CN115483037B - A polypyrrole/two-dimensional titanium carbide/sodium alginate airgel composite material and its preparation method and application - Google Patents
A polypyrrole/two-dimensional titanium carbide/sodium alginate airgel composite material and its preparation method and application Download PDFInfo
- Publication number
- CN115483037B CN115483037B CN202211136289.0A CN202211136289A CN115483037B CN 115483037 B CN115483037 B CN 115483037B CN 202211136289 A CN202211136289 A CN 202211136289A CN 115483037 B CN115483037 B CN 115483037B
- Authority
- CN
- China
- Prior art keywords
- titanium carbide
- polypyrrole
- sodium alginate
- dimensional titanium
- dimensional
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 title claims abstract description 128
- 229920000128 polypyrrole Polymers 0.000 title claims abstract description 97
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 title claims abstract description 52
- 235000010413 sodium alginate Nutrition 0.000 title claims abstract description 52
- 239000000661 sodium alginate Substances 0.000 title claims abstract description 52
- 229940005550 sodium alginate Drugs 0.000 title claims abstract description 52
- 239000002131 composite material Substances 0.000 title claims abstract description 39
- 238000002360 preparation method Methods 0.000 title claims abstract description 30
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 claims abstract description 75
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims abstract description 44
- 229910000019 calcium carbonate Inorganic materials 0.000 claims abstract description 37
- 239000002245 particle Substances 0.000 claims abstract description 33
- 238000004108 freeze drying Methods 0.000 claims abstract description 11
- 239000000017 hydrogel Substances 0.000 claims abstract description 11
- 238000000034 method Methods 0.000 claims abstract description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 9
- 239000000499 gel Substances 0.000 claims abstract description 3
- 238000005580 one pot reaction Methods 0.000 claims abstract description 3
- 239000000243 solution Substances 0.000 claims description 39
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 31
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 28
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 claims description 26
- 238000003756 stirring Methods 0.000 claims description 26
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims description 22
- 229910021642 ultra pure water Inorganic materials 0.000 claims description 22
- 239000012498 ultrapure water Substances 0.000 claims description 22
- 239000006228 supernatant Substances 0.000 claims description 21
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 claims description 20
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 claims description 20
- UQZIWOQVLUASCR-UHFFFAOYSA-N alumane;titanium Chemical compound [AlH3].[Ti] UQZIWOQVLUASCR-UHFFFAOYSA-N 0.000 claims description 19
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 15
- 239000002356 single layer Substances 0.000 claims description 15
- 238000005530 etching Methods 0.000 claims description 14
- 239000007772 electrode material Substances 0.000 claims description 13
- 229910052757 nitrogen Inorganic materials 0.000 claims description 13
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 claims description 11
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 11
- 239000004964 aerogel Substances 0.000 claims description 11
- 239000000084 colloidal system Substances 0.000 claims description 11
- 229910000029 sodium carbonate Inorganic materials 0.000 claims description 11
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 10
- 229910001870 ammonium persulfate Inorganic materials 0.000 claims description 10
- 238000003760 magnetic stirring Methods 0.000 claims description 9
- 238000005406 washing Methods 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 4
- 238000001035 drying Methods 0.000 claims description 3
- 239000003990 capacitor Substances 0.000 claims description 2
- 239000011259 mixed solution Substances 0.000 claims description 2
- 230000008569 process Effects 0.000 claims description 2
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 claims 2
- 239000002244 precipitate Substances 0.000 claims 2
- 238000005303 weighing Methods 0.000 claims 2
- 230000005587 bubbling Effects 0.000 claims 1
- 238000004140 cleaning Methods 0.000 claims 1
- 238000002791 soaking Methods 0.000 claims 1
- 238000009210 therapy by ultrasound Methods 0.000 claims 1
- 230000015572 biosynthetic process Effects 0.000 abstract description 4
- 239000000463 material Substances 0.000 abstract description 4
- 238000003786 synthesis reaction Methods 0.000 abstract description 4
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 36
- 229910052708 sodium Inorganic materials 0.000 description 36
- 239000011734 sodium Substances 0.000 description 36
- 150000002500 ions Chemical class 0.000 description 9
- 238000012360 testing method Methods 0.000 description 8
- 238000002484 cyclic voltammetry Methods 0.000 description 7
- 239000011521 glass Substances 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 6
- 239000003792 electrolyte Substances 0.000 description 6
- 239000010410 layer Substances 0.000 description 6
- 239000002135 nanosheet Substances 0.000 description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 6
- 238000012546 transfer Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 239000007864 aqueous solution Substances 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 238000006116 polymerization reaction Methods 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 239000001110 calcium chloride Substances 0.000 description 3
- 229910001628 calcium chloride Inorganic materials 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 229920001940 conductive polymer Polymers 0.000 description 3
- ZOMNIUBKTOKEHS-UHFFFAOYSA-L dimercury dichloride Chemical class Cl[Hg][Hg]Cl ZOMNIUBKTOKEHS-UHFFFAOYSA-L 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 238000004146 energy storage Methods 0.000 description 3
- 238000001000 micrograph Methods 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- 229910052723 transition metal Inorganic materials 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 238000000026 X-ray photoelectron spectrum Methods 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000001351 cycling effect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 239000011263 electroactive material Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000000634 powder X-ray diffraction Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000006479 redox reaction Methods 0.000 description 2
- 150000003624 transition metals Chemical class 0.000 description 2
- 241001474374 Blennius Species 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 229920006125 amorphous polymer Polymers 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000005518 electrochemistry Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 229910000000 metal hydroxide Inorganic materials 0.000 description 1
- 229910052976 metal sulfide Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229940088417 precipitated calcium carbonate Drugs 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- -1 transition metal carbides Chemical class 0.000 description 1
- 229910000314 transition metal oxide Inorganic materials 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/24—Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
- H01G11/48—Conductive polymers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
本发明一种聚吡咯/二维碳化钛/海藻酸钠气凝胶复合材料及其制备方法和应用,属于材料合成技术领域。本发明采用一锅法制备聚吡咯/二维碳化钛/海藻酸钠/碳酸钙水凝胶复合材料,进行冷冻干燥后,采用盐酸将聚吡咯/二维碳化钛/海藻酸钠/碳酸钙水凝胶复合材料的表面碳酸钙颗粒刻蚀完全,得到具有三维多孔结构的聚吡咯/二维碳化钛/海藻酸钠气凝胶复合材料。本发明提出的聚吡咯/二维碳化钛/海藻酸钠气凝胶复合材料的制备方法简单易行,该复合材料用于超级电容器电极时,具有较高的比电容和较好的循环稳定性。
The invention is a polypyrrole/two-dimensional titanium carbide/sodium alginate airgel composite material and its preparation method and application, which belongs to the technical field of material synthesis. The invention adopts a one-pot method to prepare the polypyrrole/two-dimensional titanium carbide/sodium alginate/calcium carbonate hydrogel composite material. After freeze-drying, the polypyrrole/two-dimensional titanium carbide/sodium alginate/calcium carbonate water is mixed with hydrochloric acid. The surface calcium carbonate particles of the gel composite material are completely etched, and a polypyrrole/two-dimensional titanium carbide/sodium alginate airgel composite material with a three-dimensional porous structure is obtained. The preparation method of the polypyrrole/two-dimensional titanium carbide/sodium alginate airgel composite material proposed by the present invention is simple and easy to implement. When the composite material is used as a supercapacitor electrode, it has higher specific capacitance and better cycle stability. .
Description
技术领域Technical field
本发明属于材料合成技术领域,具体涉及一种聚吡咯/二维碳化钛/海藻酸钠气凝胶复合材料及其制备方法和应用。The invention belongs to the technical field of material synthesis, and specifically relates to a polypyrrole/two-dimensional titanium carbide/sodium alginate airgel composite material and its preparation method and application.
背景技术Background technique
超级电容器因其具有高能量密度、快速充放电速率、高倍率性能等优点,而被认为是储能领域极具有发展前景的产品,但其有限的功率密度和循环寿命,仍然不足以满足日益增长的新型储能设备的需求。根据电荷存储原理的不同,超级电容器主要分为两类:电化学双电层电容器和赝电容器。前者通过离子吸附在电极表面以静电方式储存电荷,通常采用表面积较大的碳材料作为电极材料;而赝电容器的电容来源于界面上的快速可逆的氧化还原反应过程,通常采用过渡金属氧化物、硫化物、氢氧化物及导电聚合物作为电极材料。为获得高而稳定的比电容关键在于设计电活性材料,现有技术往往通过控制其微观结构,如比表面积和孔隙等特征,提高电极材料的电化学性能。Supercapacitors are considered to be promising products in the field of energy storage because of their advantages such as high energy density, fast charge and discharge rates, and high rate performance. However, their limited power density and cycle life are still not enough to meet the growing demand for energy storage. demand for new energy storage equipment. According to different charge storage principles, supercapacitors are mainly divided into two categories: electrochemical double layer capacitors and pseudocapacitors. The former stores charges electrostatically through ion adsorption on the electrode surface, and usually uses carbon materials with larger surface areas as electrode materials; while the capacitance of pseudocapacitors comes from the rapid and reversible redox reaction process at the interface, usually using transition metal oxides, Sulfides, hydroxides and conductive polymers are used as electrode materials. The key to obtaining high and stable specific capacitance is to design electroactive materials. Existing technologies often improve the electrochemical properties of electrode materials by controlling their microstructure, such as specific surface area and pores.
因此,许多研究人员采用了导电聚合物、聚吡咯等赝电容材料,其中导电聚合物因其合成方便和高导电性而受到研究人员的关注。聚吡咯因其具有赝电容较大、合成简单、成本低等优点,被广泛地应用于超级电容器电极材料的研究。然而,聚吡咯在高速循环过程中由于离子的反复掺杂/脱掺杂引起体积变化,从而导致循环稳定性变差。因此,我们可以将聚吡咯与其他具有较强机械性能的材料进行复合来提高其比电容和稳定性。Therefore, many researchers have adopted pseudocapacitive materials such as conductive polymers and polypyrrole, among which conductive polymers have attracted the attention of researchers due to their convenient synthesis and high conductivity. Polypyrrole is widely used in the research of supercapacitor electrode materials because of its advantages such as large pseudocapacitance, simple synthesis, and low cost. However, polypyrrole undergoes volume changes due to repeated doping/dedoping of ions during high-speed cycling, resulting in poor cycling stability. Therefore, we can compound polypyrrole with other materials with strong mechanical properties to improve its specific capacitance and stability.
近年来,二维过渡金属碳化物和氮化物(也称为MXenes),由于其优异的电化学性能而得到广泛的关注。其通用分子式为Mn+1XnTx(n=1,2,3),其中M表示过渡金属,X表示碳或氮原子,T表示表面终止官能团(-OH,-O,-F);MXenes具有电化学活性中心,这些活性中心来源于具有不同价态的过渡金属的快速转化和表面终止官能团的快速氧化还原反应,其电导率高达10000S cm-1。其中二维碳化钛作为超级电容器电极材料引起了极大的关注。除此之外,它还具备高倍率性能、高功率密度、优异的循环稳定性和高能量密度等电极材料的优异特质。然而,与石墨烯一样,由于二维碳化钛相邻纳米片之间存在强烈的范德华相互作用,从而发生自聚集,严重地阻碍了电解质离子的渗透,限制了二维碳化钛电极材料的电化学性能和实际应用。为解决这些问题,人们制作了二维碳化钛与其他高比电容化合物的异质结构电极材料,以此来增大二维碳化钛的层间距,从而提高其电化学性能。In recent years, two-dimensional transition metal carbides and nitrides (also known as MXenes) have attracted widespread attention due to their excellent electrochemical properties. Its general molecular formula is M n+1 X n T x (n=1, 2, 3), where M represents a transition metal, ; MXenes have electrochemically active centers, which originate from the rapid conversion of transition metals with different valence states and the rapid redox reaction of surface terminated functional groups, and their conductivity is as high as 10000S cm -1 . Among them, two-dimensional titanium carbide has attracted great attention as a supercapacitor electrode material. In addition, it also has excellent characteristics of electrode materials such as high rate performance, high power density, excellent cycle stability and high energy density. However, like graphene, self-aggregation occurs due to the strong van der Waals interaction between adjacent nanosheets of two-dimensional titanium carbide, which seriously hinders the penetration of electrolyte ions and limits the electrochemistry of two-dimensional titanium carbide electrode materials. performance and practical applications. To solve these problems, heterostructure electrode materials of two-dimensional titanium carbide and other high specific capacitance compounds have been produced to increase the interlayer spacing of two-dimensional titanium carbide and thereby improve its electrochemical performance.
发明内容Contents of the invention
针对上述现有技术中存在的问题,本发明的目的在于设计提供一种聚吡咯/二维碳化钛/海藻酸钠气凝胶复合材料及其制备方法和应用,本发明具有三维多孔的聚吡咯/二维碳化钛/海藻酸钠气凝胶复合材料不仅可以促进电子和电解液离子的转移,还结合了聚吡咯与二维碳化钛的高比电容等优异特质。因此,聚吡咯/二维碳化钛/海藻酸钠气凝胶复合材料作为超级电容器电极材料具有巨大的潜力。In view of the problems existing in the above-mentioned prior art, the purpose of the present invention is to design and provide a polypyrrole/two-dimensional titanium carbide/sodium alginate airgel composite material and its preparation method and application. The present invention has three-dimensional porous polypyrrole /Two-dimensional titanium carbide/sodium alginate airgel composite material can not only promote the transfer of electrons and electrolyte ions, but also combines the excellent characteristics of polypyrrole and two-dimensional titanium carbide such as high specific capacitance. Therefore, polypyrrole/two-dimensional titanium carbide/sodium alginate airgel composites have great potential as supercapacitor electrode materials.
为了实现上述目的,本发明采用以下技术方案:In order to achieve the above objects, the present invention adopts the following technical solutions:
一方面,本发明提供了一种聚吡咯/二维碳化钛/海藻酸钠气凝胶复合材料的制备方法,采用一锅法制备聚吡咯/二维碳化钛/海藻酸钠/碳酸钙水凝胶复合材料,进行冷冻干燥后,采用盐酸将聚吡咯/二维碳化钛/海藻酸钠/碳酸钙水凝胶复合材料的表面碳酸钙颗粒刻蚀完全,得到具有三维多孔结构的聚吡咯/二维碳化钛/海藻酸钠气凝胶复合材料。On the one hand, the present invention provides a method for preparing polypyrrole/two-dimensional titanium carbide/sodium alginate airgel composite material, using a one-pot method to prepare polypyrrole/two-dimensional titanium carbide/sodium alginate/calcium carbonate hydrogel. After freeze-drying, the surface calcium carbonate particles of the polypyrrole/two-dimensional titanium carbide/sodium alginate/calcium carbonate hydrogel composite were completely etched with hydrochloric acid to obtain polypyrrole/two-dimensional porous structure. Dimensional titanium carbide/sodium alginate airgel composite.
一种聚吡咯/二维碳化钛/海藻酸钠气凝胶复合材料的制备方法,其特征在于,具体包括以下步骤:A method for preparing polypyrrole/two-dimensional titanium carbide/sodium alginate airgel composite material, which is characterized in that it specifically includes the following steps:
(1)称取海藻酸钠,加入超纯水中磁力搅拌,加入吡咯,搅拌均匀形成溶胶,加入单层二维碳化钛、碳酸钙颗粒,磁力搅拌,缓慢滴加过硫酸铵溶液,磁力搅拌形成黑色凝胶,置于4℃冰箱中静置至吡咯聚合完全;(1) Weigh the sodium alginate, add it to ultrapure water and stir magnetically, add pyrrole, stir evenly to form a sol, add a single layer of two-dimensional titanium carbide and calcium carbonate particles, stir magnetically, slowly add ammonium persulfate solution dropwise, and stir magnetically A black gel forms and is placed in a 4°C refrigerator until pyrrole polymerization is complete;
(2)进行冷冻干燥,置于盐酸溶液中浸泡使碳酸钙颗粒完全刻蚀,超纯水反复清洗,冷冻干燥,得到三维多孔的聚吡咯/二维碳化钛/海藻酸钠气凝胶复合材料。(2) Freeze-dry, soak in hydrochloric acid solution to completely etch the calcium carbonate particles, wash repeatedly with ultrapure water, and freeze-dry to obtain a three-dimensional porous polypyrrole/two-dimensional titanium carbide/sodium alginate airgel composite material .
所述的制备方法,所述海藻酸钠、吡咯、单层二维碳化钛与碳酸钙颗粒的质量比为:0.1~0.5g:0.2~0.3g:20~30mg:1~120mg,所述海藻酸钠、超纯水与过硫酸铵溶液的质量与体积比为0.1~0.5g:5~15mL:0.1~1.5mL,过硫酸铵溶液的浓度为1.5~2.5mol L-1。According to the preparation method, the mass ratio of the sodium alginate, pyrrole, single-layer two-dimensional titanium carbide and calcium carbonate particles is: 0.1~0.5g:0.2~0.3g:20~30mg:1~120mg, and the seaweed The mass and volume ratio of sodium acid, ultrapure water and ammonium persulfate solution is 0.1~0.5g:5~15mL:0.1~1.5mL, and the concentration of ammonium persulfate solution is 1.5~2.5mol L -1 .
所述的制备方法,所述磁力搅拌的时间为2~5h,所述盐酸的浓度为0.1~1mol L-1,所述刻蚀的时间为1~3h。According to the preparation method, the magnetic stirring time is 2 to 5 hours, the concentration of hydrochloric acid is 0.1 to 1 mol L -1 , and the etching time is 1 to 3 hours.
所述的制备方法,所述单层二维碳化钛的制备过程具体为:称取氟化锂,溶解在盐酸溶液中,在磁力搅拌下缓慢加入钛碳化铝,在室温下刻蚀,用超纯水离心洗涤若干次直至离心上清液的pH为6.8-7.2,收集多层二维碳化钛上清液,通入氮气鼓泡后超声处理,离心后收集单层二维碳化钛胶体上清液,持续通入氮气,得到单层二维碳化钛,在4℃冰箱保存。二维碳化钛胶体浓度计算方法:量取一定体积的上清液于培养皿中,冷冻干燥后称取质量,计算浓度。According to the preparation method, the preparation process of the single-layer two-dimensional titanium carbide is specifically: weigh lithium fluoride, dissolve it in a hydrochloric acid solution, slowly add titanium aluminum carbide under magnetic stirring, etching at room temperature, and using ultrasonic Centrifuge and wash with pure water several times until the pH of the centrifugation supernatant is 6.8-7.2. Collect the multi-layer two-dimensional titanium carbide supernatant, bubble it with nitrogen and then sonicate it. After centrifugation, collect the single-layer two-dimensional titanium carbide colloidal supernatant. liquid, continuously flowing nitrogen gas to obtain a single layer of two-dimensional titanium carbide, and store it in a 4°C refrigerator. Calculation method for the concentration of two-dimensional titanium carbide colloid: measure a certain volume of supernatant in a petri dish, freeze-dry and weigh the mass to calculate the concentration.
所述的制备方法,所述氟化锂、盐酸溶液与钛碳化铝的质量与体积比为:0.1~2g:15~25mL:0.1~2g,优选氟化锂、盐酸溶液与钛碳化铝的质量与体积比为1g:20mL:1g,所述盐酸溶液的浓度为5~10mol L-1;所述刻蚀的时间为20~30h,所述通入氮气的时间为15~30min。According to the preparation method, the mass and volume ratio of lithium fluoride, hydrochloric acid solution and titanium aluminum carbide is: 0.1~2g:15~25mL:0.1~2g, preferably the mass of lithium fluoride, hydrochloric acid solution and titanium aluminum carbide. The volume ratio is 1g:20mL:1g, the concentration of the hydrochloric acid solution is 5~10mol L -1 ; the etching time is 20~30h, and the nitrogen gas introduction time is 15~30min.
所述的制备方法,所述碳酸钙颗粒的制备过程具体为:称取等体积等浓度的氯化钙溶液和碳酸钠溶液,混合,置于水和乙二醇的混合溶液中,磁力搅拌,依次用乙醇、甲醇、丙酮连续离心洗涤,以去除未反应的离子和乙二醇,收集沉淀即碳酸钙颗粒,烘干。According to the preparation method, the preparation process of the calcium carbonate particles is specifically: weigh equal volumes of calcium chloride solution and sodium carbonate solution of equal concentration, mix them, place them in a mixed solution of water and ethylene glycol, and magnetically stir. Continuous centrifugal washing with ethanol, methanol, and acetone in order to remove unreacted ions and ethylene glycol, collect the precipitated calcium carbonate particles, and dry them.
所述的制备方法,所述氯化钙溶液和碳酸钠溶液的浓度均为0.05~0.2mol L-1,优选为0.1mol L-1,所述氯化钙溶液与碳酸钠溶液的体积均为30~60mL;所述水和乙二醇的体积比为1:2~15,所述磁力搅拌的时间为20~40min,烘干的温度为50~100℃。According to the preparation method, the concentrations of the calcium chloride solution and the sodium carbonate solution are both 0.05 to 0.2 mol L -1 , preferably 0.1 mol L -1 , and the volumes of the calcium chloride solution and the sodium carbonate solution are both 30~60mL; the volume ratio of water and ethylene glycol is 1:2~15, the magnetic stirring time is 20~40min, and the drying temperature is 50~100°C.
第二方面,本发明提供了一种聚吡咯/二维碳化钛/海藻酸钠气凝胶复合材料,通过任一项所述的制备方法制备得到。In a second aspect, the present invention provides a polypyrrole/two-dimensional titanium carbide/sodium alginate airgel composite material, which is prepared by any of the preparation methods described above.
第三方面,本发明提供了所述的聚吡咯/二维碳化钛/海藻酸钠气凝胶复合材料在作为超级电容器电极材料中的用途。In a third aspect, the present invention provides the use of the polypyrrole/two-dimensional titanium carbide/sodium alginate airgel composite material as a supercapacitor electrode material.
本发明原理:聚吡咯具有较高的比电容,并且聚吡咯与海藻酸钠可以形成三维网络结构气凝胶,二维碳化钛纳米片由于片层之间容易团聚,导致电化学性能下降,所以将二维碳化钛纳米片分散在气凝胶网络中可以增大片层之间的间距,因此提高电化学性能。最后以碳酸钙颗粒作为牺牲模板,可以形成三维多孔的气凝胶,具有三维多孔的气凝胶网络可以促进电解液离子的转移,提高复合材料的电化学性能。Principle of the invention: polypyrrole has a high specific capacitance, and polypyrrole and sodium alginate can form a three-dimensional network structure aerogel. The two-dimensional titanium carbide nanosheets are prone to agglomeration between the sheets, resulting in a decrease in electrochemical performance. Dispersing 2D titanium carbide nanosheets in an aerogel network can increase the spacing between sheets and therefore improve electrochemical performance. Finally, calcium carbonate particles are used as sacrificial templates to form a three-dimensional porous aerogel. The three-dimensional porous aerogel network can promote the transfer of electrolyte ions and improve the electrochemical performance of the composite material.
与现有技术相比,本发明具有以下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
本发明制备方法简单易行,制得的聚吡咯/二维碳化钛/海藻酸钠气凝胶复合材料用于超级电容器电极时,具有较高的比电容和较好的循环稳定性。The preparation method of the invention is simple and easy to implement. When the polypyrrole/two-dimensional titanium carbide/sodium alginate airgel composite material is used as a supercapacitor electrode, it has higher specific capacitance and better cycle stability.
附图说明Description of the drawings
图1为实施例1中制备的钛碳化铝(A)、二维碳化钛(B)、碳酸钙颗粒(C)的扫描电镜图及碳酸钙颗粒的粒径分布图(D);Figure 1 is a scanning electron microscope image of titanium aluminum carbide (A), two-dimensional titanium carbide (B), and calcium carbonate particles (C) prepared in Example 1, and a particle size distribution chart (D) of the calcium carbonate particles;
图2为实施例1中制备的聚吡咯/二维碳化钛/海藻酸钠-n的扫描电镜图,其中n=0(A)、1(B)、2(C)、3(D);Figure 2 is a scanning electron microscope image of polypyrrole/two-dimensional titanium carbide/sodium alginate-n prepared in Example 1, where n=0 (A), 1 (B), 2 (C), 3 (D);
图3为对比例1中制备的聚吡咯和实施例1制备的二维碳化钛、海藻酸钠、聚吡咯/二维碳化钛/海藻酸钠-2、钛碳化铝的X射线粉末衍射图;Figure 3 is an X-ray powder diffraction pattern of the polypyrrole prepared in Comparative Example 1 and the two-dimensional titanium carbide, sodium alginate, polypyrrole/two-dimensional titanium carbide/sodium alginate-2, and titanium aluminum carbide prepared in Example 1;
图4为实施例1中制备的聚吡咯/二维碳化钛/海藻酸钠-2的X射线光电子能谱图;Figure 4 is the X-ray photoelectron spectrum of polypyrrole/two-dimensional titanium carbide/sodium alginate-2 prepared in Example 1;
图5为对比例1中制备的聚吡咯和实施例1制备的二维碳化钛、聚吡咯/二维碳化钛/海藻酸钠-n(n=0、1、2、3)在100mV s-1扫描速率下的循环伏安曲线;Figure 5 shows the polypyrrole prepared in Comparative Example 1 and the two-dimensional titanium carbide prepared in Example 1, polypyrrole/two-dimensional titanium carbide/sodium alginate-n (n=0, 1, 2, 3) at 100 mV s - Cyclic voltammetry curve at 1 scan rate;
图6为实施例1中制备的聚吡咯/二维碳化钛/海藻酸钠-2在不同扫速下的循环伏安曲线;Figure 6 is the cyclic voltammogram curve of polypyrrole/two-dimensional titanium carbide/sodium alginate-2 prepared in Example 1 at different scan speeds;
图7为实施例1中制备的聚吡咯/二维碳化钛/海藻酸钠-2在不同扫描速率下的电容控制和扩散控制对电流的相对贡献率;Figure 7 shows the relative contribution rate of capacitance control and diffusion control to current of polypyrrole/two-dimensional titanium carbide/sodium alginate-2 prepared in Example 1 at different scan rates;
图8为对比例1中制备的聚吡咯和实施例1制备的二维碳化钛、聚吡咯/二维碳化钛/海藻酸钠-n(n=0、1、2、3)在1Ag-1的电流密度下的恒电流充放电曲线;Figure 8 shows the polypyrrole prepared in Comparative Example 1 and the two-dimensional titanium carbide prepared in Example 1, polypyrrole/two-dimensional titanium carbide/sodium alginate-n (n=0, 1, 2, 3) in 1Ag -1 Galvanostatic charge and discharge curve at the current density;
图9为实施例1中制备的聚吡咯/二维碳化钛/海藻酸钠-2在不同电流密度下的恒电流充放电曲线;Figure 9 is the galvanostatic charge and discharge curves of polypyrrole/two-dimensional titanium carbide/sodium alginate-2 prepared in Example 1 under different current densities;
图10为对比例1中制备的聚吡咯和实施例1制备的二维碳化钛、聚吡咯/二维碳化钛/海藻酸钠-n(n=0、1、2、3)的电化学交流阻抗图,其中内标有平衡电路图;Figure 10 is the electrochemical exchange of polypyrrole prepared in Comparative Example 1 and two-dimensional titanium carbide prepared in Example 1, polypyrrole/two-dimensional titanium carbide/sodium alginate-n (n=0, 1, 2, 3) Impedance diagram with balanced circuit diagram internally labeled;
图11为实施例1中制备的聚吡咯/二维碳化钛/海藻酸钠-2的循环稳定性图。Figure 11 is a cycle stability chart of polypyrrole/two-dimensional titanium carbide/sodium alginate-2 prepared in Example 1.
具体实施方式Detailed ways
以下将结合附图和实施例对本发明作进一步说明,但本发明并不限于以下实施例。The present invention will be further described below with reference to the accompanying drawings and examples, but the present invention is not limited to the following examples.
实施例1:Example 1:
聚吡咯/二维碳化钛/海藻酸钠气凝胶复合材料的制备,包括以下步骤:The preparation of polypyrrole/two-dimensional titanium carbide/sodium alginate airgel composite material includes the following steps:
(1)将1g氟化锂溶解在20mL 9mol L-1盐酸溶液中,然后在磁力搅拌下缓慢加入1g钛碳化铝粉末。在35℃下蚀刻24h后,用超纯水多次离心洗涤,直至上清液pH为7。再将多层二维碳化钛的水溶液用氮气鼓泡20min后超声处理1小时。在3500rpm离心1h,收集单层二维碳化钛胶体上清液。将上清液收集在玻璃瓶中,持续通入20min氮气,然后保存在4℃冰箱备用。二维碳化钛胶体浓度计算方法:量取10mL上清液于培养皿中,冷冻干燥后称取质量,浓度大约为4.87mg mL-1。如图1(A)(B)分别为块状的钛碳化铝、单层二维碳化钛纳米片的扫描电镜图,可以看出已经成功制备了单层二维碳化钛纳米片;图1(C)为合成的碳酸钙颗粒,由图1(D)可以看出碳酸钙颗粒的粒径范围为0.6~1.4μm。(1) Dissolve 1g lithium fluoride in 20mL 9mol L -1 hydrochloric acid solution, and then slowly add 1g titanium aluminum carbide powder under magnetic stirring. After etching at 35°C for 24 hours, it was centrifuged and washed multiple times with ultrapure water until the pH of the supernatant was 7. Then, the aqueous solution of multi-layered two-dimensional titanium carbide was bubbled with nitrogen for 20 minutes and then ultrasonicated for 1 hour. Centrifuge at 3500 rpm for 1 h, and collect the supernatant of the single-layer two-dimensional titanium carbide colloid. The supernatant was collected in a glass bottle, continuously aerated with nitrogen for 20 min, and then stored in a 4°C refrigerator for later use. Calculation method for the concentration of two-dimensional titanium carbide colloid: measure 10 mL of the supernatant in a petri dish, freeze-dry and weigh the mass. The concentration is approximately 4.87 mg mL -1 . Figure 1 (A) and (B) are scanning electron microscopy images of bulk titanium aluminum carbide and single-layer two-dimensional titanium carbide nanosheets respectively. It can be seen that the single-layer two-dimensional titanium carbide nanosheets have been successfully prepared; Figure 1 ( C) is the synthesized calcium carbonate particles. It can be seen from Figure 1(D) that the particle size range of the calcium carbonate particles is 0.6 to 1.4 μm.
(2)将等体积的0.1mol L-1氯化钙和0.1mol L-1碳酸钠溶液置于水和乙二醇(体积比为1:5)中,磁力搅拌30min。随后,依次用乙醇、甲醇、丙酮在10000rpm下离心洗涤收集合成的碳酸钙颗粒,以去除未反应的离子和乙二醇,然后在60℃下干燥备用。(2) Place equal volumes of 0.1 mol L -1 calcium chloride and 0.1 mol L -1 sodium carbonate solutions in water and ethylene glycol (volume ratio 1:5), and stir magnetically for 30 minutes. Subsequently, the synthesized calcium carbonate particles were collected by centrifugal washing with ethanol, methanol, and acetone at 10,000 rpm to remove unreacted ions and ethylene glycol, and then dried at 60°C for later use.
(3)量取10mL超纯水于30mL玻璃样品瓶中,加入0.3g海藻酸钠,磁力搅拌均匀后,加入270mg吡咯搅拌均匀形成溶胶。然后量取步骤(1)得到的5mL二维碳化钛胶体(约24.35mg),再分别称取步骤(2)制备的0、10、50、100mg碳酸钙颗粒溶于上述溶胶中,磁力搅拌3h。再缓慢滴加1mL 2.28mg L-1过硫酸铵溶液,搅拌10s形成黑色水凝胶。将水凝胶置于4℃冰箱等吡咯聚合完全,在-58℃冷冻干燥24h后,置于0.5mol L-1盐酸溶液中浸泡2h完全刻蚀碳酸钙颗粒,再用超纯水反复清洗干净,冷冻干燥得到三维多孔的聚吡咯/二维碳化钛/海藻酸钠气凝胶复合材料(根据碳酸钙颗粒质量的不同,将样品命名为聚吡咯/二维碳化钛/海藻酸钠-n,其中n=0、1、2、3,分别代表添加碳酸钙的质量为0、10、50、100mg)。(3) Measure 10 mL of ultrapure water into a 30 mL glass sample bottle, add 0.3 g of sodium alginate, and magnetically stir evenly, then add 270 mg of pyrrole and stir evenly to form a sol. Then measure 5 mL of two-dimensional titanium carbide colloid (about 24.35 mg) obtained in step (1), and then respectively weigh 0, 10, 50, and 100 mg of calcium carbonate particles prepared in step (2), dissolve them in the above sol, and stir magnetically for 3 hours. . Then slowly add 1 mL of 2.28 mg L -1 ammonium persulfate solution dropwise, and stir for 10 s to form a black hydrogel. Place the hydrogel in a 4°C refrigerator until the pyrrole polymerization is complete. After freeze-drying at -58°C for 24 hours, it is soaked in 0.5 mol L -1 hydrochloric acid solution for 2 hours to completely etch the calcium carbonate particles, and then washed repeatedly with ultrapure water. , freeze-drying to obtain a three-dimensional porous polypyrrole/two-dimensional titanium carbide/sodium alginate airgel composite material (according to the difference in mass of calcium carbonate particles, the sample is named polypyrrole/two-dimensional titanium carbide/sodium alginate-n, Among them, n=0, 1, 2, and 3, respectively representing the mass of added calcium carbonate of 0, 10, 50, and 100 mg).
如图2(A)(B)(C)(D)分别为聚吡咯/二维碳化钛/海藻酸钠-n(n=0、1、2、3)的扫描电镜图。由图2(A)可以看出气凝胶中没有添加碳酸钙颗粒时,气凝胶表面的空隙较少;随着碳酸钙颗粒含量增加,气凝胶表面的孔径逐渐变大,如:图2(B)(C)(D)。特别地,由图2(D)中可以看出气凝胶表面有较大的空腔,可能是因为碳酸钙颗粒含量太多而发生了团聚,所以刻蚀之后留下了较大的空腔。As shown in Figure 2(A)(B)(C)(D), they are scanning electron microscope images of polypyrrole/two-dimensional titanium carbide/sodium alginate-n (n=0, 1, 2, 3) respectively. It can be seen from Figure 2(A) that when no calcium carbonate particles are added to the airgel, there are fewer voids on the surface of the airgel; as the content of calcium carbonate particles increases, the pore size on the surface of the airgel gradually becomes larger, such as: Figure 2 (B)(C)(D). In particular, it can be seen from Figure 2(D) that there are large cavities on the surface of the airgel. It may be because the calcium carbonate particles contain too much and agglomerate, so large cavities are left after etching.
如图3为聚吡咯、二维碳化钛、海藻酸钠、聚吡咯/二维碳化钛/海藻酸钠-2、钛碳化铝的X射线粉末衍射图,图中聚吡咯在2θ=15°~35°处的峰,是聚吡咯无定形的特征峰。在钛碳化铝前驱体和二维碳化钛的衍射峰中,钛碳化铝在2θ=9.55°,19.00°,38.75°,60.34°分别对应于钛碳化铝中(002),(004),(104)和(110)晶面(JCPDS No.52-0875)。值得注意的是,二维碳化钛在(002)与(004)晶面的衍射峰与刻蚀前相比移动到较低的角度,表明通过刻蚀可以成功去除钛碳化铝中的铝层。此外,二维碳化钛在(104)晶面相对应的38.75°处的衍射峰消失,表明铝层的去除与二维碳化钛的成功制备。海藻酸钠在2θ=13.50°、22.50°处的宽峰是海藻酸钠结晶度较低的非晶态聚合物结构的特征峰。聚吡咯/二维碳化钛/海藻酸钠-2在2θ=6.07°、17.49°处的衍射峰分别对应于二维碳化钛的(002)、(004)晶面;2θ=13.5°处的衍射峰是海藻酸钠的特征峰,而在22.50°处的衍射峰归因于聚吡咯与海藻酸钠两个宽峰的叠加。综上所述,说明聚吡咯/二维碳化钛/海藻酸钠-2的成功制备。Figure 3 shows the X-ray powder diffraction patterns of polypyrrole, two-dimensional titanium carbide, sodium alginate, polypyrrole/two-dimensional titanium carbide/sodium alginate-2, and titanium aluminum carbide. In the figure, polypyrrole is at 2θ=15°~ The peak at 35° is a characteristic peak of amorphous polypyrrole. Among the diffraction peaks of titanium aluminum carbide precursor and two-dimensional titanium carbide, titanium aluminum carbide corresponds to (002), (004), (104) in titanium aluminum carbide at 2θ=9.55°, 19.00°, 38.75°, and 60.34° respectively. ) and (110) crystal plane (JCPDS No.52-0875). It is worth noting that the diffraction peaks of the (002) and (004) crystal planes of two-dimensional titanium carbide move to a lower angle than before etching, indicating that the aluminum layer in titanium aluminum carbide can be successfully removed by etching. In addition, the diffraction peak of two-dimensional titanium carbide at 38.75° corresponding to the (104) crystal plane disappeared, indicating the removal of the aluminum layer and the successful preparation of two-dimensional titanium carbide. The broad peaks of sodium alginate at 2θ=13.50° and 22.50° are characteristic peaks of the amorphous polymer structure of sodium alginate with low crystallinity. The diffraction peaks of polypyrrole/two-dimensional titanium carbide/sodium alginate-2 at 2θ=6.07° and 17.49° respectively correspond to the (002) and (004) crystal planes of two-dimensional titanium carbide; the diffraction peaks at 2θ=13.5° The peak is the characteristic peak of sodium alginate, and the diffraction peak at 22.50° is attributed to the superposition of two broad peaks of polypyrrole and sodium alginate. In summary, it illustrates the successful preparation of polypyrrole/two-dimensional titanium carbide/sodium alginate-2.
如图4为聚吡咯/二维碳化钛/海藻酸钠-2的X射线光电子能谱图,可以看出该复合材料中存在氟、氧、钛、氮、碳元素。Figure 4 shows the X-ray photoelectron spectrum of polypyrrole/two-dimensional titanium carbide/sodium alginate-2. It can be seen that there are fluorine, oxygen, titanium, nitrogen, and carbon elements in the composite material.
(4)将所得的聚吡咯/二维碳化钛/海藻酸钠-n(n=0、1、2、3)分散到超纯水中,得到1mg mL-1的分散液,分别用移液枪移取5μL滴涂于电极的表面并用红外灯烘干,得到聚吡咯/二维碳化钛/海藻酸钠-n(n=0、1、2、3)修饰电极。然后以聚吡咯/二维碳化钛/海藻酸钠-n(n=0、1、2、3)修饰电极为工作电极,饱和甘汞电极为参比电极,铂片电极为对电极,2mol L-1的H2SO4为电解液,通过电化学工作站对聚吡咯/二维碳化钛/海藻酸钠-n(n=0、1、2、3)进行循环伏安测试及恒电流充放电测试。(4) Disperse the obtained polypyrrole/two-dimensional titanium carbide/sodium alginate-n (n=0, 1, 2, 3) into ultrapure water to obtain a dispersion of 1 mg mL -1 , and pipette Use a gun to transfer 5 μL onto the surface of the electrode and dry it with an infrared lamp to obtain a polypyrrole/two-dimensional titanium carbide/sodium alginate-n (n=0, 1, 2, 3) modified electrode. Then the polypyrrole/two-dimensional titanium carbide/sodium alginate-n (n=0, 1, 2, 3) modified electrode was used as the working electrode, the saturated calomel electrode was used as the reference electrode, and the platinum sheet electrode was used as the counter electrode, 2 mol L -1 H 2 SO 4 was used as the electrolyte, and cyclic voltammetry tests and galvanostatic charge and discharge were performed on polypyrrole/two-dimensional titanium carbide/sodium alginate-n (n=0, 1, 2, 3) through an electrochemical workstation. test.
本实施例1制备的聚吡咯/二维碳化钛/海藻酸钠气凝胶复合材料的性能验证如下:The performance verification of the polypyrrole/two-dimensional titanium carbide/sodium alginate airgel composite material prepared in Example 1 is as follows:
如图5为聚吡咯、二维碳化钛、聚吡咯/二维碳化钛/海藻酸钠-n(n=0、1、2、3)在100mV s-1的扫描速率下的循环伏安曲线,从图5中可以看出聚吡咯/二维碳化钛/海藻酸钠-2的封闭面积最大,表明其具有最佳的电容行为。除此之外,曲线的封闭面积为不规则矩形,说明电极材料同时存在赝电容行为和双电层电容行为。Figure 5 shows the cyclic voltammetry curves of polypyrrole, two-dimensional titanium carbide, polypyrrole/two-dimensional titanium carbide/sodium alginate-n (n=0, 1, 2, 3) at a scan rate of 100mV s -1 , it can be seen from Figure 5 that the closed area of polypyrrole/two-dimensional titanium carbide/sodium alginate-2 is the largest, indicating that it has the best capacitive behavior. In addition, the closed area of the curve is an irregular rectangle, indicating that the electrode material has both pseudocapacitive behavior and electric double layer capacitive behavior.
如图6为聚吡咯/二维碳化钛/海藻酸钠-2在不同扫速下的循环伏安曲线,随着扫描速率的增大,曲线的封闭面积也逐渐增大,但形状保持不变,说明该复合材料具有良好的可逆性和倍率性能。Figure 6 shows the cyclic voltammetry curves of polypyrrole/two-dimensional titanium carbide/sodium alginate-2 at different scan rates. As the scan rate increases, the closed area of the curve gradually increases, but the shape remains unchanged. , indicating that the composite material has good reversibility and rate performance.
如图7为聚吡咯/二维碳化钛/海藻酸钠-2在不同扫描速率下的电容控制和扩散控制对电流的相对贡献率,通过公式(a)可以计算得到不同扫描速率下的相对贡献。随着扫描速率的增加,电容控制的贡献也增加,这表明聚吡咯/二维碳化钛/海藻酸钠-2电极在低扫速下主导的扩散控制逐渐转变为电容控制。As shown in Figure 7, the relative contribution rate of capacitance control and diffusion control to current of polypyrrole/two-dimensional titanium carbide/sodium alginate-2 at different scan rates is calculated by formula (a). The relative contribution rate at different scan rates can be calculated . As the scan rate increases, the contribution of capacitance control also increases, which indicates that the diffusion control dominated by the polypyrrole/2D titanium carbide/sodium alginate-2 electrode at low scan rates gradually changes to capacitance control.
如图8为聚吡咯、二维碳化钛、聚吡咯/二维碳化钛/海藻酸钠-n(n=0、1、2、3)在1Ag-1的电流密度下的恒电流充放电曲线,聚吡咯/二维碳化钛/海藻酸钠-2具有最长的充放电时间,说明具有最大的比电容。通过公式(b)可以计算得到在电流密度为1Ag-1时聚吡咯、二维碳化钛、聚吡咯/二维碳化钛/海藻酸钠-n(n=0、1、2、3)的比电容分别为246F g-1、299Fg-1、475F g-1、174F g-1。Figure 8 shows the galvanostatic charge and discharge curves of polypyrrole, two-dimensional titanium carbide, polypyrrole/two-dimensional titanium carbide/sodium alginate-n (n=0, 1, 2, 3) at a current density of 1Ag -1 , polypyrrole/two-dimensional titanium carbide/sodium alginate-2 has the longest charge and discharge time, indicating that it has the largest specific capacitance. Through formula (b), the ratio of polypyrrole, two-dimensional titanium carbide, polypyrrole/two-dimensional titanium carbide/sodium alginate-n (n=0, 1, 2, 3) can be calculated when the current density is 1Ag -1 The capacitances are 246F g -1 , 299Fg -1 , 475F g -1 , and 174F g -1 respectively.
如图9为聚吡咯/二维碳化钛/海藻酸钠-2在不同电流密度下的恒电流充放电曲线,其中曲线形状不是严格对称的三角形,尤其是在低电流密度下,放电曲线略有拖尾。说明电极材料同时具有赝电容和双电层电容特性。Figure 9 shows the galvanostatic charge and discharge curves of polypyrrole/two-dimensional titanium carbide/sodium alginate-2 at different current densities. The shape of the curve is not a strictly symmetrical triangle. Especially at low current densities, the discharge curve is slightly Trailing. It shows that the electrode material has both pseudocapacitance and electric double layer capacitance properties.
如图10为聚吡咯、二维碳化钛、聚吡咯/二维碳化钛/海藻酸钠-n(n=0、1、2、3)的电化学交流阻抗图,内插图为平衡电路图。在低频区,聚吡咯/二维碳化钛/海藻酸钠-2的斜率最大,表明其扩Warburg阻抗最小,具有较快的传质能力。Figure 10 shows the electrochemical AC impedance diagram of polypyrrole, two-dimensional titanium carbide, polypyrrole/two-dimensional titanium carbide/sodium alginate-n (n=0, 1, 2, 3), and the inset illustration is a balanced circuit diagram. In the low-frequency region, polypyrrole/two-dimensional titanium carbide/sodium alginate-2 has the largest slope, indicating that it has the smallest extended Warburg impedance and has faster mass transfer capabilities.
如图11为聚吡咯/二维碳化钛/海藻酸钠-2的循环稳定性图,经过1500次的循环充放电后,电容保持率为81%。说明聚吡咯/二维碳化钛/海藻酸钠-2气凝胶有较高的稳定性。Figure 11 shows the cycle stability diagram of polypyrrole/two-dimensional titanium carbide/sodium alginate-2. After 1500 cycles of charge and discharge, the capacitance retention rate is 81%. This shows that the polypyrrole/two-dimensional titanium carbide/sodium alginate-2 aerogel has high stability.
i(V)=k1v+k2v1/2 (a)i(V)=k 1 v+k 2 v 1/2 (a)
公式a中,i(V)代表特定电势下的响应电流,v代表扫描速率,k1、k2分别代表电容控制与扩散控制系数。In formula a, i (V) represents the response current at a specific potential, v represents the scan rate, k 1 and k 2 represent the capacitance control and diffusion control coefficients respectively.
公式b中,Cs(F g-1)代表比电容,I(A)代表电流,Δt(s)代表放电时间,m(g)代表电活性材料的质量,ΔV(V)代表电势窗口。In formula b, Cs(F g -1 ) represents the specific capacitance, I(A) represents the current, Δt(s) represents the discharge time, m(g) represents the mass of the electroactive material, and ΔV(V) represents the potential window.
实施例2Example 2
聚吡咯/二维碳化钛/海藻酸钠气凝胶复合材料的制备,包括以下步骤:The preparation of polypyrrole/two-dimensional titanium carbide/sodium alginate airgel composite material includes the following steps:
(1)将0.1g氟化锂溶解在15mL 5mol L-1盐酸溶液中,然后在磁力搅拌下缓慢加入0.1g钛碳化铝粉末。在35℃下蚀刻20h后,用超纯水多次离心洗涤,直至上清液pH约为6.8。再将多层二维碳化钛的水溶液用氮气鼓泡15min后超声处理1小时。在3500rpm离心1h,收集单层二维碳化钛胶体上清液。将上清液收集在玻璃瓶中,持续通入20min氮气,然后保存在4℃冰箱备用。(1) Dissolve 0.1g lithium fluoride in 15mL 5mol L -1 hydrochloric acid solution, and then slowly add 0.1g titanium aluminum carbide powder under magnetic stirring. After etching at 35°C for 20 h, it was centrifuged and washed multiple times with ultrapure water until the pH of the supernatant was approximately 6.8. Then, the aqueous solution of multi-layered two-dimensional titanium carbide was bubbled with nitrogen for 15 minutes and then ultrasonicated for 1 hour. Centrifuge at 3500 rpm for 1 h, and collect the supernatant of the single-layer two-dimensional titanium carbide colloid. The supernatant was collected in a glass bottle, continuously aerated with nitrogen for 20 min, and then stored in a 4°C refrigerator for later use.
(2)将等体积30mL的0.05mol L-1氯化钙和0.05mol L-1碳酸钠溶液置于水和乙二醇(体积比为1:2)中,磁力搅拌20min。随后,依次用乙醇、甲醇、丙酮在10000rpm下离心洗涤收集合成的碳酸钙颗粒,以去除未反应的离子和乙二醇,然后在50℃下干燥备用。(2) Place an equal volume of 30 mL of 0.05 mol L -1 calcium chloride and 0.05 mol L -1 sodium carbonate solution into water and ethylene glycol (volume ratio is 1:2), and stir magnetically for 20 minutes. Subsequently, the synthesized calcium carbonate particles were collected by centrifugal washing with ethanol, methanol, and acetone at 10,000 rpm to remove unreacted ions and ethylene glycol, and then dried at 50°C for later use.
(3)量取5mL超纯水于30mL玻璃样品瓶中,加入0.1g海藻酸钠,磁力搅拌均匀后,加入200mg吡咯搅拌均匀形成溶胶。然后量取步骤(1)得到的5mL二维碳化钛胶体(约24.35mg),再分别称取步骤(2)制备的1mg碳酸钙颗粒溶于上述溶胶中,磁力搅拌2h。再缓慢滴加1mL 2.28mg L-1过硫酸铵溶液,搅拌10s形成黑色水凝胶。将水凝胶置于4℃冰箱等吡咯聚合完全,在-58℃冷冻干燥24h后,置于0.1mol L-1盐酸溶液中浸泡1h完全刻蚀碳酸钙颗粒,再用超纯水反复清洗干净,冷冻干燥得到三维多孔的聚吡咯/二维碳化钛/海藻酸钠气凝胶复合材料。本实施例2制备的聚吡咯/二维碳化钛/海藻酸钠气凝胶复合材料与实施例1制备的聚吡咯/二维碳化钛/海藻酸钠-2具有相似的上述性质。(3) Measure 5 mL of ultrapure water into a 30 mL glass sample bottle, add 0.1 g of sodium alginate, and magnetically stir evenly, then add 200 mg of pyrrole and stir evenly to form a sol. Then measure 5 mL of two-dimensional titanium carbide colloid (approximately 24.35 mg) obtained in step (1), and then weigh 1 mg of calcium carbonate particles prepared in step (2), dissolve them in the above sol, and stir magnetically for 2 hours. Then slowly add 1 mL of 2.28 mg L -1 ammonium persulfate solution dropwise, and stir for 10 s to form a black hydrogel. Place the hydrogel in a 4°C refrigerator until the pyrrole polymerization is complete. After freeze-drying at -58°C for 24 hours, it is soaked in 0.1 mol L -1 hydrochloric acid solution for 1 hour to completely etch the calcium carbonate particles, and then washed repeatedly with ultrapure water. , freeze-drying to obtain a three-dimensional porous polypyrrole/two-dimensional titanium carbide/sodium alginate airgel composite material. The polypyrrole/two-dimensional titanium carbide/sodium alginate airgel composite material prepared in Example 2 has similar properties to the polypyrrole/two-dimensional titanium carbide/sodium alginate-2 prepared in Example 1.
实施例3:Example 3:
聚吡咯/二维碳化钛/海藻酸钠气凝胶复合材料的制备,包括以下步骤:The preparation of polypyrrole/two-dimensional titanium carbide/sodium alginate airgel composite material includes the following steps:
(1)将2g氟化锂溶解在25mL 10mol L-1盐酸溶液中,然后在磁力搅拌下缓慢加入2g钛碳化铝粉末。在35℃下蚀刻30h后,用超纯水多次离心洗涤,直至上清液pH为7.2。再将多层二维碳化钛的水溶液用氮气鼓泡30min后超声处理1小时。在3500rpm离心1h,收集单层二维碳化钛胶体上清液。将上清液收集在玻璃瓶中,持续通入20min氮气,然后保存在4℃冰箱备用。(1) Dissolve 2g lithium fluoride in 25mL 10mol L -1 hydrochloric acid solution, and then slowly add 2g titanium aluminum carbide powder under magnetic stirring. After etching at 35°C for 30 h, it was centrifuged and washed multiple times with ultrapure water until the pH of the supernatant was 7.2. Then, the aqueous solution of multi-layered two-dimensional titanium carbide was bubbled with nitrogen for 30 minutes and then ultrasonicated for 1 hour. Centrifuge at 3500 rpm for 1 h, and collect the supernatant of the single-layer two-dimensional titanium carbide colloid. The supernatant was collected in a glass bottle, continuously aerated with nitrogen for 20 min, and then stored in a 4°C refrigerator for later use.
(2)将等体积60mL的0.2mol L-1氯化钙和0.2mol L-1碳酸钠溶液混合,将其置于水和乙二醇(体积比为1:15)中,磁力搅拌40min。随后,依次用乙醇、甲醇、丙酮在10000rpm下离心洗涤收集合成的碳酸钙颗粒,以去除未反应的离子和乙二醇,然后在100℃下干燥备用。(2) Mix an equal volume of 60 mL of 0.2 mol L -1 calcium chloride and 0.2 mol L -1 sodium carbonate solution, place it in water and ethylene glycol (volume ratio: 1:15), and stir magnetically for 40 minutes. Subsequently, the synthesized calcium carbonate particles were collected by centrifugal washing with ethanol, methanol, and acetone at 10,000 rpm to remove unreacted ions and ethylene glycol, and then dried at 100°C for later use.
(3)量取15mL超纯水于30mL玻璃样品瓶中,加入0.5g海藻酸钠,磁力搅拌均匀后,加入300mg吡咯搅拌均匀形成溶胶。然后量取步骤(1)得到的5mL二维碳化钛胶体(约24.35mg),再分别称取步骤(2)制备的120mg碳酸钙颗粒溶于上述溶胶中,磁力搅拌5h。再缓慢滴加1mL 2.28mg L-1过硫酸铵溶液,搅拌10s形成黑色水凝胶。将水凝胶置于4℃冰箱等吡咯聚合完全,在-58℃冷冻干燥24h后,置于1mol L-1盐酸溶液中浸泡3h完全刻蚀碳酸钙颗粒,再用超纯水反复清洗干净,冷冻干燥得到三维多孔的聚吡咯/二维碳化钛/海藻酸钠气凝胶复合材料。本实施例3制备的聚吡咯/二维碳化钛/海藻酸钠气凝胶复合材料与实施例1制备的聚吡咯/二维碳化钛/海藻酸钠-2具有相似的上述性质。(3) Measure 15 mL of ultrapure water into a 30 mL glass sample bottle, add 0.5 g of sodium alginate, and magnetically stir evenly, then add 300 mg of pyrrole and stir evenly to form a sol. Then measure 5 mL of two-dimensional titanium carbide colloid (approximately 24.35 mg) obtained in step (1), and then weigh 120 mg of calcium carbonate particles prepared in step (2), dissolve them in the above sol, and stir magnetically for 5 hours. Then slowly add 1 mL of 2.28 mg L -1 ammonium persulfate solution dropwise, and stir for 10 s to form a black hydrogel. Place the hydrogel in a 4°C refrigerator until the pyrrole polymerization is complete. After freeze-drying at -58°C for 24 hours, it is soaked in 1 mol L -1 hydrochloric acid solution for 3 hours to completely etch the calcium carbonate particles, and then washed repeatedly with ultrapure water. Three-dimensional porous polypyrrole/two-dimensional titanium carbide/sodium alginate airgel composite was obtained by freeze-drying. The polypyrrole/two-dimensional titanium carbide/sodium alginate airgel composite material prepared in Example 3 has similar properties to the polypyrrole/two-dimensional titanium carbide/sodium alginate-2 prepared in Example 1.
对比例1:Comparative example 1:
聚吡咯的制备,包括以下步骤:The preparation of polypyrrole includes the following steps:
(1)在冰浴条件下,称取270mg吡咯溶于10mL超纯水中,搅拌均匀后。缓慢滴加1mL2.28mg L-1过硫酸铵溶液,置于4℃冰箱中反应24h。将产物用超纯水、无水乙醇反复冲洗,置于60℃烘箱中干燥。(1) Under ice bath conditions, weigh 270 mg of pyrrole and dissolve it in 10 mL of ultrapure water, and stir evenly. Slowly add 1 mL of 2.28 mg L -1 ammonium persulfate solution dropwise, and place it in a 4°C refrigerator for reaction for 24 hours. The product was washed repeatedly with ultrapure water and absolute ethanol, and dried in a 60°C oven.
(2)将所得的聚吡咯分散到超纯水中,得到1mg mL-1的分散液,用移液枪移取5μL滴涂于电极的表面并用红外灯烘干,得到聚吡咯修饰电极。然后以聚吡咯修饰电极为工作电极,饱和甘汞电极为参比电极,铂片电极为对电极,2mol L-1的H2SO4为电解液,通过电化学工作站对聚吡咯进行循环伏安测试及恒电流充放电测试。根据图8中聚吡咯的恒电流充放电测试图,通过公式(b)可以计算得到聚吡咯在电流密度为1Ag-1时比电容为45F g-1。(2) Disperse the obtained polypyrrole into ultrapure water to obtain a dispersion of 1 mg mL -1 . Use a pipette to transfer 5 μL dropwise onto the surface of the electrode and dry it with an infrared lamp to obtain a polypyrrole modified electrode. Then, the polypyrrole modified electrode was used as the working electrode, the saturated calomel electrode was used as the reference electrode, the platinum electrode was used as the counter electrode, and 2 mol L -1 H 2 SO 4 was used as the electrolyte. Cyclic voltammetry was performed on the polypyrrole through the electrochemical workstation. Test and constant current charge and discharge test. According to the galvanostatic charge and discharge test chart of polypyrrole in Figure 8, the specific capacitance of polypyrrole when the current density is 1Ag -1 can be calculated by formula (b) to be 45F g -1 .
对比例2:Comparative example 2:
二维碳化钛纳米片的制备,包括以下步骤:The preparation of two-dimensional titanium carbide nanosheets includes the following steps:
(1)将1g氟化锂溶解在20mL 9mol L-1盐酸溶液中,然后在磁力搅拌下缓慢加入1g钛碳化铝粉末。在35℃下蚀刻24h后,用超纯水多次离心洗涤,直至上清液pH约为7。再将多层二维碳化钛的水溶液进一步用氮气鼓泡20min后超声处理1h。在3500rpm离心1h,收集单层二维碳化钛胶体作为上清液。将上清液收集在玻璃瓶中,持续通入20min氮气,然后保存在4℃冰箱。二维碳化钛胶体浓度计算方法:量取10mL上清液于培养皿中,冷冻干燥后称取质量,浓度大约为4.87mg mL-1。(1) Dissolve 1g lithium fluoride in 20mL 9mol L -1 hydrochloric acid solution, and then slowly add 1g titanium aluminum carbide powder under magnetic stirring. After etching at 35°C for 24 hours, it was centrifuged and washed multiple times with ultrapure water until the pH of the supernatant was approximately 7. The multi-layered two-dimensional titanium carbide aqueous solution was further bubbled with nitrogen for 20 min and then ultrasonicated for 1 h. Centrifuge at 3500 rpm for 1 h, and collect a single layer of two-dimensional titanium carbide colloid as the supernatant. The supernatant was collected in a glass bottle, continuously aerated with nitrogen for 20 min, and then stored in a 4°C refrigerator. Calculation method for the concentration of two-dimensional titanium carbide colloid: measure 10 mL of the supernatant in a petri dish, freeze-dry and weigh the mass. The concentration is approximately 4.87 mg mL -1 .
(2)将所得的二维碳化钛分散到超纯水中,得到1mg mL-1的分散液,用移液枪移取5μL滴涂于电极的表面并用红外灯烘干,得到二维碳化钛修饰电极。然后以二维碳化钛修饰电极为工作电极,饱和甘汞电极为参比电极,铂片电极为对电极,2mol L-1的H2SO4为电解液,通过电化学工作站对二维碳化钛进行循环伏安测试及恒电流充放电测试。根据图8中二维碳化钛的恒电流充放电测试图,通过公式(b)可以计算得到二维碳化钛在电流密度为1Ag-1时比电容为62F g-1。(2) Disperse the obtained two-dimensional titanium carbide into ultrapure water to obtain a dispersion of 1 mg mL -1 . Use a pipette to transfer 5 μL dropwise onto the surface of the electrode and dry it with an infrared lamp to obtain two-dimensional titanium carbide. Modify the electrode. Then, the two-dimensional titanium carbide modified electrode was used as the working electrode, the saturated calomel electrode was used as the reference electrode, the platinum electrode was used as the counter electrode, and 2 mol L -1 H 2 SO 4 was used as the electrolyte. The two-dimensional titanium carbide was analyzed through the electrochemical workstation. Carry out cyclic voltammetry test and galvanostatic charge and discharge test. According to the galvanostatic charge and discharge test chart of two-dimensional titanium carbide in Figure 8, the specific capacitance of two-dimensional titanium carbide is 62F g -1 when the current density is 1Ag -1 and can be calculated through formula (b).
以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。The above are only the preferred embodiments of the present invention. It should be pointed out that those of ordinary skill in the art can make several improvements and modifications without departing from the principles of the present invention. These improvements and modifications can also be made. should be regarded as the protection scope of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211136289.0A CN115483037B (en) | 2022-09-19 | 2022-09-19 | A polypyrrole/two-dimensional titanium carbide/sodium alginate airgel composite material and its preparation method and application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211136289.0A CN115483037B (en) | 2022-09-19 | 2022-09-19 | A polypyrrole/two-dimensional titanium carbide/sodium alginate airgel composite material and its preparation method and application |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115483037A CN115483037A (en) | 2022-12-16 |
CN115483037B true CN115483037B (en) | 2023-10-31 |
Family
ID=84423496
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211136289.0A Active CN115483037B (en) | 2022-09-19 | 2022-09-19 | A polypyrrole/two-dimensional titanium carbide/sodium alginate airgel composite material and its preparation method and application |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115483037B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109473646A (en) * | 2018-10-30 | 2019-03-15 | 肇庆市华师大光电产业研究院 | A kind of preparation method and application of sulphur-polypyrrole-two-dimensional layer carbonization titanium composite material |
CN110942921A (en) * | 2019-11-26 | 2020-03-31 | 北京科技大学 | Preparation method of novel three-dimensional composite aerogel electrode material |
CN111422873A (en) * | 2020-03-23 | 2020-07-17 | 北京化工大学 | A kind of MXene/sodium alginate derived carbon three-dimensional aerogel and its preparation method and application |
CN111883366A (en) * | 2020-07-28 | 2020-11-03 | 陕西科技大学 | A kind of polypyrrole nanosphere@titanium carbide composite material and its preparation method and application |
CN113426428A (en) * | 2021-06-28 | 2021-09-24 | 武汉大学 | Polyaniline-sulfur nitrogen MXene/sodium alginate composite gel adsorbent and preparation method and application thereof |
-
2022
- 2022-09-19 CN CN202211136289.0A patent/CN115483037B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109473646A (en) * | 2018-10-30 | 2019-03-15 | 肇庆市华师大光电产业研究院 | A kind of preparation method and application of sulphur-polypyrrole-two-dimensional layer carbonization titanium composite material |
CN110942921A (en) * | 2019-11-26 | 2020-03-31 | 北京科技大学 | Preparation method of novel three-dimensional composite aerogel electrode material |
CN111422873A (en) * | 2020-03-23 | 2020-07-17 | 北京化工大学 | A kind of MXene/sodium alginate derived carbon three-dimensional aerogel and its preparation method and application |
CN111883366A (en) * | 2020-07-28 | 2020-11-03 | 陕西科技大学 | A kind of polypyrrole nanosphere@titanium carbide composite material and its preparation method and application |
CN113426428A (en) * | 2021-06-28 | 2021-09-24 | 武汉大学 | Polyaniline-sulfur nitrogen MXene/sodium alginate composite gel adsorbent and preparation method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
CN115483037A (en) | 2022-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106098394B (en) | Two-dimensional layer N doping Ti3C2" paper " nanocomposite and preparation method thereof and the method with the material preparation combination electrode | |
CN113764203B (en) | Cobalt nickel sulfide-MXene electrode material for super capacitor and preparation method thereof | |
CN105885410B (en) | A kind of molybdenum sulfide/polypyrrole/polyaniline trielement composite material and its preparation method and application | |
CN113012945B (en) | Modified Ppy-MXene composite material, and preparation method and application thereof | |
CN111627719B (en) | A conductive polymer hollow sphere PACP@titanium carbide composite material and preparation method thereof | |
CN106803462A (en) | A kind of flexible extensible ultracapacitor and its preparation based on graphene composite film | |
CN102757040A (en) | Graphene-based hydrogel and preparation method thereof as well as preparation method and application of supercapacitor electrode taking graphene-based hydrogel as active material | |
CN108447696A (en) | A kind of preparation method and application of polypyrrole/conductive carbon cloth composite electrode | |
CN104987715A (en) | Three-dimensional graphene, polyaniline and cobaltosic oxide composite material and preparation method and application | |
CN111883366A (en) | A kind of polypyrrole nanosphere@titanium carbide composite material and its preparation method and application | |
CN108807006A (en) | A kind of preparation method of carbon-based flexible electrode | |
CN106128799A (en) | A kind of preparation method based on Graphene/polypyrrole nanotube composite film ultracapacitor | |
Abalyaeva et al. | Electrochemical synthesis of composite based on polyaniline and activated IR pyrolyzed polyacrylonitrile on graphite foil electrode for enhanced supercapacitor properties | |
Dou et al. | Flexible free-standing graphene-like film electrode for supercapacitors by electrophoretic deposition and electrochemical reduction | |
CN106024401B (en) | A kind of manganese dioxide composite material and flexible super capacitor prepared therefrom | |
Xie et al. | In-situ synthesis of fluorine-free MXene/TiO2 composite for high-performance supercapacitor | |
Tu et al. | Three-dimensional MXene/BCN microflowers for wearable all-solid-state microsupercapacitors | |
Xie et al. | Synthesis and capacitance performance of MnO2/RGO double-shelled hollow microsphere | |
CN114446671B (en) | Preparation method of MOF-5/PPy/GO nano material and application of MOF-5/PPy/GO nano material in aspect of super capacitor | |
CN102856080A (en) | Nanometer porous metal conducting polymer based super capacitor material and preparation method thereof | |
CN115483037B (en) | A polypyrrole/two-dimensional titanium carbide/sodium alginate airgel composite material and its preparation method and application | |
CN117316654A (en) | Self-supporting MXene hydrogel, preparation method thereof and application thereof in super capacitor | |
Ju et al. | Laser Direct Writing of MnO2/Carbonized Carboxymethylcellulose-Based Composite as High-Performance Electrodes for Supercapacitors | |
CN116949464A (en) | An acid-doped aniline-pyrrole copolymer modified graphene oxide/graphene composite electrode material and its preparation method and application | |
CN114349007B (en) | Preparation method and application of unidirectional titanium carbide aerogel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20221216 Assignee: Jingbaiyuan Semiconductor (Shandong) Co.,Ltd. Assignor: CHANGZHOU University Contract record no.: X2024980014664 Denomination of invention: Polypyrrole/two-dimensional titanium carbide/sodium alginate aerogel composite and its preparation method and application Granted publication date: 20231031 License type: Common License Record date: 20240910 |