CN115483601B - Thulium-doped optical fiber amplifier device based on mode control and non-uniform gain ultra-large mode field - Google Patents
Thulium-doped optical fiber amplifier device based on mode control and non-uniform gain ultra-large mode field Download PDFInfo
- Publication number
- CN115483601B CN115483601B CN202211331101.8A CN202211331101A CN115483601B CN 115483601 B CN115483601 B CN 115483601B CN 202211331101 A CN202211331101 A CN 202211331101A CN 115483601 B CN115483601 B CN 115483601B
- Authority
- CN
- China
- Prior art keywords
- doped
- fiber
- mode
- optical fiber
- thulium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000013307 optical fiber Substances 0.000 title claims abstract description 75
- 239000000835 fiber Substances 0.000 claims abstract description 172
- 238000005253 cladding Methods 0.000 claims abstract description 24
- 238000010521 absorption reaction Methods 0.000 claims abstract description 14
- 238000005086 pumping Methods 0.000 claims abstract description 12
- 238000010248 power generation Methods 0.000 claims abstract description 7
- 230000003287 optical effect Effects 0.000 claims description 20
- -1 rare earth ions Chemical class 0.000 claims description 17
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 17
- 230000003321 amplification Effects 0.000 claims description 13
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 13
- 229910052775 Thulium Inorganic materials 0.000 claims description 9
- 238000009826 distribution Methods 0.000 claims description 8
- FRNOGLGSGLTDKL-UHFFFAOYSA-N thulium atom Chemical compound [Tm] FRNOGLGSGLTDKL-UHFFFAOYSA-N 0.000 claims description 8
- 238000000605 extraction Methods 0.000 claims description 7
- 230000000694 effects Effects 0.000 claims description 6
- 230000008878 coupling Effects 0.000 claims 1
- 238000010168 coupling process Methods 0.000 claims 1
- 238000005859 coupling reaction Methods 0.000 claims 1
- 238000002310 reflectometry Methods 0.000 claims 1
- 238000000034 method Methods 0.000 description 13
- 230000009102 absorption Effects 0.000 description 11
- 230000002269 spontaneous effect Effects 0.000 description 6
- 230000001965 increasing effect Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 238000009825 accumulation Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 101100456571 Mus musculus Med12 gene Proteins 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000002329 infrared spectrum Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 230000009103 reabsorption Effects 0.000 description 1
- 239000002352 surface water Substances 0.000 description 1
- 238000010871 transoral laser microsurgery Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/063—Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
- H01S3/067—Fibre lasers
- H01S3/06754—Fibre amplifiers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/063—Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
- H01S3/067—Fibre lasers
- H01S3/06708—Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/063—Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
- H01S3/067—Fibre lasers
- H01S3/06708—Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
- H01S3/06716—Fibre compositions or doping with active elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/09—Processes or apparatus for excitation, e.g. pumping
- H01S3/091—Processes or apparatus for excitation, e.g. pumping using optical pumping
- H01S3/094—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
- H01S3/0941—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/10—Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Optics & Photonics (AREA)
- Lasers (AREA)
Abstract
Description
技术领域technical field
本发明涉及激光技术领域,尤其涉及一种基于模式控制和非均匀增益超大模场掺铥光纤放大器装置。The invention relates to the field of laser technology, in particular to an ultra-large mode field thulium-doped fiber amplifier device based on mode control and non-uniform gain.
背景技术Background technique
在稀土离子掺杂激光器中,铥离子可以产生2μm附近的激光输出。2μm激光处于人眼安全波段,在大气传输、烟雾穿透等方面性能卓越,已广泛应用于大气光通信、遥感及激光雷达探测等领域;同时,它又可以被水分子、CO2分子和N2O分子等多种分子吸收,应用于地球(行星)地表水汽分布测量,红外光谱分析、环境检测,激光显微外科手术以及特种材料加工等不同领域。In rare earth ion-doped lasers, thulium ions can produce laser output near 2 μm. The 2μm laser is in the safe wavelength band for human eyes, and has excellent performance in atmospheric transmission and smog penetration. It has been widely used in the fields of atmospheric optical communication, remote sensing and lidar detection. 2 O molecules and other molecular absorption, used in the earth (planetary) surface water vapor distribution measurement, infrared spectrum analysis, environmental detection, laser microsurgery and special material processing and other fields.
为了满足这些军事、医学及工业领域的需求,设计并研发高性能2μm光纤激光器是最关键一步。在2μm光纤激光器中,受重吸收效应影响,需要很高的种子光功率,才能有效抑制放大自发辐射。而放大自发辐射功率是影响输出功率提升的主要因素。在MOPA结构下,放大自发辐射伴随着整个放大过程,且多级放大结构会逐级放大自发辐射,从而限制功率的提升,降低系统的信噪比,甚至诱发寄生振荡,烧毁放大器。此外,大模场光纤会引起模式增加,光束质量劣化。因此,有必要采取一定措施抑制放大自发辐射和改善光束质量。如何提高输出功率、信噪比、光束质量,抑制放大自发辐射是亟需解决的问题。In order to meet the needs of these military, medical and industrial fields, designing and developing high-performance 2μm fiber lasers is the most critical step. In the 2μm fiber laser, due to the reabsorption effect, a high seed optical power is required to effectively suppress the amplified spontaneous emission. The amplified spontaneous radiation power is the main factor affecting the increase of output power. Under the MOPA structure, the amplification of spontaneous emission is accompanied by the entire amplification process, and the multi-stage amplification structure will amplify the spontaneous emission step by step, thereby limiting the power increase, reducing the signal-to-noise ratio of the system, and even inducing parasitic oscillations to burn the amplifier. In addition, large mode field fibers can cause increased modes and degraded beam quality. Therefore, it is necessary to take certain measures to suppress the amplified spontaneous emission and improve the beam quality. How to improve the output power, signal-to-noise ratio, beam quality, and suppress the amplification of spontaneous emission is an urgent problem to be solved.
发明内容Contents of the invention
为克服现有技术的缺陷,本发明要解决的技术问题是提供了一种基于模式控制和非均匀增益超大模场掺铥光纤放大器装置,其结构紧凑,简化了光路结构,未引入新的器件,极大增强了激光器稳定性、实用性,在提高输出功率、光束质量和信噪比的同时不增加系统整体重量,进一步减轻了激光器的体积,可长期稳定有效应用在各个领域。In order to overcome the defects of the prior art, the technical problem to be solved by the present invention is to provide a super-large mode field thulium-doped fiber amplifier device based on mode control and non-uniform gain, which has a compact structure, simplifies the optical path structure, and does not introduce new devices , which greatly enhances the stability and practicability of the laser, improves the output power, beam quality and signal-to-noise ratio without increasing the overall weight of the system, further reduces the volume of the laser, and can be used stably and effectively in various fields for a long time.
本发明的技术方案是:这种基于模式控制和非均匀增益超大模场掺铥光纤放大器装置,其包括:全光纤振荡器(10)、掺铥光纤放大器(20);The technical solution of the present invention is: the ultra-large mode field thulium-doped fiber amplifier device based on mode control and non-uniform gain, which includes: an all-fiber oscillator (10), a thulium-doped fiber amplifier (20);
全光纤振荡器包括:第一多模尾纤输出激光二极管(11)、高反光纤布拉格光栅(12)、第一光纤合束器(13)、高掺杂单模掺铥光纤(14)、部分反射光纤布拉格光栅(15)、第一包层光滤除器(16)、第一光纤隔离器(17);第一光纤合束器将第一多模尾纤输出激光二极管输出的泵浦光耦合进谐振腔,高反光纤布拉格光栅和部分反射光纤布拉格光栅作为谐振腔的两个腔镜,高掺杂单模掺铥光纤作为增益介质,吸收第一多模尾纤输出激光二极管输出的泵浦光,产生信号光;谐振腔产生的激光经过第一包层光滤除器获得纯净信号光,通过第一光纤隔离器保护全光纤振荡器来防止反馈光产生影响;The all-fiber oscillator includes: a first multimode pigtail output laser diode (11), a high reflection fiber Bragg grating (12), a first fiber combiner (13), a highly doped single-mode thulium-doped fiber (14), Partially reflective fiber Bragg grating (15), first cladding optical filter (16), first fiber isolator (17); the first fiber combiner outputs the first multimode pigtail output laser diode output pump The light is coupled into the resonant cavity, the high reflective fiber Bragg grating and the partially reflective fiber Bragg grating are used as the two cavity mirrors of the resonant cavity, and the highly doped single-mode thulium-doped fiber is used as the gain medium to absorb the output of the first multimode pigtail output laser diode The pump light generates signal light; the laser generated by the resonator passes through the first cladding optical filter to obtain pure signal light, and the first fiber isolator protects the all-fiber oscillator to prevent the feedback light from being affected;
掺铥光纤放大器包括:第二多模尾纤输出激光二极管(201)、第三多模尾纤输出激光二极管(202)、第四多模尾纤输出激光二极管(203)、第五多模尾纤输出激光二极管(204)、第六多模尾纤输出激光二极管(205)、第七多模尾纤输出激光二极管(206)、第二光纤合束器(207)、增益系数渐变的高掺杂大模场掺铥光纤、第二包层光滤除器(211)、带光纤尾纤的端帽(212);第二、第三、第四、第五、第六、第七多模尾纤输出激光二极管为放大器提供充足的泵浦光功率,第二光纤合束器将第二、第三、第四、第五、第六、第七多模尾纤输出激光二极管输出的泵浦光和全光纤振荡器输出的信号光进行耦合;前段高掺杂大模场掺铥光纤为后段高掺杂大模场掺铥光纤提供足够的信号光,后段高掺杂大模场掺铥光纤保证充足的泵浦吸收和产生高功率;第二包层光滤除器滤除包层中的泵浦光,获得纯净的信号光;带光纤尾纤的端帽降低光纤端面的输出激光功率密度。The thulium-doped fiber amplifier includes: the second multimode pigtail output laser diode (201), the third multimode pigtail output laser diode (202), the fourth multimode pigtail output laser diode (203), the fifth multimode pigtail output laser diode Fiber output laser diode (204), sixth multimode pigtail output laser diode (205), seventh multimode pigtail output laser diode (206), second fiber combiner (207), high doped Thulium-doped optical fiber with hetero large mode field, second cladding optical filter (211), end cap with fiber pigtail (212); second, third, fourth, fifth, sixth, seventh multimode The laser diode output from the pigtail provides sufficient pump light power for the amplifier, and the second, third, fourth, fifth, sixth, and seventh multimode fiber pigtail output laser diodes output the pumping power of the second fiber beam combiner The light is coupled with the signal light output by the all-fiber oscillator; the high-doped large-mode-field thulium-doped fiber in the front section provides enough signal light for the high-doped large-mode-field thulium-doped fiber in the back section, and the high-doped large-mode field doped fiber in the back section Thulium fiber ensures sufficient pump absorption and high power generation; the second cladding optical filter filters out the pump light in the cladding to obtain pure signal light; the end cap with fiber pigtail reduces the output laser at the fiber end face power density.
本发明提出一种非均匀泵浦的方式,第二、第三、第四、第五、第六、第七多模尾纤输出激光二极管为放大器提供充足的泵浦光功率,第二光纤合束器将第二、第三、第四、第五、第六、第七多模尾纤输出激光二极管输出的泵浦光和全光纤振荡器输出的信号光进行耦合;前段高掺杂大模场掺铥光纤为后段高掺杂大模场掺铥光纤提供足够的信号光,后段高掺杂大模场掺铥光纤保证充足的泵浦吸收和产生高功率;第二包层光滤除器滤除包层中的泵浦光,获得纯净的信号光;带光纤尾纤的端帽降低光纤端面的输出激光功率密度;该结构紧凑,简化了光路结构,未引入新的器件,极大增强了激光器稳定性、实用性,在提高输出功率、光束质量和信噪比的同时不增加系统整体重量,进一步减轻了激光器的体积,可长期稳定有效应用在各个领域。The present invention proposes a method of non-uniform pumping. The second, third, fourth, fifth, sixth, and seventh multimode pigtail output laser diodes provide sufficient pumping light power for the amplifier. The beamer couples the pump light output by the second, third, fourth, fifth, sixth, and seventh multi-mode pigtails to output the laser diode and the signal light output by the all-fiber oscillator; the high-doped large-mode The field-doped thulium fiber provides enough signal light for the rear highly doped large-mode field-doped thulium fiber, and the rear highly-doped large-mode field thulium-doped fiber ensures sufficient pump absorption and high power generation; the second cladding optical filter The filter removes the pump light in the cladding to obtain pure signal light; the end cap with fiber pigtail reduces the output laser power density of the fiber end face; the structure is compact, the optical path structure is simplified, and no new devices are introduced, which is extremely It greatly enhances the stability and practicability of the laser, improves the output power, beam quality and signal-to-noise ratio without increasing the overall weight of the system, further reduces the volume of the laser, and can be used stably and effectively in various fields for a long time.
附图说明Description of drawings
图1 是根据本发明的基于模式控制和非均匀增益超大模场掺铥光纤放大器装置的结构示意图。Fig. 1 is a structural schematic diagram of an ultra-large mode field thulium-doped fiber amplifier device based on mode control and non-uniform gain according to the present invention.
图2为图1中全光纤振荡器的结构示意图。FIG. 2 is a schematic structural diagram of the all-fiber oscillator in FIG. 1 .
图3为图1中掺铥光纤放大器的结构示意图。Fig. 3 is a schematic diagram of the structure of the thulium-doped fiber amplifier in Fig. 1 .
具体实施方式Detailed ways
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。In order to enable those skilled in the art to better understand the solutions of the present invention, the following will clearly and completely describe the technical solutions in the embodiments of the present invention in conjunction with the drawings in the embodiments of the present invention. Obviously, the described embodiments are only It is an embodiment of a part of the present invention, but not all embodiments. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts shall fall within the protection scope of the present invention.
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“包括”以及任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、装置、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其他步骤或单元。It should be noted that the terms "comprising" and any variations in the description and claims of the present invention and the above drawings are intended to cover non-exclusive inclusion, for example, processes, methods, and devices that include a series of steps or units The process, method, product or device are not necessarily limited to those steps or units explicitly listed, but may include other steps or units not explicitly listed or inherent to the process, method, product or device.
如图1-3所示,这种基于模式控制和非均匀增益超大模场掺铥光纤放大器装置,其包括:全光纤振荡器10、掺铥光纤放大器20;As shown in Figures 1-3, this ultra-large mode field thulium-doped fiber amplifier device based on mode control and non-uniform gain includes: an all-
全光纤振荡器包括:第一多模尾纤输出激光二极管11、高反光纤布拉格光栅12、第一光纤合束器13、高掺杂单模掺铥光纤14、部分反射光纤布拉格光栅15、第一包层光滤除器16、第一光纤隔离器17;第一光纤合束器将第一多模尾纤输出激光二极管输出的泵浦光耦合进谐振腔,高反光纤布拉格光栅和部分反射光纤布拉格光栅作为谐振腔的两个腔镜,高掺杂单模掺铥光纤作为增益介质,吸收第一多模尾纤输出激光二极管输出的泵浦光,产生信号光;谐振腔产生的激光经过第一包层光滤除器获得纯净信号光,通过第一光纤隔离器保护全光纤振荡器来防止反馈光产生影响;The all-fiber oscillator includes: a first multimode pigtail
掺铥光纤放大器包括:第二多模尾纤输出激光二极管201、第三多模尾纤输出激光二极管202、第四多模尾纤输出激光二极管203、第五多模尾纤输出激光二极管204、第六多模尾纤输出激光二极管205、第七多模尾纤输出激光二极管206、第二光纤合束器207、增益系数渐变的高掺杂大模场掺铥光纤、第二包层光滤除器211、带光纤尾纤的端帽212;第二、第三、第四、第五、第六、第七多模尾纤输出激光二极管为放大器提供充足的泵浦光功率,第二光纤合束器将第二、第三、第四、第五、第六、第七多模尾纤输出激光二极管输出的泵浦光和全光纤振荡器输出的信号光进行耦合;前段高掺杂大模场掺铥光纤为后段高掺杂大模场掺铥光纤提供足够的信号光,后段高掺杂大模场掺铥光纤保证充足的泵浦吸收和产生高功率;第二包层光滤除器滤除包层中的泵浦光,获得纯净的信号光;带光纤尾纤的端帽降低光纤端面的输出激光功率密度。The thulium-doped fiber amplifier includes: the second multimode pigtail
本发明提出一种非均匀泵浦的方式,第二、第三、第四、第五、第六、第七多模尾纤输出激光二极管为放大器提供充足的泵浦光功率,第二光纤合束器将第二、第三、第四、第五、第六、第七多模尾纤输出激光二极管输出的泵浦光和全光纤振荡器输出的信号光进行耦合;前段高掺杂大模场掺铥光纤为后段高掺杂大模场掺铥光纤提供足够的信号光,后段高掺杂大模场掺铥光纤保证充足的泵浦吸收和产生高功率;第二包层光滤除器滤除包层中的泵浦光,获得纯净的信号光;带光纤尾纤的端帽降低光纤端面的输出激光功率密度;该结构紧凑,简化了光路结构,未引入新的器件,极大增强了激光器稳定性、实用性,在提高输出功率、光束质量和信噪比的同时不增加系统整体重量,进一步减轻了激光器的体积,可长期稳定有效应用在各个领域。The present invention proposes a method of non-uniform pumping. The second, third, fourth, fifth, sixth, and seventh multimode pigtail output laser diodes provide sufficient pumping light power for the amplifier. The beamer couples the pump light output by the second, third, fourth, fifth, sixth, and seventh multi-mode pigtails to output the laser diode and the signal light output by the all-fiber oscillator; the high-doped large-mode The field-doped thulium fiber provides enough signal light for the rear highly doped large-mode field-doped thulium fiber, and the rear highly-doped large-mode field thulium-doped fiber ensures sufficient pump absorption and high power generation; the second cladding optical filter The filter removes the pump light in the cladding to obtain pure signal light; the end cap with fiber pigtail reduces the output laser power density of the fiber end face; the structure is compact, the optical path structure is simplified, and no new devices are introduced, which is extremely It greatly enhances the stability and practicability of the laser, improves the output power, beam quality and signal-to-noise ratio without increasing the overall weight of the system, further reduces the volume of the laser, and can be used stably and effectively in various fields for a long time.
优选地,所述高掺杂大模场掺铥光纤包括:第一高掺杂大模场掺铥光纤208、第二高掺杂大模场掺铥光纤209、第三高掺杂大模场掺铥光纤210,它们具有不同增益系数。Preferably, the highly doped large-mode-field thulium-doped fiber includes: a first highly-doped large-mode-field thulium-doped
优选地,所述第一、第二、第三高掺杂大模场掺铥光纤为掺杂浓度不同、长短不同的增益光纤,为保偏光纤、非保偏光纤、超大模场光纤或者单模光纤。Preferably, the first, second, and third highly doped large-mode-field thulium-doped fibers are gain fibers with different doping concentrations and different lengths, and are polarization-maintaining fibers, non-polarization-maintaining fibers, ultra-large-mode-field fibers or single mode fiber.
优选地,所述高掺杂大模场掺铥光纤为增益系数分布不同的光纤,该光纤的掺杂稀土离子浓度渐变,分布产生的增益吸收不同,在泵浦输入端处掺杂稀土离子浓度低,有效降低热效应,保证光纤放大;在光纤中间位置处掺杂稀土离子浓度高,进行有效增益提取;在光纤输出端处掺杂稀土离子浓度低,吸收残余泵浦光,从而实现增益可控放大。因为输入端泵浦光太强,输出端放大信号光太强,都容易因为光过强功率过高造成光纤损伤,所以输入端、输出端处掺杂稀土离子浓度低。Preferably, the highly doped large-mode field thulium-doped optical fiber is an optical fiber with different gain coefficient distributions. The concentration of doped rare earth ions in the optical fiber changes gradually, and the gain absorption caused by the distribution is different. The doped rare earth ion concentration at the pump input end is Low, effectively reducing the thermal effect and ensuring fiber amplification; doping rare earth ions in the middle of the fiber with a high concentration for effective gain extraction; doping rare earth ions at the output end of the fiber with a low concentration to absorb residual pump light, thereby achieving controllable gain enlarge. Because the pump light at the input end is too strong and the amplified signal light at the output end is too strong, it is easy to cause damage to the optical fiber due to too strong light and high power, so the concentration of rare earth ions doped at the input end and output end is low.
优选地,所述高掺杂大模场掺铥光纤为超大模场纤芯渐变光纤,纤芯直径在30µm~80µm之间;在超大模场光纤输出端处进行拉锥,缩小纤芯直径。Preferably, the highly doped large-mode-field thulium-doped fiber is an ultra-large-mode-field graded fiber with a core diameter between 30 µm and 80 µm; tapering is performed at the output end of the ultra-large-mode-field fiber to reduce the core diameter.
优选地,所述高掺杂大模场掺铥光纤为变芯径直径增益光纤,包括:单锥形光纤、纺锤形光纤和马鞍形光纤;变芯径直径增益光纤是纤芯直径沿着光纤长度方向变化。Preferably, the highly doped large-mode field thulium-doped fiber is a variable core diameter gain fiber, including: a single tapered fiber, a spindle fiber and a saddle fiber; the variable core diameter gain fiber is a core diameter along the fiber change in length.
优选地,所述高掺杂单模掺铥光纤为掺杂浓度不同的保偏光纤、非保偏光纤、大模场光纤或者单模光纤。Preferably, the highly doped single-mode thulium-doped optical fiber is a polarization-maintaining optical fiber, a non-polarization-maintaining optical fiber, a large mode field optical fiber or a single-mode optical fiber with different doping concentrations.
优选地,所述全光纤振荡器为单模保偏全光纤振荡器、单模非保偏全光纤振荡器、大模场保偏全光纤振荡器或大模场非保偏全光纤振荡器;掺铥光纤放大器为单模保偏掺铥光纤放大器、单模非保偏掺铥光纤放大器、大模场保偏掺铥光纤放大器或大模场非保偏掺铥光纤放大器;所述全光纤振荡器和掺铥光纤放大器适用波段范围为1.9µm~2.1µm。Preferably, the all-fiber oscillator is a single-mode polarization-maintaining all-fiber oscillator, a single-mode non-polarization-maintaining all-fiber oscillator, a large-mode field polarization-maintaining all-fiber oscillator or a large-mode field non-polarization-maintaining all-fiber oscillator; The thulium-doped fiber amplifier is a single-mode polarization-maintaining thulium-doped fiber amplifier, a single-mode non-polarization-maintaining thulium-doped fiber amplifier, a large-mode field polarization-maintaining thulium-doped fiber amplifier or a large-mode field non-polarization-maintaining thulium-doped fiber amplifier; the all-fiber oscillation The applicable wavelength range of the device and the thulium-doped fiber amplifier is 1.9µm~2.1µm.
优选地,所述带光纤尾纤的端帽的尾纤为保偏光纤、非保偏光纤、超大模场光纤或者单模光纤。Preferably, the pigtail of the end cap with a fiber pigtail is a polarization-maintaining fiber, a non-polarization-maintaining fiber, an ultra-large mode field fiber or a single-mode fiber.
本发明的装置的具体工作过程如下:The concrete work process of device of the present invention is as follows:
第一光纤合束器13将第一多模尾纤输出激光二极管11输出的泵浦光耦合进谐振腔,高反光纤布拉格光栅12和部分反射光纤布拉格光栅15作为谐振腔的两个腔镜,高掺杂单模掺铥光纤14作为增益介质,吸收第一多模尾纤输出激光二极管11输出的泵浦光,产生信号光。谐振腔产生的激光经过第一包层光滤除器16获得纯净信号光,通过第一光纤隔离器17,保护所述全光纤振荡器,防止反馈光产生影响。The first fiber combiner 13 couples the pump light output by the first multimode pigtail
第二光纤合束器207将第二多模尾纤输出激光二极管201、第三多模尾纤输出激光二极管202、第四多模尾纤输出激光二极管203、第五多模尾纤输出激光二极管204、第六多模尾纤输出激光二极管205、第七多模尾纤输出激光二极管206输出的泵浦光和全光纤振荡器10输出的信号光进行耦合,输出的光功率进入第一高掺杂大模场掺铥光纤208、第二高掺杂大模场掺铥光纤209、第三高掺杂大模场掺铥光纤210,产生的高功率激光。第一高掺杂大模场掺铥光纤208用于为第二高掺杂大模场掺铥光纤209、第三高掺杂大模场掺铥光纤210提供产生足够的信号光;第二高掺杂大模场掺铥光纤209、第三高掺杂大模场掺铥光纤210用于保证充足的泵浦吸收和产生高功率。在泵浦输入端处掺杂稀土离子浓度较低,有效降低热效应,保证光纤放大;在光纤中间位置处掺杂稀土离子浓度高,进行有效增益提取;在光纤输出端处掺杂稀土离子浓度较低,吸收残余泵浦光,从而实现增益可控放大。同时,超大模场光纤泵浦吸收系数高,可保证高效的增益提取,有效提升激光器放大效率,降低光纤端面的功率密度,从而实现输出功率在原有基础上提升一个数量级,并保证激光器长期有效运转。在超大模场光纤输出端处进行拉锥,缩小纤芯直径,有效实现高功率输出同时保证高的光束质量,实现准单模激光输出。第三高掺杂大模场掺铥光纤210连接第二包层光滤除器211,滤除包层中的泵浦光,获得纯净信号光后熔接带光纤尾纤的端帽212,降低光纤中的光功率密度,有效实现长时间运转。The second fiber bundle combiner 207 outputs the second multimode pigtail
本发明的有益技术效果如下:Beneficial technical effect of the present invention is as follows:
1.本发明提出一种非均匀泵浦的方式,一种为不同增益系数多段光纤组成,第一段光纤为第二段光纤、第三段光纤等提供产生足够的信号光,第二段光纤、第三段光纤保证充足的泵浦吸收和产生高功率。一种为增益系数分布不同的光纤,该光纤的掺杂稀土离子浓度渐变,分布产生的增益吸收不同,在泵浦输入端处掺杂稀土离子浓度较低,有效降低热效应,保证光纤放大;在光纤中间位置处掺杂稀土离子浓度高,进行有效增益提取;在光纤输出端处掺杂稀土离子浓度较低,吸收残余泵浦光,从而实现增益可控放大。该技术路线结构紧凑,简化了光路结构,未引入新的器件,极大增强了激光器稳定性、实用性,在提高输出功率、光束质量和信噪比的同时不增加系统整体重量,进一步减轻了激光器的体积,可长期稳定有效应用在各个领域。1. The present invention proposes a non-uniform pumping method. One is composed of multiple sections of optical fibers with different gain coefficients. The first section of optical fiber provides sufficient signal light for the second section of optical fiber, the third section of optical fiber, etc., and the second section of optical fiber , The third section of optical fiber ensures sufficient pump absorption and high power generation. An optical fiber with different distributions of gain coefficients. The concentration of doped rare earth ions in the optical fiber changes gradually, and the distribution produces different gain absorption. The concentration of doped rare earth ions at the pump input end is low, which can effectively reduce thermal effects and ensure optical fiber amplification; The middle position of the fiber is doped with a high concentration of rare earth ions for effective gain extraction; the concentration of doped rare earth ions at the output end of the fiber is low to absorb the residual pump light, thereby achieving controllable gain amplification. The technical route has a compact structure, simplifies the optical path structure, and does not introduce new devices, which greatly enhances the stability and practicability of the laser. It does not increase the overall weight of the system while improving the output power, beam quality, and signal-to-noise ratio, and further reduces the cost. The volume of the laser can be used stably and effectively in various fields for a long time.
2.本发明的技术路线采用超大模场纤芯渐变光纤,纤芯直径在30µm~80µm之间。该光纤泵浦吸收系数高,可保证高效的增益提取,有效提升激光器放大效率,降低光纤端面的功率密度,从而实现输出功率在原有基础上提升一个数量级,并保证激光器长期有效运转。在超大模场光纤输出端处进行拉锥,缩小纤芯直径,有效实现高功率输出同时保证高的光束质量,实现准单模激光输出。同时,该装置采用非均匀增益方式可以有效解决光纤中热量分布的问题,高掺杂光纤用来实现高效增益提取,吸收更多泵浦,降低热积累;低掺杂光纤熔接在输出端处,缓解输出端处的热积累,保护输出端面,保证激光器正常运转。2. The technical route of the present invention adopts the ultra-large mode field fiber core graded optical fiber, and the core diameter is between 30µm and 80µm. The optical fiber pump has a high absorption coefficient, which can ensure efficient gain extraction, effectively improve the laser amplification efficiency, and reduce the power density of the fiber end face, so as to achieve an order of magnitude increase in output power and ensure long-term effective operation of the laser. Tapering is performed at the output end of the ultra-large mode field fiber to reduce the core diameter, effectively achieve high power output while ensuring high beam quality, and realize quasi-single-mode laser output. At the same time, the device adopts the non-uniform gain method to effectively solve the problem of heat distribution in the optical fiber. The highly doped optical fiber is used to achieve efficient gain extraction, absorb more pumps, and reduce heat accumulation; the low-doped optical fiber is fused at the output end. Relieve the heat accumulation at the output end, protect the output end face, and ensure the normal operation of the laser.
以上所述,仅是本发明的较佳实施例,并非对本发明作任何形式上的限制,凡是依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属本发明技术方案的保护范围。The above are only preferred embodiments of the present invention, and are not intended to limit the present invention in any form. Any simple modifications, equivalent changes and modifications made to the above embodiments according to the technical essence of the present invention are still within the scope of this invention. The protection scope of the technical solution of the invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211331101.8A CN115483601B (en) | 2022-10-28 | 2022-10-28 | Thulium-doped optical fiber amplifier device based on mode control and non-uniform gain ultra-large mode field |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211331101.8A CN115483601B (en) | 2022-10-28 | 2022-10-28 | Thulium-doped optical fiber amplifier device based on mode control and non-uniform gain ultra-large mode field |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115483601A CN115483601A (en) | 2022-12-16 |
CN115483601B true CN115483601B (en) | 2023-04-04 |
Family
ID=84396764
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211331101.8A Active CN115483601B (en) | 2022-10-28 | 2022-10-28 | Thulium-doped optical fiber amplifier device based on mode control and non-uniform gain ultra-large mode field |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115483601B (en) |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3344475B2 (en) * | 1999-03-19 | 2002-11-11 | 日本電気株式会社 | Laser oscillator and laser amplifier |
US6721092B2 (en) * | 2001-02-21 | 2004-04-13 | Nippon Telegraph And Telephone Corporation | Thulium-doped fiber amplifier using pump light for improving conversion efficiency in S-band |
CN101340053A (en) * | 2008-08-13 | 2009-01-07 | 中国科学院上海光学精密机械研究所 | Intermediate infrared thulium-doped optical fiber laser amplifier |
CN102299475B (en) * | 2011-07-21 | 2012-08-08 | 西北大学 | Narrow-linewidth single-transverse mode hundred watt level 2 micron thulium doped fiber laser with all-fiber structure |
CN103078243B (en) * | 2013-01-30 | 2016-05-04 | 上海交通大学 | Mix 2 microns of high pulse energy thulium-doped fiber lasers of pumping |
-
2022
- 2022-10-28 CN CN202211331101.8A patent/CN115483601B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN115483601A (en) | 2022-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20020012378A1 (en) | Semiconductor-solid state laser optical waveguide pump | |
EP0723714A1 (en) | A high power optical fiber amplifier pumped by a multi-mode laser source | |
CN111541138A (en) | Device for inhibiting stimulated Brillouin scattering in high-power narrow-linewidth optical fiber laser | |
WO2022198892A1 (en) | Integrated melting point-free highly efficient optical fiber laser | |
CN106169689A (en) | Auxiliary chamber pumping erbium-ytterbium co-doped fiber laser instrument | |
US6104733A (en) | Multi-stage optical fiber amplifier having high conversion efficiency | |
CN105390913B (en) | Auxiliary chamber pumps erbium-ytterbium co-doped fiber amplifier | |
Wang et al. | Power scaling of ytterbium-doped fiber superfluorescent sources | |
Liu et al. | A novel bidirectional output oscillating-amplifying integrated fiber laser with 2 ports× 2 kW level near-single-mode output | |
US9225142B2 (en) | Fiber amplifier with multi section core | |
CN115483601B (en) | Thulium-doped optical fiber amplifier device based on mode control and non-uniform gain ultra-large mode field | |
US6240108B1 (en) | Cladding pumped fiber laser with reduced overlap between a laser mode and an ion-doped region | |
CN114614326A (en) | High Power High Beam Quality Tunable Narrow Linewidth Fiber Laser | |
CN113964632A (en) | High-power single-mode fiber laser | |
Minelly et al. | Efficient cladding pumping of an Er 3+ fibre | |
CN117060207A (en) | Reverse pumping narrow linewidth fiber laser amplifier and method | |
CN116247494A (en) | A single-mode fiber laser with intracavity high-order mode filtering | |
CN211295688U (en) | Narrow linewidth fiber laser based on side pumping technology | |
JP3259105B2 (en) | Optical fiber amplifier | |
CN112769029A (en) | DBR short-cavity single-frequency fiber laser of multimode semiconductor pump source cladding pumping | |
CN115663580B (en) | Optical fiber laser capable of efficiently absorbing pump light | |
Kaur et al. | Role of an isolator in optimization of forward conversion efficiency in an Er-doped SFS source at 1.55 μm | |
Hildebrandt et al. | Single-frequency fiber amplifier emitting 7.8 W at 1030 nm | |
Du et al. | Study on improving the efficiency of superfluorescent Yb-doped fiber source operating near 980 nm with distributed side-coupled cladding-pumped fiber | |
CN119275693A (en) | A double-sideband resonant optical fiber amplifier and a same-band ASE suppression method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |