CN115511224B - Intelligent monitoring method and device for growing vigor of crops integrated with heaven and earth and electronic equipment - Google Patents

Intelligent monitoring method and device for growing vigor of crops integrated with heaven and earth and electronic equipment Download PDF

Info

Publication number
CN115511224B
CN115511224B CN202211414732.6A CN202211414732A CN115511224B CN 115511224 B CN115511224 B CN 115511224B CN 202211414732 A CN202211414732 A CN 202211414732A CN 115511224 B CN115511224 B CN 115511224B
Authority
CN
China
Prior art keywords
data
crop growth
crop
satellite
index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211414732.6A
Other languages
Chinese (zh)
Other versions
CN115511224A (en
Inventor
孙营伟
冷佩
李召良
段四波
高懋芳
刘萌
尚国琲
张霞
郭晓楠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Agricultural Resources and Regional Planning of CAAS
Hebei GEO University
Original Assignee
Institute of Agricultural Resources and Regional Planning of CAAS
Hebei GEO University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Agricultural Resources and Regional Planning of CAAS, Hebei GEO University filed Critical Institute of Agricultural Resources and Regional Planning of CAAS
Priority to CN202211414732.6A priority Critical patent/CN115511224B/en
Publication of CN115511224A publication Critical patent/CN115511224A/en
Application granted granted Critical
Publication of CN115511224B publication Critical patent/CN115511224B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0639Performance analysis of employees; Performance analysis of enterprise or organisation operations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/02Agriculture; Fishing; Forestry; Mining

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Human Resources & Organizations (AREA)
  • General Physics & Mathematics (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • General Business, Economics & Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • General Health & Medical Sciences (AREA)
  • Marketing (AREA)
  • Tourism & Hospitality (AREA)
  • Development Economics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Evolutionary Computation (AREA)
  • Operations Research (AREA)
  • Mathematical Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Educational Administration (AREA)
  • Computing Systems (AREA)
  • Molecular Biology (AREA)
  • Data Mining & Analysis (AREA)
  • Game Theory and Decision Science (AREA)
  • Computational Linguistics (AREA)
  • Biophysics (AREA)
  • Software Systems (AREA)
  • Quality & Reliability (AREA)
  • Biomedical Technology (AREA)
  • Artificial Intelligence (AREA)
  • Agronomy & Crop Science (AREA)
  • Animal Husbandry (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Mining & Mineral Resources (AREA)
  • Primary Health Care (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明属于遥感技术领域,涉及天地一体化的作物长势智能监测方法、装置及电子设备,该方法包括:获取卫星时序遥感数据,并构建第一作物长势评估指数;获取连续的近地面观测数据,构建第二作物长势评估指数;基于第二作物长势评估指数,对第一作物长势评估指数缺失值补充,构建模型标签;对第一作物长势评估指数连续插值,得到重构的作物长势数据;利用标签训练神经网络,获取指数映射模型;对重构的作物长势数据校正,得到目标作物长势评估数据。本发明实现了综合使用航天遥感数据与近地面数据对作物长势进行监测的目的,解决现有方法中采用航天遥感数据的精度和时间密度不足以及近地面观测数据存在的数据范围小、精度低、不连续的问题。

Figure 202211414732

The invention belongs to the field of remote sensing technology, and relates to an intelligent crop growth monitoring method, device and electronic equipment integrated with space and ground. The method includes: acquiring satellite time-series remote sensing data, and constructing a first crop growth evaluation index; acquiring continuous near-ground observation data, Construct the second crop growth evaluation index; based on the second crop growth evaluation index, supplement the missing value of the first crop growth evaluation index to construct a model label; continuously interpolate the first crop growth evaluation index to obtain the reconstructed crop growth data; use The label trains the neural network to obtain the index mapping model; corrects the reconstructed crop growth data to obtain the target crop growth evaluation data. The present invention realizes the purpose of comprehensively using spaceflight remote sensing data and near-ground data to monitor the growth of crops, and solves the problem of insufficient accuracy and time density of spaceflight remote sensing data used in existing methods and the existence of near-ground observation data with small data range and low precision. Discontinuous problem.

Figure 202211414732

Description

天地一体化的作物长势智能监测方法、装置及电子设备Crop growth intelligent monitoring method, device and electronic equipment integrated with space and ground

技术领域technical field

本发明属于遥感技术领域,具体而言,涉及天地一体化的作物长势智能监测方法、装置及电子设备。The invention belongs to the technical field of remote sensing, and in particular relates to a method, a device and an electronic device for intelligent monitoring of crop growth status integrated with space and ground.

背景技术Background technique

农业生态系统是一种典型的人工生态系统,人类的主动管理活动对提高农产品品质、增加产量、减少灾害损失等方面发挥着重要作用。当前,人口增加和生态环境恶化等问题对粮食的产量和安全等提出了更高的要求。准确的作物生长参数信息可以反映农业生产过程中的资源利用情况,是农作物产量预测、农业种植结构调整的重要数据支撑。The agricultural ecosystem is a typical artificial ecosystem, and the active management activities of human beings play an important role in improving the quality of agricultural products, increasing production, and reducing disaster losses. At present, problems such as population increase and ecological environment deterioration have put forward higher requirements for food production and safety. Accurate crop growth parameter information can reflect the resource utilization in the agricultural production process, and is an important data support for crop yield prediction and agricultural planting structure adjustment.

在农业管理的应用中,尽管遥感技术已经在农作物类型识别、墒情监测中开展了广泛应用,但由于多数研究和应用仍采用航天遥感平台,难以克服该平台在农作物长势观测中大尺度和精准化、实时化相矛盾的困境。另外,由于大气吸收和辐射等干扰因素的影响,导致了卫星遥感反演不能精确获取作物参数,因此仅表征不同类型作物之间生长状态的相对差异;而以无人机和观测塔等为代表的近地面农业监测方式的结果精度高,但难以避免监测面积小的问题。In the application of agricultural management, although remote sensing technology has been widely used in crop type identification and moisture monitoring, it is difficult to overcome the large-scale and precise observation of crop growth because most research and applications still use aerospace remote sensing platforms. , real-time conflicting dilemma. In addition, due to the influence of interference factors such as atmospheric absorption and radiation, satellite remote sensing inversion cannot accurately obtain crop parameters, so it only characterizes the relative differences in growth status between different types of crops; The results of the near-ground agricultural monitoring method have high accuracy, but it is difficult to avoid the problem of small monitoring area.

发明内容Contents of the invention

针对航天遥感平台获取农作物长势参数的绝对值不准确、数据获取不及时,近地面数据观测范围小的现状,提供基于天地多平台协同的作物长势参数反演方法,即通过数据间的同步关系,将大范围的航天遥感计算作物长势参数向高精度、高连续的近地面作物长势参数转换,从而实现大范围、高精度、高连续的作物长势监测。In view of the inaccurate absolute value of the crop growth parameters obtained by the aerospace remote sensing platform, the untimely data acquisition, and the small observation range of near-ground data, a crop growth parameter inversion method based on the coordination of space and ground multi-platform is provided, that is, through the synchronization relationship between data, Convert the large-scale space remote sensing calculation of crop growth parameters to high-precision, high-continuous crop growth parameters near the ground, so as to realize large-scale, high-precision, high-continuous crop growth monitoring.

第一方面,本公开提供了天地一体化的作物长势智能监测方法,包括:In the first aspect, the present disclosure provides an intelligent monitoring method of crop growth integrated with space and ground, including:

收集遥感卫星数据,获取目标区域内的卫星时序遥感数据;Collect remote sensing satellite data and obtain satellite time series remote sensing data in the target area;

根据所述卫星时序遥感数据,计算作物生长状态参数与作物受胁迫状态参数;Calculate crop growth state parameters and crop stress state parameters according to the satellite time-series remote sensing data;

利用所述作物生长状态参数与所述作物受胁迫状态参数,构建基于卫星时序遥感数据的第一作物长势评估指数;所述第一作物长势评估指数用于表征作物生长状态与作物生长背景的关系;Using the crop growth state parameters and the crop stress state parameters to construct a first crop growth assessment index based on satellite time-series remote sensing data; the first crop growth assessment index is used to characterize the relationship between the crop growth state and the crop growth background ;

采集目标作物的生长数据,获取包含所述目标作物每天的生长指数数据的近地面观测数据;Collect growth data of the target crop, and obtain near-ground observation data including the daily growth index data of the target crop;

利用所述生长指数数据基于统计模型,构建基于所述近地面观测数据的第二作物长势评估指数;Using the growth index data based on a statistical model to construct a second crop growth assessment index based on the near-ground observation data;

以所述近地面观测数据为基准,对所述遥感卫星数据中相同位置、相同时间的所述第一作物长势评估指数的缺失值进行补充,得到所述第一作物长势评估指数模型与所述第二作物长势评估指数的映射模型训练标签;Based on the near-surface observation data, the missing value of the first crop growth assessment index at the same position and at the same time in the remote sensing satellite data is supplemented to obtain the first crop growth assessment index model and the The mapping model training label of the second crop growth evaluation index;

采用平均插值的方式对所述第一作物长势评估指数进行连续插值,得到重构的连续的作物长势数据;performing continuous interpolation on the first crop growth assessment index by means of average interpolation to obtain reconstructed continuous crop growth data;

构建神经网络模型,利用所述映射模型训练标签对所述神经网络模型进行训练,得到作物长势数据映射模型;Constructing a neural network model, using the mapping model training label to train the neural network model to obtain a crop growth data mapping model;

利用所述作物长势数据映射模型对重构的连续的所述作物长势数据进行校正,得到目标作物长势评估数据。Using the crop growth data mapping model to correct the reconstructed continuous crop growth data to obtain target crop growth evaluation data.

第二方面,本公开提供了天地一体化的作物长势智能监测装置,包括第一获取单元、第一处理单元、第一构建单元、第二获取单元、第二构建单元、第二处理单元、重构单元、网络模型单元与校正单元;In the second aspect, the present disclosure provides a space-ground integrated crop growth intelligent monitoring device, including a first acquisition unit, a first processing unit, a first construction unit, a second acquisition unit, a second construction unit, a second processing unit, a heavy structural unit, network model unit and correction unit;

所述第一获取单元,用于收集遥感卫星数据,获取目标区域内的卫星时序遥感数据;The first acquiring unit is configured to collect remote sensing satellite data, and acquire satellite time-series remote sensing data in the target area;

所述第一处理单元,用于根据所述卫星时序遥感数据,计算作物生长状态参数与作物受胁迫状态参数;The first processing unit is configured to calculate crop growth state parameters and crop stress state parameters according to the satellite time-series remote sensing data;

所述第一构建单元,用于利用所述作物生长状态参数与所述作物受胁迫状态参数,构建基于卫星时序遥感数据的第一作物长势评估指数;所述第一作物长势评估指数用于表征作物生长状态与作物生长背景的关系;The first construction unit is configured to use the crop growth state parameters and the crop stress state parameters to construct a first crop growth assessment index based on satellite time-series remote sensing data; the first crop growth assessment index is used to characterize The relationship between crop growth status and crop growth background;

所述第二获取单元,用于采集目标作物的生长数据,获取包含所述目标作物每天的生长指数数据的近地面观测数据;The second acquisition unit is configured to collect growth data of the target crop, and obtain near-ground observation data including the daily growth index data of the target crop;

所述第二构建单元,用于利用所述生长指数数据基于统计模型,构建基于所述近地面观测数据的第二作物长势评估指数;The second construction unit is configured to use the growth index data based on a statistical model to construct a second crop growth assessment index based on the near-ground observation data;

所述第二处理单元,用于以所述近地面观测数据为基准,对所述遥感卫星数据中相同位置、相同时间的所述第一作物长势评估指数的缺失值进行补充,得到所述第一作物长势评估指数模型与所述第二作物长势评估指数的映射模型训练标签;The second processing unit is configured to supplement the missing value of the first crop growth assessment index at the same position and at the same time in the remote sensing satellite data based on the near-ground observation data, to obtain the first A crop growth assessment index model and a mapping model training label of the second crop growth assessment index;

所述重构单元,用于采用平均插值的方式对所述第一作物长势评估指数进行连续插值,得到重构的连续的作物长势数据;The reconstruction unit is configured to continuously interpolate the first crop growth assessment index by means of average interpolation to obtain reconstructed continuous crop growth data;

所述网络模型单元,用于构建神经网络模型,利用所述映射模型训练标签对所述神经网络模型进行训练,得到作物长势数据映射模型;The network model unit is used to construct a neural network model, and uses the mapping model training label to train the neural network model to obtain a crop growth data mapping model;

所述校正单元,用于利用所述作物长势数据映射模型对重构的连续的所述作物长势数据进行校正,得到目标作物长势评估数据。The correction unit is configured to use the crop growth data mapping model to correct the reconstructed continuous crop growth data to obtain target crop growth evaluation data.

第三方面,本公开提供了一种电子设备,包括:In a third aspect, the present disclosure provides an electronic device, including:

处理器和存储器;processor and memory;

所述存储器,用于存储计算机操作指令;The memory is used to store computer operation instructions;

所述处理器,用于通过调用所述计算机操作指令,执行所述的天地一体化的作物长势智能监测方法。The processor is configured to execute the method for intelligent monitoring of crop growth status integrated with space and ground by invoking the computer operation instructions.

本发明的有益效果是:本发明实现了综合使用航天遥感数据与近地面观测数据对作物长势进行监测的目的,解决现有方法中采用航天遥感数据的精度和时间密度不足以及近地面观测数据存在的数据范围小、精度低、不连续的问题。The beneficial effects of the present invention are: the present invention realizes the purpose of comprehensively using spaceflight remote sensing data and near-ground observation data to monitor the growth of crops, and solves the lack of accuracy and time density of spaceflight remote sensing data and the existence of near-ground observation data in existing methods. The problem of small data range, low precision, and discontinuity.

在上述技术方案的基础上,本发明还可以做如下改进。On the basis of the above technical solutions, the present invention can also be improved as follows.

进一步,收集遥感卫星数据,获取目标区域内的卫星时序遥感数据,包括:收集遥感卫星数据,对所述遥感卫星数据进行辐射校正和几何配准,并将所有的数据重采样到相同的空间分辨率,获取目标区域内的卫星时序遥感数据。Further, collecting remote sensing satellite data and obtaining satellite time-series remote sensing data in the target area includes: collecting remote sensing satellite data, performing radiometric correction and geometric registration on the remote sensing satellite data, and resampling all data to the same spatial resolution rate to obtain satellite time-series remote sensing data in the target area.

进一步,利用所述作物生长状态参数与所述作物受胁迫状态参数,采用线性回归的方式构建基于卫星时序遥感数据的所述第一作物长势评估指数。Further, using the crop growth state parameters and the crop stress state parameters, the first crop growth evaluation index based on satellite time-series remote sensing data is constructed by linear regression.

进一步,所述作物生长状态参数包括归一化植被指数、增强型植被指数与绿度指数;所述作物受胁迫状态参数包括红边指数与土壤植被指数。Further, the crop growth state parameters include normalized normalized vegetation index, enhanced vegetation index and greenness index; the crop stress state parameters include red edge index and soil vegetation index.

进一步,采集目标作物的生长状态参数,获取包含所述目标作物每天的生长指数数据的近地面观测数据,包括:Further, the growth state parameters of the target crops are collected, and near-ground observation data containing the daily growth index data of the target crops are obtained, including:

利用搭设在农田中的传感器对目标作物的所述生长状态参数进行实时观测;Real-time observation of the growth state parameters of the target crops using sensors set up in the farmland;

对观测的所述生长状态参数进行统计得到所述生长指数数据;performing statistics on the observed growth state parameters to obtain the growth index data;

所述生长状态参数包括作物的株高、茎粗、叶片密度与病虫密度;所述生长指数数据包括目标作物每天的平均株高指数与平均叶片密度指数。The growth state parameters include plant height, stem diameter, leaf density and pest density of the crop; the growth index data include the daily average plant height index and average leaf density index of the target crop.

进一步,以所述近地面观测数据为基准,对所述遥感卫星数据中相同位置、相同时间的所述第一作物长势评估指数的缺失值进行补充,得到所述第一作物长势评估指数模型与所述第二作物长势评估指数的映射模型训练标签,包括:Further, based on the near-ground observation data, the missing value of the first crop growth assessment index at the same position and at the same time in the remote sensing satellite data is supplemented to obtain the first crop growth assessment index model and The mapping model training label of the second crop growth evaluation index includes:

定义所述遥感卫星数据中与地面观测地理位置一致的点为参考点,获取若干所述参考点前后的卫星数据序列点位数值,定义所述参考点的卫星数据序列点位以及所述参考点前后的点的卫星数据序列点位对应的地面观测序列值;Define the point in the remote sensing satellite data that is consistent with the geographical location of the ground observation as a reference point, obtain a number of satellite data sequence point values before and after the reference point, and define the satellite data sequence point of the reference point and the reference point The ground observation sequence value corresponding to the satellite data sequence point of the preceding and following points;

利用求导的方式,分别获取用于表征相邻的所述卫星数据序列点位数值变化的导数,确定所述参考点的卫星数据序列点位数值与所述参考点前后的点的卫星数据序列点位数值之间的关系,构建拟合方程:Using the method of derivation, obtain the derivatives used to characterize the change of the point value of the adjacent satellite data sequence, and determine the point value of the satellite data sequence of the reference point and the satellite data sequence of points before and after the reference point The relationship between point values, construct a fitting equation:

若所述拟合方程中所有所述导数的符号一致,或者所述拟合方程中所述导数的符号存在差异且所述导数的符号存在差异的位置位于除所述参考点以外的点,则直接对所述拟合方程进行二次函数拟合;If the signs of all the derivatives in the fitting equation are consistent, or the signs of the derivatives in the fitting equation are different and the positions where the signs of the derivatives are different are located at points other than the reference point, then directly carry out quadratic function fitting to described fitting equation;

若所述拟合方程中所述导数的符号存在差异的位置位于所述参考点,则利用两组由除该所述参考点以外的点的所述卫星数据序列点位数值与该所述卫星数据序列点位数值对应的所述地面观测数值组成的数据组分段拟合二次函数,分别利用两组所述数据组计算两组所述参考点的卫星数据数值,取两组所述参考点的卫星数据数值的平均值得到所述参考点的目标卫星数据序列点位数值,将所述目标卫星数据序列点位数值、所述目标卫星数据序列点位数值对应的地面观测数值、所述参考点的卫星数据序列点位数值以及所述参考点对应的所述地面观测数值组合得到所述训练标签。If the position where the sign of the derivative in the fitting equation differs is located at the reference point, use two sets of point values of the satellite data sequence at points other than the reference point and the satellite The data group composed of the ground observation values corresponding to the data sequence point values is fitted with a quadratic function segmentally, using the two groups of data groups to calculate the satellite data values of the two groups of reference points respectively, and taking the two groups of reference points The average value of the satellite data value of the point obtains the target satellite data sequence point value of the reference point, and the ground observation value corresponding to the target satellite data sequence point value, the target satellite data sequence point value, the The satellite data sequence point value of the reference point and the ground observation value corresponding to the reference point are combined to obtain the training label.

附图说明Description of drawings

图1为本发明实施例1中天地一体化的作物长势智能监测方法的原理图;Fig. 1 is the schematic diagram of the intelligent monitoring method for crop growth condition integrated with space and ground in Embodiment 1 of the present invention;

图2为本发明实施例2中天地一体化的作物长势智能监测装置的原理图;Fig. 2 is the schematic diagram of the intelligent crop growth monitoring device integrated with space and ground in Embodiment 2 of the present invention;

图3为本发明实施例3中提供的一种电子设备的原理图。FIG. 3 is a schematic diagram of an electronic device provided in Embodiment 3 of the present invention.

图标:30-电子设备;310-处理器;320-总线;330-存储器;340-收发器。Icons: 30-electronic device; 310-processor; 320-bus; 330-memory; 340-transceiver.

具体实施方式Detailed ways

为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本发明实施例的组件可以以各种不同的配置来布置和设计。In order to make the purpose, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions in the embodiments of the present invention will be clearly and completely described below in conjunction with the drawings in the embodiments of the present invention. Obviously, the described embodiments It is a part of embodiments of the present invention, but not all embodiments. The components of the embodiments of the invention generally described and illustrated in the figures herein may be arranged and designed in a variety of different configurations.

实施例1Example 1

作为一个实施例,如附图1所示,为解决上述技术问题,本实施例提供天地一体化的作物长势智能监测方法,具体包括以下过程:As an embodiment, as shown in accompanying drawing 1, in order to solve the above-mentioned technical problems, this embodiment provides an intelligent monitoring method for the growth of crops integrated with space and ground, which specifically includes the following processes:

收集遥感卫星数据,获取目标区域内的卫星时序遥感数据;具体的,收集多源遥感卫星数据,由于不同的遥感数据之间存在了辐射、几何等方面的差异,优选的,以所获取的多源遥感卫星数据集中覆盖范围最广、频次最多的数据为基准,对其余数据进行辐射校正和几何配准,并将所有的数据重采样到相同的空间分辨率,进而获取目标区域内的时序卫星遥感数据;在实际应用过程中,首先获取目标区的数据源及构建作物时序特征,对收集的卫星遥感数据进行统计,选取数据源作为基准数据;以此为基准对其它数据进行配准,本实施例共收集了哨兵2号卫星和Landsat8卫星以及高分1号卫星的数据,其中哨兵2号卫星的数据保证了至少每月覆盖一次,Landsat8卫星和高分1号卫星的数据作为插补数据对Sentinel-2卫星的数据进行加密。Collect remote sensing satellite data and obtain satellite time-series remote sensing data in the target area; specifically, collect multi-source remote sensing satellite data. The data with the widest coverage and the most frequency in the source remote sensing satellite data set is used as the benchmark, and radiometric correction and geometric registration are performed on the remaining data, and all the data are resampled to the same spatial resolution to obtain the time series satellites in the target area. Remote sensing data; in the actual application process, first obtain the data source of the target area and construct the time-series characteristics of crops, make statistics on the collected satellite remote sensing data, select the data source as the benchmark data; use this as the benchmark to register other data, this paper The embodiment collects the data of Sentinel 2 satellite, Landsat8 satellite and Gaofen 1 satellite, wherein the data of Sentinel 2 satellite guarantees coverage at least once a month, and the data of Landsat8 satellite and Gaofen 1 satellite are used as interpolation data Encrypt data from Sentinel-2 satellites.

根据卫星时序遥感数据,计算作物生长状态参数与作物受胁迫状态参数;具体的,利用时序卫星遥感数据,计算与作物生长状态相关的归一化植被指数NDVI、增强型植被指数EVI、绿度指数GNDVI,与作物生长环境相关的红边指数REIP以及土壤植被指数SAVI等植被指数,作物生长状态参数包括归一化植被指数NDVI、增强型植被指数EVI、绿度指数GNDVI,用以表征作物的生长状态,作物受胁迫状态参数包括红边指数REIP与土壤植被指数SAVI,用以表征作物的受胁迫状态。According to satellite time-series remote sensing data, calculate crop growth state parameters and crop stress state parameters; specifically, use time-series satellite remote sensing data to calculate normalized difference vegetation index NDVI, enhanced vegetation index EVI, and greenness index related to crop growth state GNDVI, vegetation index such as red edge index REIP and soil vegetation index SAVI related to crop growth environment, crop growth state parameters include normalized difference vegetation index NDVI, enhanced vegetation index EVI, greenness index GNDVI, used to characterize the growth of crops State, crop stress state parameters include red edge index REIP and soil vegetation index SAVI, which are used to characterize the stress state of crops.

可选的,利用作物生长状态参数与作物受胁迫状态参数,采用线性回归的方式构建基于卫星时序遥感数据的第一作物长势评估指数。采用线性回归的方式构建基于卫星平台的第一作物长势评估指数(Satellite-based Crop Growing Index, CGI_S),该指数通常采用线性的关系进行构建,用以刻画作物生长状态与作物生长背景的相关关系;作物生长背景指的是作物生长所处的农田状态,包含作物所在的农田土壤质地、作物的灌溉水平、日照水平。Optionally, the first crop growth assessment index based on satellite time-series remote sensing data is constructed by using the crop growth state parameters and the crop stress state parameters in a linear regression manner. The first satellite-based crop growth index (Satellite-based Crop Growing Index, CGI_S) is constructed by linear regression, which is usually constructed using a linear relationship to describe the relationship between crop growth status and crop growth background ; The crop growth background refers to the state of the farmland where the crop grows, including the soil texture of the farmland where the crop is located, the irrigation level of the crop, and the sunshine level.

可选的,作物生长状态参数包括归一化植被指数、增强型植被指数与绿度指数;作物受胁迫状态参数包括红边指数与土壤植被指数。设 w 0 为归一化植被指数NDVI的权重,  w 1 为增强型植被指数EVI的权重, w 2 为绿度指数GNDVI的权重,  w 3 为红边指数REIP的权重, w 4 为土壤植被指数SAVI的权重,则第一作物长势评估指数CGI_S为: Optionally, the crop growth state parameters include normalized difference vegetation index, enhanced vegetation index and greenness index; the crop stress state parameters include red edge index and soil vegetation index. Let w 0 be the weight of the normalized difference vegetation index NDVI, w 1 be the weight of the enhanced vegetation index EVI, w 2 be the weight of the greenness index GNDVI, w 3 be the weight of the red edge index REIP, w 4 be the soil vegetation index The weight of SAVI, the first crop growth assessment index CGI_S is:

CGI_S=( w 0 *NDVI+w 1 *EVI+w 2 *GNDVI)/w 3 *REIP+w 4 *SAVI+a 1 )。 CGI_S=( w 0 *NDVI+w 1 *EVI+w 2 *GNDVI)/w 3 *REIP+w 4 *SAVI+a 1 ).

其中,权重 w 0 w 1 w 2 w 3 w 4 可以根据所监测的作物类型进行动态调整,a1为可选参数,用于防止参数REIP和SAVI参数为0而引起方程无效化。 Among them, the weights w 0 , w 1 , w 2 , w 3 , and w 4 can be dynamically adjusted according to the monitored crop types, and a 1 is an optional parameter, which is used to prevent the invalidation of the equation caused by the parameter REIP and SAVI being 0 .

利用作物生长状态参数与作物受胁迫状态参数,构建基于卫星时序遥感数据的第一作物长势评估指数;第一作物长势评估指数用于表征作物生长状态与作物生长背景的关系;Using crop growth state parameters and crop stress state parameters, construct the first crop growth evaluation index based on satellite time series remote sensing data; the first crop growth evaluation index is used to characterize the relationship between crop growth state and crop growth background;

采集目标作物的生长数据,获取包含目标作物每天的生长指数数据的近地面观测数据;具体的,利用搭设在农田中的传感器对目标作物生长状态进行实时观测,观测的参数包括株高、茎粗、叶片密度以及病虫密度等,并对数据进行统计获取目标作物每天的平均株高、平均叶片密度等指数;Collect the growth data of the target crops, and obtain the near-ground observation data including the daily growth index data of the target crops; specifically, use the sensors set up in the farmland to observe the growth status of the target crops in real time. The observed parameters include plant height, stem diameter , leaf density, pest density, etc., and perform statistics on the data to obtain the daily average plant height, average leaf density and other indexes of the target crop;

利用生长指数数据基于统计模型,构建基于近地面观测数据的第二作物长势评估指数;具体的,利用目标作物每天的平均株高、平均叶片密度等指数基于统计模型构建近地面的第二作物生长状态评估指数(Ground-based Crop Growing Index, CGI_G);Use the growth index data based on the statistical model to construct the growth evaluation index of the second crop based on the near-ground observation data; specifically, use the daily average plant height and average leaf density of the target crop based on the statistical model to construct the second crop growth near the ground State Evaluation Index (Ground-based Crop Growing Index, CGI_G);

H为株高, D为茎粗, LD为叶片密度, PD为病虫密度, w 5 为株高的权重、 w 6 为茎粗的权重、 w 7 为叶片密度的权重、 w 8 为病虫密度的权重,第二作物生长状态评估指数CGI_G表征利用近地面观测数据获取的作物生长情况(正向)与灾害情况(负向)的相关关系,则: Let H be plant height, D be stem diameter, LD be leaf density, PD be pest density, w 5 be the weight of plant height, w 6 be the weight of stem diameter, w 7 be the weight of leaf density, w 8 be the weight of disease and pest The weight of insect density, the second crop growth status evaluation index CGI_G characterizes the correlation between crop growth status (positive) and disaster status (negative) obtained by using near-ground observation data, then:

CGI_G=( w 5 * H+ w 6 * D+ w 7 * LD)/( w 8 * PD+a 2 )。 CGI_G=( w 5 * H + w 6 * D + w 7 * LD )/( w 8 * PD+a 2 ).

其中,权重 w 5 w 6 w 7 w 8 可以根据所监测的作物类型进行动态调整,a2为可选参数,用于防止参数 PD为0而引起方程无效化。 Among them, the weights w 5 , w 6 , w 7 , and w 8 can be dynamically adjusted according to the monitored crop types, and a 2 is an optional parameter, which is used to prevent the parameter PD from being 0 and causing the equation to be invalid.

以近地面观测数据为基准,对遥感卫星数据中相同位置、相同时间的第一作物长势评估指数的缺失值进行补充,得到第一作物长势评估指数模型与第二作物长势评估指数的映射模型训练标签,包括:Based on the near-surface observation data, the missing values of the first crop growth evaluation index at the same position and at the same time in the remote sensing satellite data are supplemented, and the mapping model training labels of the first crop growth evaluation index model and the second crop growth evaluation index are obtained ,include:

定义遥感卫星数据中与地面观测地理位置一致的点为参考点,获取若干参考点前后的卫星数据序列点位数值,定义参考点的卫星数据序列点位以及参考点前后的点的卫星数据序列点位对应的地面观测序列值;Define the point in the remote sensing satellite data that is consistent with the geographical location of the ground observation as the reference point, obtain the satellite data sequence point values before and after several reference points, define the satellite data sequence point of the reference point and the satellite data sequence point of the points before and after the reference point The ground observation sequence value corresponding to the bit;

利用求导的方式,分别获取用于表征相邻的卫星数据序列点位数值变化的导数,确定参考点的卫星数据序列点位数值与参考点前后的点的卫星数据序列点位数值之间的关系,构建拟合方程:Using the method of derivation, the derivatives used to characterize the change of the adjacent satellite data sequence point values are respectively obtained, and the difference between the point value of the satellite data sequence of the reference point and the point value of the satellite data sequence of points before and after the reference point is determined. relationship, construct the fitting equation:

若拟合方程中所有导数的符号一致,或者拟合方程中导数的符号存在差异且导数的符号存在差异的位置位于除参考点以外的点,则直接对拟合方程进行二次函数拟合;If the signs of all derivatives in the fitting equation are the same, or if there are differences in the signs of the derivatives in the fitting equation and the positions where the signs of the derivatives are different are located at points other than the reference point, then directly perform quadratic function fitting on the fitting equation;

若拟合方程中导数的符号存在差异的位置位于参考点,则利用两组由除该参考点以外的点的卫星数据序列点位数值与该卫星数据序列点位数值对应的地面观测数值组成的数据组分段拟合二次函数,分别利用两组数据组计算两组参考点的卫星数据数值,取两组参考点的卫星数据数值的平均值得到参考点的目标卫星数据序列点位数值,将目标卫星数据序列点位数值、目标卫星数据序列点位数值对应的地面观测数值、参考点的卫星数据序列点位数值以及参考点对应的地面观测数值组合得到训练标签。If the position where the sign of the derivative in the fitting equation is different is located at the reference point, use two groups of ground observation values corresponding to the point value of the satellite data sequence at points other than the reference point and the point value of the satellite data sequence The data group segmentally fits the quadratic function, respectively uses two groups of data groups to calculate the satellite data values of two groups of reference points, takes the average value of the satellite data values of the two groups of reference points to obtain the point value of the target satellite data sequence of the reference points, The training label is obtained by combining the point value of the target satellite data sequence, the ground observation value corresponding to the point value of the target satellite data sequence, the point value of the satellite data sequence of the reference point, and the ground observation value corresponding to the reference point.

具体的,获得映射模型训练标签过程具体为:在获取地面观测数据(位置 p,时间 t)的基础上,定义卫星数据序列中与地面观测地理位置一致的点位为 y 3 ,则该点位之前的序列点位的数值定义为 y 1 y 2 ,该点位之后的序列点位的数值定义为 y 4 y 5 ,对应的地面观测序列值依次为 x 1 、x 2 、x 3 、x 4 x 5 Specifically, the process of obtaining the training label of the mapping model is as follows: on the basis of obtaining the ground observation data (position p , time t ), define the point in the satellite data sequence consistent with the geographical location of the ground observation as y 3 , then the point The value of the previous sequence point is defined as y 1 and y 2 , the value of the sequence point after this point is defined as y 4 and y 5 , and the corresponding ground observation sequence values are x 1 , x 2 , x 3 , x4 and x5 ;

利用求导方式判断 y 1 、y 2 、y 4 、y 5 的相对关系,分别获取 y 1 y 2 y 2 y 4 以及 y 4 y 5 之间的三个导数 k i ,从而判断这5个值是否递增/递减关系,或者该5个值的拟合曲线是否存在拐点,并进一步确定拐点的位置及形状,构建拟合方程: Judge the relative relationship of y 1 , y 2 , y 4 , and y 5 by means of derivation, obtain the three derivatives k i between y 1 and y 2 , y 2 and y 4 , and y 4 and y 5 respectively, so as to judge Whether the 5 values are increasing/decreasing, or whether there is an inflection point in the fitting curve of the 5 values, and further determine the position and shape of the inflection point, and construct the fitting equation:

y =  a 0 + a * ( x i - x 3 )+ a 2 * ( x i - x 3 )2 y = a 0 + a 1 * ( x i - x 3 ) + a 2 * ( x i - x 3 ) 2 ;

其中, x i 需要根据 k i 值进行选取,如果所有 k i 的符号保持一致,则仅进行普通二次函数拟合;如果 k i 的符号存在变化,则进一步判断斜率符号变化的位置,其中如果 k i 符号变化的位置位于 y 2 或者 y 4 ,则仍旧只用普通二次函数拟合,如果变化位置位于 y 3 ,则需要利用( x 1 , y 1 )、( x 2 , y 2 ) 进行拟合,以及( x 4 , y 4 ) 、( x 5 , y 5 )进行拟合,获取两个参考点的卫星数据数值 y 3 ,然后对两个参考点的卫星数据数值 y 3 取平均值的方式得到参考点的目标卫星数据序列点位数值 p,将目标卫星数据序列点位数值 p、目标卫星数据序列点位数值对应的地面观测数值 t、参考点的卫星数据序列点位数值 x 3 以及参考点对应的地面观测数值 y 3 组合得到训练标签,从而构建了一组训练标签( ptx 3 y 3 ) ,实现该点的第二作物生长状态评估指数CGI_G向第一作物长势评估指数CGI_S转换。 Among them, x i needs to be selected according to the value of ki . If the signs of all ki remain the same, only ordinary quadratic function fitting is performed; if the sign of ki changes , the position of the slope sign change is further judged. The position where the sign of k i changes is located in y 2 or y 4 , then only the ordinary quadratic function is still used for fitting, if the changed position is located in y 3 , it is necessary to use ( x 1 , y 1 ), ( x 2 , y 2 ) to perform Fitting, and ( x 4 , y 4 ), ( x 5 , y 5 ) for fitting, to obtain the satellite data value y 3 ' of the two reference points, and then take the satellite data value y 3 ' of the two reference points The point value p of the target satellite data sequence of the reference point is obtained by means of the average value, and the point value p of the target satellite data sequence, the ground observation value t corresponding to the point value of the target satellite data sequence, and the point value of the satellite data sequence of the reference point x 3 and the ground observation value y 3 corresponding to the reference point are combined to obtain the training label, thereby constructing a set of training labels ( p , t , x 3 , y 3 ), and realizing the second crop growth status evaluation index CGI_G at this point to the first 1. Conversion of crop growth assessment index CGI_S.

采用平均插值的方式对第一作物长势评估指数进行连续插值,得到重构的作物长势数据;Continuously interpolating the first crop growth assessment index by means of average interpolation to obtain reconstructed crop growth data;

构建神经网络模型,利用映射模型训练标签对神经网络模型进行训练,得到作物长势数据映射模型;具体的,神经网络映射模型的注意力机制可以用如下公式进行表示:Construct the neural network model, use the mapping model training label to train the neural network model, and obtain the crop growth data mapping model; specifically, the attention mechanism of the neural network mapping model can be expressed by the following formula:

E=( w*( s t-1,  h 1), …,  w*( s t-1,  h t)); E =( w *( s t-1 , h 1 ), …, w *( s t-1 , h t ));

其中, w为权重系数, h 1 h t 代表的是隐藏神经元, s t 代表的是表征作物时序特征长度的序列值,编码器采用点乘的形式表征前述 y 3 与经过重构的作物长势数据中对应位置数值的匹配度。 Among them, w is the weight coefficient, h 1 ... h t represents the hidden neuron, s t represents the sequence value representing the length of the time-series feature of the crop, and the encoder uses the form of dot product to represent the aforementioned y 3 and the reconstructed crop The matching degree of the corresponding position value in the growth data.

可选的,该神经网络映射模型使用的网络隶属于RNNs但不限于RNNs,基本单元不限于attention单元(注意力单元),使用的近地面序列长度覆盖了作物的生长期(2月到11月),该神经网络映射模型的训练环境不限于Tensorflow。Optionally, the network used by the neural network mapping model belongs to RNNs but is not limited to RNNs, the basic unit is not limited to the attention unit (attention unit), and the length of the near-ground sequence used covers the growth period of the crop (February to November ), the training environment of the neural network mapping model is not limited to Tensorflow.

利用作物长势数据映射模型对重构的连续的作物长势数据进行校正,获取连续逐日的、全覆盖的作物长势评估值,得到目标作物长势评估数据。The crop growth data mapping model is used to correct the reconstructed continuous crop growth data, obtain continuous daily, full-coverage crop growth evaluation values, and obtain target crop growth evaluation data.

本发明实现了综合使用航天遥感数据与近地面观测数据对作物长势进行监测的目的,解决现有方法中采用航天遥感数据的精度和时间密度不足以及近地面观测数据存在的数据范围小的问题。The invention realizes the purpose of comprehensively using spaceflight remote sensing data and near-surface observation data to monitor crop growth, and solves the problems of insufficient accuracy and time density of spaceflight remote sensing data and small data range of near-surface observation data in existing methods.

实施例2Example 2

基于与本发明的实施例1中所示的方法相同的原理,如附图3所示,本发明的实施例中还提供了天地一体化的作物长势智能监测系统,包括第一获取单元、第一处理单元、第一构建单元、第二获取单元、第二构建单元、第二处理单元、重构单元、网络模型单元与校正单元;Based on the same principle as the method shown in Embodiment 1 of the present invention, as shown in Figure 3, an intelligent crop growth monitoring system integrating space and ground is also provided in the embodiment of the present invention, including a first acquisition unit, a second A processing unit, a first construction unit, a second acquisition unit, a second construction unit, a second processing unit, a reconstruction unit, a network model unit and a correction unit;

第一获取单元,用于收集遥感卫星数据,获取目标区域内的卫星时序遥感数据;The first acquisition unit is used to collect remote sensing satellite data and obtain satellite time series remote sensing data in the target area;

第一处理单元,用于根据卫星时序遥感数据,计算作物生长状态参数与作物受胁迫状态参数;The first processing unit is used to calculate crop growth state parameters and crop stress state parameters according to satellite time-series remote sensing data;

第一构建单元,用于利用作物生长状态参数与作物受胁迫状态参数,构建基于卫星时序遥感数据的第一作物长势评估指数;第一作物长势评估指数用于表征作物生长状态与作物生长背景的关系;The first construction unit is used to construct the first crop growth evaluation index based on satellite time series remote sensing data by using the crop growth state parameters and the crop stress state parameters; the first crop growth evaluation index is used to characterize the relationship between the crop growth state and the crop growth background relation;

第二获取单元,用于采集目标作物的生长数据,获取包含目标作物每天的生长指数数据的近地面观测数据;The second acquisition unit is used to collect the growth data of the target crop, and obtain near-ground observation data including the daily growth index data of the target crop;

第二构建单元,用于利用生长指数数据基于统计模型,构建基于近地面观测数据的第二作物长势评估指数;The second construction unit is used to use the growth index data based on a statistical model to construct a second crop growth evaluation index based on near-surface observation data;

第二处理单元,用于以近地面观测数据为基准,对遥感卫星数据中相同位置、相同时间的第一作物长势评估指数的缺失值进行补充,得到第一作物长势评估指数模型与第二作物长势评估指数的映射模型训练标签;The second processing unit is used to supplement the missing value of the first crop growth assessment index at the same position and at the same time in the remote sensing satellite data based on the near-ground observation data, and obtain the first crop growth assessment index model and the second crop growth condition Mapping model training labels for evaluation indices;

重构单元,用于采用平均插值的方式对第一作物长势评估指数进行连续插值,得到重构的连续的作物长势数据;The reconstruction unit is used to continuously interpolate the first crop growth assessment index by means of average interpolation to obtain reconstructed continuous crop growth data;

网络模型单元,用于利用映射模型训练标签对神经网络模型进行训练,得到作物长势数据映射模型;The network model unit is used to train the neural network model by using the mapping model training label to obtain the crop growth data mapping model;

校正单元,用于利用作物长势数据映射模型对重构的连续的作物长势数据进行校正,得到目标作物长势评估数据。The correction unit is used to correct the reconstructed continuous crop growth data by using the crop growth data mapping model to obtain target crop growth evaluation data.

可选的,第一获取单元用于收集遥感卫星数据,获取目标区域内的卫星时序遥感数据,包括:收集遥感卫星数据,对遥感卫星数据进行辐射校正和几何配准,并将所有的数据重采样到相同的空间分辨率,获取目标区域内的卫星时序遥感数据。Optionally, the first acquisition unit is used to collect remote sensing satellite data and obtain satellite time series remote sensing data in the target area, including: collecting remote sensing satellite data, performing radiometric correction and geometric registration on the remote sensing satellite data, and reconstructing all data Sampling to the same spatial resolution to obtain satellite time-series remote sensing data in the target area.

可选的,第一构建单元利用作物生长状态参数与作物受胁迫状态参数,采用线性回归的方式构建基于卫星时序遥感数据的第一作物长势评估指数。Optionally, the first construction unit constructs the first crop growth assessment index based on satellite time-series remote sensing data by using the crop growth state parameters and the crop stress state parameters in a linear regression manner.

可选的,作物生长状态参数包括归一化植被指数、增强型植被指数与绿度指数;作物受胁迫状态参数包括红边指数与土壤植被指数。Optionally, the crop growth state parameters include normalized difference vegetation index, enhanced vegetation index and greenness index; the crop stress state parameters include red edge index and soil vegetation index.

可选的,第二获取单元利用搭设在农田中的传感器对目标作物的生长状态参数进行实时观测;对观测的生长状态参数进行统计得到生长指数数据,包括:Optionally, the second acquisition unit uses sensors installed in the farmland to observe the growth state parameters of the target crops in real time; perform statistics on the observed growth state parameters to obtain growth index data, including:

利用搭设在农田中的传感器对目标作物的生长数据进行实时观测;Real-time observation of the growth data of the target crops using the sensors set up in the farmland;

对观测的生长数据进行统计得到生长指数数据;Perform statistics on the observed growth data to obtain the growth index data;

生长数据包括作物的株高、茎粗、叶片密度与病虫密度;生长指数数据包括目标作物每天的平均株高指数与平均叶片密度指数。The growth data includes plant height, stem diameter, leaf density and pest density of the crop; the growth index data includes the daily average plant height index and average leaf density index of the target crop.

生长状态参数包括作物的株高、茎粗、叶片密度与病虫密度;生长指数数据包括目标作物每天的平均株高指数与平均叶片密度指数。Growth state parameters include plant height, stem diameter, leaf density and pest density of crops; growth index data include daily average plant height index and average leaf density index of the target crop.

可选的,第二处理单元以近地面观测数据为基准,对遥感卫星数据中相同位置、相同时间的卫星时序遥感数据的缺失值进行补充,得到第一作物长势评估指数模型与第二作物长势评估指数的映射模型训练标签,包括第二处理子单元、第一确定单元与第二确定单元;Optionally, the second processing unit takes the near-surface observation data as a benchmark, supplements the missing values of the satellite time-series remote sensing data at the same position and at the same time in the remote sensing satellite data, and obtains the first crop growth evaluation index model and the second crop growth evaluation index model Index mapping model training labels, including a second processing subunit, a first determination unit and a second determination unit;

第二处理子单元,用于定义遥感卫星数据中与地面观测地理位置一致的点为参考点,获取参考点前后的点的卫星数据序列点位,定义参考点的卫星数据序列点位与参考点前后的点的卫星数据序列点位对应的地面观测序列值,并获取其数值;The second processing subunit is used to define the point in the remote sensing satellite data that is consistent with the geographical location of the ground observation as the reference point, obtain the satellite data sequence points of points before and after the reference point, and define the satellite data sequence point and reference point of the reference point The ground observation sequence value corresponding to the satellite data sequence point of the preceding and following points, and obtain its value;

第一确定单元,用于定义遥感卫星数据中与地面观测地理位置一致的点为参考点,获取若干参考点前后的卫星数据序列点位数值,定义参考点的卫星数据序列点位以及参考点前后的点的卫星数据序列点位对应的地面观测序列值;The first determination unit is used to define the point in the remote sensing satellite data that is consistent with the geographical location of the ground observation as the reference point, obtain the satellite data sequence point values before and after several reference points, and define the satellite data sequence point of the reference point and the reference point before and after The ground observation sequence value corresponding to the satellite data sequence point of the point;

利用求导的方式,分别获取用于表征相邻的卫星数据序列点位数值变化的导数,确定参考点的卫星数据序列点位数值与参考点前后的点的卫星数据序列点位数值之间的关系,构建拟合方程:Using the method of derivation, the derivatives used to characterize the change of the adjacent satellite data sequence point values are respectively obtained, and the difference between the point value of the satellite data sequence of the reference point and the point value of the satellite data sequence of points before and after the reference point is determined. relationship, construct the fitting equation:

若拟合方程中所有导数的符号一致,或者拟合方程中导数的符号存在差异且导数的符号存在差异的位置位于除参考点以外的点,则直接对拟合方程进行二次函数拟合;If the signs of all derivatives in the fitting equation are the same, or if there are differences in the signs of the derivatives in the fitting equation and the positions where the signs of the derivatives are different are located at points other than the reference point, then directly perform quadratic function fitting on the fitting equation;

若拟合方程中导数的符号存在差异的位置位于参考点,则利用两组由除该参考点以外的点的卫星数据序列点位数值与该卫星数据序列点位数值对应的地面观测数值组成的数据组分段拟合二次函数,分别利用两组数据组计算两组参考点的卫星数据数值,取两组参考点的卫星数据数值的平均值得到参考点的目标卫星数据序列点位数值,将目标卫星数据序列点位数值、目标卫星数据序列点位数值对应的地面观测数值、参考点的卫星数据序列点位数值以及参考点对应的地面观测数值组合得到训练标签。If the position where the sign of the derivative in the fitting equation is different is located at the reference point, use two groups of ground observation values corresponding to the point value of the satellite data sequence at points other than the reference point and the point value of the satellite data sequence The data group segmentally fits the quadratic function, respectively uses two groups of data groups to calculate the satellite data values of two groups of reference points, takes the average value of the satellite data values of the two groups of reference points to obtain the point value of the target satellite data sequence of the reference points, The training label is obtained by combining the point value of the target satellite data sequence, the ground observation value corresponding to the point value of the target satellite data sequence, the point value of the satellite data sequence of the reference point, and the ground observation value corresponding to the reference point.

实施例3Example 3

基于与本发明的实施例中所示的方法相同的原理,本发明的实施例中还提供了一种电子设备,如附图3所示,该电子设备可以包括但不限于:处理器和存储器;存储器,用于存储计算机程序;处理器,用于通过调用计算机程序执行本发明任一实施例所示的天地一体化的作物长势智能监测方法。Based on the same principle as the method shown in the embodiment of the present invention, an electronic device is also provided in the embodiment of the present invention, as shown in Figure 3, the electronic device may include but not limited to: a processor and a memory The memory is used to store the computer program; the processor is used to execute the method for intelligent monitoring of crop growth status integrated with space and ground shown in any embodiment of the present invention by calling the computer program.

在一个可选实施例中提供了一种电子设备,图3所示的电子设备30包括:处理器310和存储器330。其中,处理器310和存储器330相连,如通过总线320相连。An electronic device is provided in an optional embodiment, and the electronic device 30 shown in FIG. 3 includes: a processor 310 and a memory 330 . Wherein, the processor 310 is connected to the memory 330 , such as through a bus 320 .

可选地,电子设备30还可以包括收发器340,收发器340可以用于该电子设备与其他电子设备之间的数据交互,如数据的发送和/或数据的接收等。需要说明的是,实际应用中收发器340不限于一个,该电子设备30的结构并不构成对本发明实施例的限定。Optionally, the electronic device 30 may further include a transceiver 340, and the transceiver 340 may be used for data interaction between the electronic device and other electronic devices, such as sending and/or receiving data. It should be noted that, in practical applications, the transceiver 340 is not limited to one, and the structure of the electronic device 30 does not limit the embodiment of the present invention.

处理器310可以是CPU中央处理器,通用处理器,DSP数据信号处理器,ASIC专用集成电路,FPGA现场可编程门阵列或者其他可编程逻辑器件、硬件部件或者其任意组合。处理器310也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等。The processor 310 may be a CPU central processing unit, a general purpose processor, a DSP data signal processor, an ASIC application specific integrated circuit, an FPGA field programmable gate array or other programmable logic devices, hardware components or any combination thereof. The processor 310 may also be a combination that implements computing functions, for example, a combination of one or more microprocessors, a combination of a DSP and a microprocessor, and the like.

总线320可包括一通路,在上述组件之间传送信息。总线320可以是PCI外设部件互连标准总线或EISA扩展工业标准结构总线等。总线320可以分为控制总线、数据总线、地址总线等。为便于表示,图3中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。Bus 320 may include a path for communicating information between the components described above. The bus 320 may be a PCI peripheral component interconnect standard bus or an EISA extended industry standard architecture bus or the like. The bus 320 can be divided into a control bus, a data bus, an address bus, and the like. For ease of representation, only one thick line is used in FIG. 3 , but it does not mean that there is only one bus or one type of bus.

存储器330可以是ROM只读存储器或可存储静态信息和指令的其他类型的静态存储设备,RAM随机存储器或者可存储信息和指令的其他类型的动态存储设备,也可以是EEPROM电可擦可编程只读存储器、CD-ROM只读光盘或其他光盘存储、光碟存储(包括光碟、激光碟、压缩光碟、数字通用光碟等)、磁盘存储介质,或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。The memory 330 can be a ROM read-only memory or other types of static storage devices that can store static information and instructions, a RAM random access memory or other types of dynamic storage devices that can store information and instructions, or an EEPROM electrically erasable programmable memory device. Read-only memory, CD-ROM or other optical disc storage, optical disc storage (including optical discs, laser discs, compact discs, digital versatile discs, etc.), magnetic disk storage media, or capable of carrying or storing information in the form of instructions or data structures desired program code and any other medium that can be accessed by a computer, but not limited thereto.

存储器330用于存储执行本发明方案的应用程序代码(计算机程序),并由处理器310来控制执行。处理器310用于执行存储器330中存储的应用程序代码,以实现前述方法实施例所示的内容。The memory 330 is used to store application program codes (computer programs) for implementing the solutions of the present invention, and the execution is controlled by the processor 310 . The processor 310 is configured to execute the application program code stored in the memory 330, so as to implement the contents shown in the foregoing method embodiments.

以上仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above are only preferred embodiments of the present invention, and are not intended to limit the present invention. For those skilled in the art, the present invention may have various modifications and changes. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included within the protection scope of the present invention.

Claims (6)

1.天地一体化的作物长势智能监测方法,其特征在于,包括:1. The intelligent monitoring method of crop growth condition integrated with space and ground, characterized in that it includes: 收集遥感卫星数据,获取目标区域内的卫星时序遥感数据;Collect remote sensing satellite data and obtain satellite time series remote sensing data in the target area; 根据所述卫星时序遥感数据,计算作物生长状态参数与作物受胁迫状态参数;Calculate crop growth state parameters and crop stress state parameters according to the satellite time-series remote sensing data; 利用所述作物生长状态参数与所述作物受胁迫状态参数,构建基于卫星时序遥感数据的第一作物长势评估指数;所述作物生长状态参数包括归一化植被指数、增强型植被指数与绿度指数;所述作物受胁迫状态参数包括红边指数与土壤植被指数;所述第一作物长势评估指数用于表征作物生长状态与作物生长背景的关系;Using the crop growth state parameters and the crop stress state parameters, construct the first crop growth assessment index based on satellite time-series remote sensing data; the crop growth state parameters include normalized normalized vegetation index, enhanced vegetation index and greenness Index; the crop stress state parameters include red edge index and soil vegetation index; the first crop growth assessment index is used to characterize the relationship between crop growth state and crop growth background; 采集目标作物的生长数据,获取包含所述目标作物每天的生长指数数据的近地面观测数据;Collect growth data of the target crop, and obtain near-ground observation data including the daily growth index data of the target crop; 利用所述生长指数数据基于统计模型,构建基于所述近地面观测数据的第二作物长势评估指数;Using the growth index data based on a statistical model to construct a second crop growth assessment index based on the near-ground observation data; 以所述近地面观测数据为基准,对所述遥感卫星数据中相同位置、相同时间的所述第一作物长势评估指数的缺失值进行补充,得到所述第一作物长势评估指数模型与所述第二作物长势评估指数的映射模型训练标签,包括:定义所述遥感卫星数据中与地面观测地理位置一致的点为参考点,获取若干所述参考点前后的卫星数据序列点位数值,定义所述参考点的卫星数据序列点位以及所述参考点前后的点的卫星数据序列点位对应的地面观测序列值;利用求导的方式,分别获取用于表征相邻的所述卫星数据序列点位数值变化的导数,确定所述参考点的卫星数据序列点位数值与所述参考点前后的点的卫星数据序列点位数值之间的关系,构建拟合方程:若所述拟合方程中所有所述导数的符号一致,或者所述拟合方程中所述导数的符号存在差异且所述导数的符号存在差异的位置位于除所述参考点以外的点,则直接对所述拟合方程进行二次函数拟合;若所述拟合方程中所述导数的符号存在差异的位置位于所述参考点,则利用两组由除该所述参考点以外的点的所述卫星数据序列点位数值与该所述卫星数据序列点位数值对应的地面观测数值组成的数据组分段拟合二次函数,分别利用两组所述数据组计算两组所述参考点的卫星数据数值,取两组所述参考点的卫星数据数值的平均值得到所述参考点的目标卫星数据序列点位数值,将所述目标卫星数据序列点位数值、所述目标卫星数据序列点位数值对应的地面观测数值、所述参考点的卫星数据序列点位数值以及所述参考点对应的地面观测数值组合得到所述训练标签;Based on the near-surface observation data, the missing value of the first crop growth assessment index at the same position and at the same time in the remote sensing satellite data is supplemented to obtain the first crop growth assessment index model and the The mapping model training label of the second crop growth assessment index includes: defining the point in the remote sensing satellite data that is consistent with the geographical location of the ground observation as a reference point, obtaining a number of satellite data sequence point values before and after the reference point, and defining the points The satellite data sequence point position of the reference point and the ground observation sequence value corresponding to the satellite data sequence point position of the points before and after the reference point; using the method of derivation, respectively obtain the satellite data sequence points used to characterize the adjacent The derivative of the position value change determines the relationship between the satellite data sequence point value of the reference point and the satellite data sequence point value of the points before and after the reference point, and constructs a fitting equation: if in the fitting equation The signs of all the derivatives are the same, or there are differences in the signs of the derivatives in the fitting equation and the positions where the signs of the derivatives are different are located at points other than the reference point, then directly adjust the fitting equation Carry out quadratic function fitting; if the position where the signs of the derivatives in the fitting equation differ is located at the reference point, then use two groups of satellite data sequence points from points other than the reference point The data group piecewise fitting quadratic function that the digit value and the ground observation value corresponding to the said satellite data sequence point value is composed of, uses two groups of said data groups to calculate the satellite data value of two groups of said reference points respectively, takes The average value of the satellite data values of the two groups of reference points obtains the target satellite data sequence point value of the reference point, and the ground corresponding to the target satellite data sequence point value and the target satellite data sequence point value The training label is obtained by combining the observation value, the satellite data sequence point value of the reference point, and the ground observation value corresponding to the reference point; 采用平均插值的方式对所述第一作物长势评估指数进行连续插值,得到重构的连续的作物长势数据;performing continuous interpolation on the first crop growth assessment index by means of average interpolation to obtain reconstructed continuous crop growth data; 构建神经网络模型,利用所述映射模型训练标签对所述神经网络模型进行训练,得到作物长势数据映射模型;Constructing a neural network model, using the mapping model training label to train the neural network model to obtain a crop growth data mapping model; 利用所述作物长势数据映射模型对重构的连续的所述作物长势数据进行校正,得到目标作物长势评估数据。Using the crop growth data mapping model to correct the reconstructed continuous crop growth data to obtain target crop growth evaluation data. 2.根据权利要求1所述天地一体化的作物长势智能监测方法,其特征在于,收集遥感卫星数据,获取目标区域内的卫星时序遥感数据,包括:收集遥感卫星数据,对所述遥感卫星数据进行辐射校正和几何配准,并将所有的数据重采样到相同的空间分辨率,获取目标区域内的卫星时序遥感数据。2. according to claim 1, the integrated crop growth intelligent monitoring method is characterized in that collecting remote sensing satellite data and obtaining satellite time-series remote sensing data in the target area comprises: collecting remote sensing satellite data, and analyzing the remote sensing satellite data Carry out radiometric correction and geometric registration, and resample all data to the same spatial resolution to obtain satellite time series remote sensing data in the target area. 3.根据权利要求1所述天地一体化的作物长势智能监测方法,其特征在于,利用所述作物生长状态参数与所述作物受胁迫状态参数,采用线性回归的方式构建基于卫星时序遥感数据的所述第一作物长势评估指数。3. according to the intelligent monitoring method of the crop growth state of claim 1, it is characterized in that, utilize described crop growth state parameter and described crop stress state parameter, adopt the mode of linear regression to construct the time-series remote sensing data based on satellite. The first crop growth assessment index. 4.根据权利要求1所述天地一体化的作物长势智能监测方法,其特征在于,采集目标作物的生长数据,获取包含所述目标作物每天的生长指数数据的近地面观测数据,包括:4. according to the intelligent monitoring method of the crop growth state of claim 1, it is characterized in that, collect the growth data of target crop, obtain the near ground observation data that comprises the growth index data of described target crop every day, comprising: 利用搭设在农田中的传感器对目标作物的所述生长数据进行实时观测;Real-time observation of the growth data of the target crops using sensors set up in the farmland; 对观测的所述生长数据进行统计得到所述生长指数数据;performing statistics on the observed growth data to obtain the growth index data; 所述生长数据包括作物的株高、茎粗、叶片密度与病虫密度;所述生长指数数据包括目标作物每天的平均株高指数与平均叶片密度指数。The growth data includes plant height, stem diameter, leaf density and pest density of the crop; the growth index data includes the daily average plant height index and average leaf density index of the target crop. 5.天地一体化的作物长势智能监测装置,其特征在于,包括第一获取单元、第一处理单元、第一构建单元、第二获取单元、第二构建单元、第二处理单元、重构单元、网络模型单元与校正单元;5. An intelligent crop growth monitoring device integrated with space and ground, characterized in that it includes a first acquisition unit, a first processing unit, a first construction unit, a second acquisition unit, a second construction unit, a second processing unit, and a reconstruction unit , network model unit and correction unit; 所述第一获取单元,用于收集遥感卫星数据,获取目标区域内的卫星时序遥感数据;The first acquiring unit is configured to collect remote sensing satellite data, and acquire satellite time-series remote sensing data in the target area; 所述第一处理单元,用于根据所述卫星时序遥感数据,计算作物生长状态参数与作物受胁迫状态参数;所述作物生长状态参数包括归一化植被指数、增强型植被指数与绿度指数;所述作物受胁迫状态参数包括红边指数与土壤植被指数;The first processing unit is used to calculate crop growth state parameters and crop stress state parameters according to the satellite time-series remote sensing data; the crop growth state parameters include normalized normalized vegetation index, enhanced vegetation index and greenness index ; The crop stress state parameters include red edge index and soil vegetation index; 所述第一构建单元,用于利用所述作物生长状态参数与所述作物受胁迫状态参数,构建基于卫星时序遥感数据的第一作物长势评估指数;所述第一作物长势评估指数用于表征作物生长状态与作物生长背景的关系;The first construction unit is configured to use the crop growth state parameters and the crop stress state parameters to construct a first crop growth assessment index based on satellite time-series remote sensing data; the first crop growth assessment index is used to characterize The relationship between crop growth status and crop growth background; 所述第二获取单元,用于采集目标作物的生长数据,获取包含所述目标作物每天的生长指数数据的近地面观测数据;The second acquisition unit is configured to collect growth data of the target crop, and obtain near-ground observation data including the daily growth index data of the target crop; 所述第二构建单元,用于利用所述生长指数数据基于统计模型,构建基于所述近地面观测数据的第二作物长势评估指数;The second construction unit is configured to use the growth index data based on a statistical model to construct a second crop growth assessment index based on the near-ground observation data; 所述第二处理单元,用于以所述近地面观测数据为基准,对所述遥感卫星数据中相同位置、相同时间的所述第一作物长势评估指数的缺失值进行补充,得到所述第一作物长势评估指数模型与所述第二作物长势评估指数的映射模型训练标签,包括:定义所述遥感卫星数据中与地面观测地理位置一致的点为参考点,获取若干所述参考点前后的卫星数据序列点位数值,定义所述参考点的卫星数据序列点位以及所述参考点前后的点的卫星数据序列点位对应的地面观测序列值;利用求导的方式,分别获取用于表征相邻的所述卫星数据序列点位数值变化的导数,确定所述参考点的卫星数据序列点位数值与所述参考点前后的点的卫星数据序列点位数值之间的关系,构建拟合方程:若所述拟合方程中所有所述导数的符号一致,或者所述拟合方程中所述导数的符号存在差异且所述导数的符号存在差异的位置位于除所述参考点以外的点,则直接对所述拟合方程进行二次函数拟合;若所述拟合方程中所述导数的符号存在差异的位置位于所述参考点,则利用两组由除该所述参考点以外的点的所述卫星数据序列点位数值与该所述卫星数据序列点位数值对应的地面观测数值组成的数据组分段拟合二次函数,分别利用两组所述数据组计算两组所述参考点的卫星数据数值,取两组所述参考点的卫星数据数值的平均值得到所述参考点的目标卫星数据序列点位数值,将所述目标卫星数据序列点位数值、所述目标卫星数据序列点位数值对应的地面观测数值、所述参考点的卫星数据序列点位数值以及所述参考点对应的所述地面观测数值组合得到所述训练标签;The second processing unit is configured to supplement the missing value of the first crop growth assessment index at the same position and at the same time in the remote sensing satellite data based on the near-ground observation data, to obtain the first A crop growth assessment index model and the mapping model training label of the second crop growth assessment index, including: defining a point in the remote sensing satellite data that is consistent with the geographical location of ground observation as a reference point, and obtaining a number of points before and after the reference point The satellite data sequence point value defines the satellite data sequence point of the reference point and the ground observation sequence value corresponding to the satellite data sequence point of the points before and after the reference point; using the method of derivation, respectively obtain the points used for characterization Derivatives of changes in adjacent satellite data sequence point values, determine the relationship between the satellite data sequence point values of the reference point and the satellite data sequence point values of points before and after the reference point, and construct a fitting Equation: if the signs of all the derivatives in the fitting equation are the same, or the signs of the derivatives in the fitting equation are different and the positions where the signs of the derivatives are different are located at points other than the reference point , then directly carry out quadratic function fitting to described fitting equation; The data group segmental fitting quadratic function composed of the satellite data sequence point value of the point and the ground observation value corresponding to the satellite data sequence point value, using two groups of the data groups to calculate the two groups The satellite data value of the reference point, the average value of the satellite data value of the two groups of the reference point is taken to obtain the target satellite data sequence point value of the reference point, and the target satellite data sequence point value, the target The ground observation value corresponding to the satellite data sequence point value, the satellite data sequence point value of the reference point, and the ground observation value corresponding to the reference point are combined to obtain the training label; 所述重构单元,用于采用平均插值的方式对所述第一作物长势评估指数进行连续插值,得到重构的连续的作物长势数据;The reconstruction unit is configured to continuously interpolate the first crop growth assessment index by means of average interpolation to obtain reconstructed continuous crop growth data; 所述网络模型单元,用于构建神经网络模型,利用所述映射模型训练标签对所述神经网络模型进行训练,得到作物长势数据映射模型;The network model unit is used to construct a neural network model, and uses the mapping model training label to train the neural network model to obtain a crop growth data mapping model; 所述校正单元,用于利用所述作物长势数据映射模型对重构的连续的所述作物长势数据进行校正,得到目标作物长势评估数据。The correction unit is configured to use the crop growth data mapping model to correct the reconstructed continuous crop growth data to obtain target crop growth evaluation data. 6.一种电子设备,其特征在于,包括:6. An electronic device, characterized in that it comprises: 处理器和存储器;processor and memory; 所述存储器,用于存储计算机操作指令;The memory is used to store computer operation instructions; 所述处理器,用于通过调用所述计算机操作指令,执行权利要求1至4中任一项所述的天地一体化的作物长势智能监测方法。The processor is configured to execute the space-ground integrated intelligent monitoring method for crop growth according to any one of claims 1 to 4 by invoking the computer operation instructions.
CN202211414732.6A 2022-11-11 2022-11-11 Intelligent monitoring method and device for growing vigor of crops integrated with heaven and earth and electronic equipment Active CN115511224B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211414732.6A CN115511224B (en) 2022-11-11 2022-11-11 Intelligent monitoring method and device for growing vigor of crops integrated with heaven and earth and electronic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211414732.6A CN115511224B (en) 2022-11-11 2022-11-11 Intelligent monitoring method and device for growing vigor of crops integrated with heaven and earth and electronic equipment

Publications (2)

Publication Number Publication Date
CN115511224A CN115511224A (en) 2022-12-23
CN115511224B true CN115511224B (en) 2023-04-07

Family

ID=84513655

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211414732.6A Active CN115511224B (en) 2022-11-11 2022-11-11 Intelligent monitoring method and device for growing vigor of crops integrated with heaven and earth and electronic equipment

Country Status (1)

Country Link
CN (1) CN115511224B (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103971199B (en) * 2014-04-08 2017-09-05 武汉禾讯农业信息科技有限公司 A kind of remote sensing ranking method of a wide range of Grain Growth Situation
CN106600434B (en) * 2016-10-18 2021-04-23 河南省农业科学院农业经济与信息研究所 Crop growth remote sensing monitoring method based on crop model and assimilation technology
CN107014753B (en) * 2017-03-06 2020-09-29 中国科学院遥感与数字地球研究所 Crop growth monitoring method and system
CN109816267A (en) * 2019-01-31 2019-05-28 中国农业科学院农业信息研究所 A kind of intelligent soybean production management method and system
CN114118679B (en) * 2021-10-14 2022-09-16 农业农村部规划设计研究院 Crop yield per unit and growth evaluation method based on time sequence remote sensing data

Also Published As

Publication number Publication date
CN115511224A (en) 2022-12-23

Similar Documents

Publication Publication Date Title
Nasrallah et al. Sentinel-1 data for winter wheat phenology monitoring and mapping
US20230206352A1 (en) Digital modeling and tracking of agricultural fields for implementing agricultural field trials
EP3895067B1 (en) Mapping soil properties with satellite data using machine learning approaches
EP3455742B1 (en) Statistical blending of weather data sets
US10754063B2 (en) Supervised neural network to predict unlabeled rain rates
Son et al. A phenological object-based approach for rice crop classification using time-series Sentinel-1 Synthetic Aperture Radar (SAR) data in Taiwan
CN109711102B (en) Method for rapidly evaluating crop disaster loss
Son et al. Field-scale rice yield prediction from Sentinel-2 monthly image composites using machine learning algorithms
AU2018329244A1 (en) Generating a yield map for an agricultural field using classification and regression methods
WO2010055915A1 (en) Vegetation growth condition analysis method, recording medium on which program is recorded, and vegetation growth condition analyzer
AU2017308526A1 (en) Automatically detecting outlier values in harvested data
Amankulova et al. Sunflower crop yield prediction by advanced statistical modeling using satellite-derived vegetation indices and crop phenology
Rodriguez-Alvarez et al. The polarimetric sensitivity of SMAP-reflectometry signals to crop growth in the US corn belt
Schut et al. Improved wheat yield and production forecasting with a moisture stress index, AVHRR and MODIS data
BR112021010179A2 (en) quality control of quantitative precipitation estimate
CN114821360A (en) Method and device for intelligently extracting crop leaf area index and electronic equipment
CA3196136A1 (en) Advanced crop manager for crops stress mitigation
de Sá Leitão et al. Yield and plant height predictions of irrigated maize through unmanned aerial vehicle in North Florida
CN115511224B (en) Intelligent monitoring method and device for growing vigor of crops integrated with heaven and earth and electronic equipment
JP2022082636A (en) Information processing device
CN114359725B (en) Crop growth condition remote sensing monitoring system and method based on crop model and assimilation technology
Wang et al. Improving crop model accuracy in the development of regional irrigation and nitrogen schedules by using data assimilation and spatial clustering algorithms
CN115830458B (en) Method and device for determining farmland irrigation frequency based on sunlight-induced chlorophyll fluorescence
CN115496999A (en) Method and device for estimating field straw yield
CN115797785B (en) Method and device for determining farmland irrigation frequency based on microwave remote sensing

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant