: "基于无功出力调整的双馈风电场次同步振荡抑制策略研究", 《高压电器》, 16 October 2018 (2018-10-16), pages 187 - 193 *

Also Published As

Publication number Publication date
CN115514004B (en) 2024-12-06

Similar Documents

Publication Publication Date Title
CN109193752B (en) Method for optimizing low-frequency oscillation control parameters of virtual inertia-containing doubly-fed wind turbine grid-connected system
Mohammadpour et al. Analysis of sub‐synchronous resonance in doubly‐fed induction generator‐based wind farms interfaced with gate–controlled series capacitor
CN104079228B (en) The implicit trapezoidal rule electromagnetic transient modeling method with damping of double fed asynchronous machine
CN112731805B (en) A sensorless robust control method for wind turbine maximum power tracking based on wind speed estimation
WO2018145498A1 (en) Reinforcement learning algorithm-based self-correction control method for double-fed induction wind generator
CN106786673B (en) The suppressing method and device of double-fed blower compensated transmission system subsynchronous resonance
CN111342729A (en) Adaptive reverse thrust control method for permanent magnet synchronous motor based on gray wolf optimization
CN113131830B (en) Linear induction motor efficiency optimization control method, system, medium and processing terminal
CN107231107A (en) A kind of design method of synchronous generator exciting output feedback controller
CN115514004A (en) An Adaptive Control Method for Subsynchronous Oscillation of Direct-Drive Wind Power Gentle Delivery System
CN114759575A (en) Virtual synchronous double-fed fan subsynchronous oscillation suppression method and system
CN117856358A (en) Wind turbine generator frequency adjustment and inertia control method and system based on phase-locked loop
CN116914775A (en) Frequency response analysis method based on wind turbine generator equivalent inertia characterization model
CN108923707A (en) Control method, system, device and the readable storage medium storing program for executing of double feedback electric engine system
CN112019111B (en) State constraint-based fuzzy self-adaptive control method for random system of permanent magnet synchronous motor
CN115306634A (en) A two-degree-of-freedom wind turbine active power control method
Shen et al. Stability analysis of sub‐/super‐synchronous oscillation based on closed‐loop transfer function poles of D‐PMSG wind power systems
CN119032483A (en) Distributed power integrated management device and power system
CN112214899A (en) 2S-DIRK electromagnetic transient modeling method of double-shaft excitation synchronous generator
CN118801488B (en) Distributed model predictive control method, device, equipment and medium for wind energy storage converter
CN106777596B (en) Microgrid semi-physical simulation system and wind driven generator closed-loop control method
CN114826048B (en) Direct power control method of brushless doubly-fed generator
CN114759593B (en) Virtual synchronous doubly-fed wind turbine parameter optimization method and system based on energy dissipation rate
Xie et al. Improved active power dynamic response of voltage‐controlled doubly fed induction generator
CN116111575B (en) A physical reduction method and terminal for calculating synchronous oscillation frequency of direct-drive wind turbine

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant