CN115469665A - Intelligent wheelchair target tracking control method and system suitable for dynamic environment - Google Patents
Intelligent wheelchair target tracking control method and system suitable for dynamic environment Download PDFInfo
- Publication number
- CN115469665A CN115469665A CN202211127474.3A CN202211127474A CN115469665A CN 115469665 A CN115469665 A CN 115469665A CN 202211127474 A CN202211127474 A CN 202211127474A CN 115469665 A CN115469665 A CN 115469665A
- Authority
- CN
- China
- Prior art keywords
- target
- wheelchair
- potential field
- obstacle
- intelligent wheelchair
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 38
- 230000033001 locomotion Effects 0.000 claims abstract description 52
- 238000001514 detection method Methods 0.000 claims abstract description 24
- 238000004422 calculation algorithm Methods 0.000 claims description 19
- 238000004364 calculation method Methods 0.000 claims description 15
- 238000012549 training Methods 0.000 claims description 11
- 239000011159 matrix material Substances 0.000 claims description 9
- 238000004458 analytical method Methods 0.000 claims description 4
- 238000006073 displacement reaction Methods 0.000 claims description 3
- 238000005381 potential energy Methods 0.000 claims description 3
- 238000012545 processing Methods 0.000 claims description 3
- 238000012360 testing method Methods 0.000 claims description 3
- 230000009466 transformation Effects 0.000 claims description 3
- 230000002093 peripheral effect Effects 0.000 claims 1
- 230000006870 function Effects 0.000 description 19
- 230000008569 process Effects 0.000 description 6
- 230000007613 environmental effect Effects 0.000 description 3
- 230000008447 perception Effects 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000007405 data analysis Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000009916 joint effect Effects 0.000 description 2
- 238000012706 support-vector machine Methods 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 230000032683 aging Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000004438 eyesight Effects 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000004379 myopia Effects 0.000 description 1
- 208000001491 myopia Diseases 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0212—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
- G05D1/0221—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving a learning process
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0276—Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
技术领域technical field
本发明涉及智能轮椅目标跟踪技术领域,特别是一种适应于动态环境的智能轮椅目标跟踪控制方法和系统。The invention relates to the technical field of intelligent wheelchair target tracking, in particular to an intelligent wheelchair target tracking control method and system adapted to a dynamic environment.
背景技术Background technique
社会老龄化程度越来越严重,智能轮椅作为一种能够提高老人及残疾人生活质量以及行动自由的特殊工具,有着极其广泛的发展前景及社会价值。当前一些先进的智能轮椅虽然具备了一定的导航避障功能,但仍然难以应对复杂的环境,完成复杂的任务,如在动态环境下跟随动态目标,需要考虑跟随对象以及避让对象的运动趋势,传统智能轮椅基于静态场景规划的运动轨迹难以应对瞬息万变的动态环境。The aging of society is becoming more and more serious. As a special tool that can improve the quality of life and freedom of movement of the elderly and disabled, smart wheelchairs have extremely broad development prospects and social value. Although some advanced smart wheelchairs have certain functions of navigation and obstacle avoidance, it is still difficult to cope with complex environments and complete complex tasks. The trajectory of smart wheelchairs based on static scene planning is difficult to cope with the ever-changing dynamic environment.
发明内容Contents of the invention
针对上述缺陷,本发明提出了一种适应于动态环境的智能轮椅目标跟踪控制方法和系统,其目的在于解决当前的智能轮椅难以在动态障碍物的情况下自主跟随动态目标的问题。In view of the above defects, the present invention proposes an intelligent wheelchair target tracking control method and system adapted to a dynamic environment, the purpose of which is to solve the problem that current intelligent wheelchairs are difficult to autonomously follow a dynamic target in the case of dynamic obstacles.
为达此目的,本发明采用以下技术方案:For reaching this purpose, the present invention adopts following technical scheme:
一种适应于动态环境的智能轮椅目标跟踪控制方法,包括以下步骤:An intelligent wheelchair target tracking control method adapted to a dynamic environment, comprising the following steps:
步骤S1:识别目标并且根据历史信息预测目标位置;Step S1: Identify the target and predict the target position according to the historical information;
步骤S2:识别障碍物并且根据历史信息预测障碍物位置的概率分布;Step S2: Identify obstacles and predict the probability distribution of obstacle positions based on historical information;
步骤S3:根据预测的目标位置以及预测的障碍物位置的概率分布分别构造引力势场和斥力势场,引力势场和斥力势场共同作用生成智能轮椅的安全路径;Step S3: Construct the gravitational potential field and the repulsive potential field respectively according to the predicted target position and the probability distribution of the predicted obstacle position, and the gravitational potential field and the repulsive potential field work together to generate a safe path for the smart wheelchair;
步骤S4:基于所述智能轮椅安全路径控制器生成智能轮椅运动指令,并且执行智能轮椅运动指令。Step S4: Generate an intelligent wheelchair movement instruction based on the intelligent wheelchair safety path controller, and execute the intelligent wheelchair movement instruction.
优选地,步骤S1中,具体包括以下步骤:Preferably, step S1 specifically includes the following steps:
步骤S11:获取目标的图像数据,选择Haar-like特征作为目标灰度特征,利用半监督On-line Boosting算法处理图像数据,计算得到目标的图像空间位置坐标,并进一步基于深度图像信息得到目标的任务空间位置坐标;Step S11: Acquire the image data of the target, select the Haar-like feature as the gray feature of the target, use the semi-supervised On-line Boosting algorithm to process the image data, calculate the image space position coordinates of the target, and further obtain the target's position based on the depth image information. Task space position coordinates;
步骤S12:基于任务空间中目标位姿坐标的历史数据,利用最小二乘支持向量回归机(Least Squares Support Vector Machine,LS-SVR)算法对目标的任务空间位姿进行预测,得到预测的动态目标位姿信息Pp(xp,yp);Step S12: Based on the historical data of the target pose coordinates in the task space, use the least squares support vector regression machine (Least Squares Support Vector Machine, LS-SVR) algorithm to predict the task space pose of the target, and obtain the predicted dynamic target Pose information P p (x p , y p );
步骤S13:根据预测的动态目标位姿信息Pp(xp,yp)及设定的跟随方位θf计算轮椅最终期望的位置PD(xD,yD)。Step S13: Calculate the final desired position PD (x D , y D ) of the wheelchair according to the predicted dynamic target pose information P p (x p , y p ) and the set following orientation θ f .
优选地,步骤S11中,On-line Boosting算法具体包括以下步骤:Preferably, in step S11, the On-line Boosting algorithm specifically includes the following steps:
步骤S111:选定目标区域,按照一定的比例放大所述目标区域形成搜索区域;所述搜索区域包括下次目标移动后所在的可能位置;当所述目标区域和所述搜索区域都确定之后,根据目标位置,选择样本依次训练先验分类器和跟踪器,每次训练都使用5个样本,5个样本包括目标本身以及目标周边的4个样本;Step S111: Select the target area, enlarge the target area according to a certain ratio to form a search area; the search area includes the possible position of the target after the next movement; when both the target area and the search area are determined, According to the position of the target, select samples to train the prior classifier and tracker in turn, and each training uses 5 samples, 5 samples including the target itself and 4 samples around the target;
步骤S112:将所述搜索区域划分成多个小块,其中,划分出来的小块与所述目标区域的大小相同,划分出来的小块之间有重叠部分;利用上一个阶段训练好的跟踪器对划分完成的所有小块进行评价,计算每个小块作为目标的可信度,从中选取可信度最高的那个小块作为目标下一个时刻的位置;Step S112: Divide the search area into a plurality of small blocks, wherein the divided small blocks are the same size as the target area, and there are overlapping parts between the divided small blocks; use the tracker trained in the previous stage The device evaluates all the small blocks that have been divided, calculates the credibility of each small block as the target, and selects the small block with the highest reliability as the position of the target at the next moment;
步骤S113:根据预测出来的目标新位置,利用跟踪器重新选择样本进行训练,更新分类器参数,其中,以新的目标位置和4个周边的小块作为样本,通过先验分类器确定样本的标签。Step S113: According to the predicted new position of the target, use the tracker to reselect samples for training, and update the parameters of the classifier, where the new target position and 4 surrounding small blocks are used as samples, and the classifier is used to determine the position of the sample Label.
优选地,步骤S12中,LS-SVR算法具体包括以下步骤:Preferably, in step S12, the LS-SVR algorithm specifically includes the following steps:
步骤S121:给定数据集选择适当的模型参数γ>0;其中,d是训练集大小,m是测试集大小;l是数据集大小;xi代表输入样本的第i行,yi表示相应输出值;Step S121: given data set Select an appropriate model parameter γ>0; where, d is the size of the training set, m is the size of the test set; l is the size of the data set; x i represents the i-th row of the input sample, and y i represents the corresponding output value;
步骤S122:选择径向基函数作为核函数;Step S122: Select radial basis function as a kernel function;
步骤S123:计算p=H-1y,q=H-1L和s=LTq;其中p为轮椅位姿,H为正定矩阵,q为转换矩阵,L=(1,···,1)T∈Rl;Step S123: Calculate p=H -1 y, q=H -1 L and s=L T q; where p is the wheelchair pose, H is a positive definite matrix, q is a transformation matrix, L=(1,..., 1) T ∈ R l ;
步骤S124:计算b*=ηTy/s和a*=p-bq;其中b为偏移向量;η为参数矩阵;a*为拉格朗日乘子组成的向量;Step S124: Calculate b * = ηT y/s and a * =p-bq; wherein b is an offset vector; n is a parameter matrix; a * is a vector composed of Lagrangian multipliers;
步骤S125:构造回归函数 Step S125: Constructing a regression function
优选地,步骤S13中,轮椅最终的期望位置可由公式(1)获得:Preferably, in step S13, the final desired position of the wheelchair can be obtained by formula (1):
步骤S13:令预测的目标任务空间位姿为Pp(xp,yp),设定的跟随方位θf,根据公式(1)可以得到智能轮椅的期望位置PD(xD,yD):Step S13: Let the predicted target task space pose be P p (x p , y p ), set the following orientation θ f , and obtain the expected position P D (x D , y D ) of the smart wheelchair according to formula (1) ):
其中d为跟随中期望保持的相对距离。where d is the relative distance expected to be maintained during the follow-up.
优选地,步骤S2中,具体包括以下步骤:Preferably, in step S2, the following steps are specifically included:
步骤S21:通过上一时刻第i个障碍物的位置和当前时刻该障碍物的位置计算得到下一时刻该障碍物的位置 Step S21: pass the position of the i-th obstacle at the previous moment and the position of the obstacle at the current moment Calculate the position of the obstacle at the next moment
步骤S22:将相邻两时刻障碍物的位移记录为(ox,i,oy,i),对障碍物进行概率学分析,得到障碍物的期望值μx和μy,方差σx和σy,协方差σxy,和相关系数ρxy:Step S22: Record the displacement of the obstacle at two adjacent moments as (o x,i ,o y,i ), conduct a probabilistic analysis on the obstacle, and obtain the expected value μ x and μ y of the obstacle, and the variance σ x and σ y , covariance σ xy , and correlation coefficient ρ xy :
其中,N为参与预测的历史数据量,截取最近的N个历史序列作为预测,可以避免规划后期的数据膨胀;Among them, N is the amount of historical data involved in the prediction, and the most recent N historical sequences are intercepted as predictions, which can avoid data expansion in the later stage of planning;
步骤S23:将坐标系分成若干个栅格,每个栅格(m,n)的概率密度Uob(m,n)可通过下式获得:Step S23: divide the coordinate system into several grids, and the probability density U ob (m, n) of each grid (m, n) can be obtained by the following formula:
其中,Uob(m,n)为每个栅格(m,n)的概率密度。Among them, U ob (m,n) is the probability density of each grid (m,n).
优选地,步骤S3中,具体包括以下步骤:Preferably, step S3 specifically includes the following steps:
步骤S31:按照步骤S13的计算原理,得到智能轮椅的最终期望位置PD(xD,yD),且根据智能轮椅的最终期望位置作为目标点形成引力势场,其中,引力势场在栅格位置(m,n)产生的势能Uatt(m,n)由式(8)表示:Step S31: According to the calculation principle of step S13, the final expected position P D (x D , y D ) of the smart wheelchair is obtained, and the gravitational potential field is formed according to the final expected position of the smart wheelchair as the target point, wherein the gravitational potential field is in the grid The potential energy U att (m,n) generated by the lattice position (m,n) is expressed by formula (8):
其中,S表示实际运动环境的大小,(xD,yD)代表目标位置;Among them, S represents the size of the actual motion environment, (x D , y D ) represents the target position;
步骤S32:根据引力势场和斥力势场叠加计算得到当前点(x,y)的合势场Ut(m,n);具体计算为:Step S32: Obtain the resultant potential field U t (m, n) of the current point (x, y) according to the superposition calculation of the gravitational potential field and the repulsive potential field; the specific calculation is:
Ut(m,n)=Uatt(m,n)+Uob(m,n) (9)U t (m,n)=U att (m,n)+U ob (m,n) (9)
步骤S33:对产生的合势场进行求偏导运算,得到如下势场梯度:Step S33: Perform a partial derivative operation on the resultant potential field to obtain the following potential field gradient:
根据势场梯度求出下一时刻智能轮椅的期望位置,具体计算如下:According to the potential field gradient, the expected position of the smart wheelchair at the next moment is calculated, and the specific calculation is as follows:
其中,xd和yd表示轮椅下一时刻期望的X轴坐标和Y轴坐标;θd表示轮椅下一时刻期望的姿态,x和y表示轮椅当前时刻的X轴坐标和Y轴坐标;D表示轮椅一个周期内移动的距离,可以被视为参考速度值,这个值越小,智能轮椅的运动更加安全;R为一个周期内智能轮椅运动距离的参考范值。Among them, x d and y d represent the desired X-axis coordinates and Y-axis coordinates of the wheelchair at the next moment; θ d represents the expected posture of the wheelchair at the next moment, and x and y represent the X-axis coordinates and Y-axis coordinates of the wheelchair at the current moment; D Indicates the moving distance of the wheelchair in one cycle, which can be regarded as a reference speed value. The smaller the value, the safer the movement of the smart wheelchair; R is the reference value of the moving distance of the smart wheelchair in one cycle.
R表示如下:R is expressed as follows:
优选地,步骤S4中,所述智能轮椅运动指令的生成是基于运动学模型的反演控制器跟踪的势场法规划的轨迹,具体包括以下步骤:Preferably, in step S4, the generation of the intelligent wheelchair motion command is based on the trajectory planned by the potential field method tracked by the inversion controller of the kinematic model, specifically including the following steps:
步骤S41:引人虚拟输入α,根据式机器人运动学方程,取Step S41: Introduce virtual input α, according to the equation of robot kinematics, take
其中v为机器人线速度,Lyapunov函数用于判断非线性系统的稳定性;令Lyapunov函数V1为Where v is the linear velocity of the robot, and the Lyapunov function is used to judge the stability of the nonlinear system; let the Lyapunov function V 1 be
其中ex表示轮椅在X方向上的位置误差,ey表示轮椅在Y方向上的位置误差;Where e x represents the position error of the wheelchair in the X direction, and e y represents the position error of the wheelchair in the Y direction;
由式(16)式可得From formula (16) can get
通过设计虚拟量α,使得By designing the virtual quantity α, so that
其中,xd和yd表示轮椅下一时刻期望的X轴坐标和Y轴坐标,则Among them, x d and y d represent the desired X-axis coordinates and Y-axis coordinates of the wheelchair at the next moment, then
其中,c1、c2为可调参数;Among them, c 1 and c 2 are adjustable parameters;
令将线速度v和虚拟控制律α设计为:make The linear velocity v and virtual control law α are designed as:
则保证式(20)成立;Then guarantee formula (20) is established;
步骤S42:令e=α-θ,定义Lyapunov函数V2为:Step S42: let e=α-θ, define the Lyapunov function V 2 as:
则but
将角速度控制律ω设计为:The angular velocity control law ω is designed as:
其中c3为可调参数,则where c 3 is an adjustable parameter, then
其中Cm为常数,Cm≤min(c1,c2,c3);Where C m is a constant, C m ≤ min(c 1 ,c 2 ,c 3 );
则即V2(t)以指数形式收敛于零,从而t→∞时,ex→0,ey→0,θ→θd且以指数形式收敛。but That is, V 2 (t) converges to zero exponentially, so when t→∞, ex→0, e y → 0 , θ→θd converge exponentially.
本申请的另一方面提供了一种适应于动态环境的智能轮椅目标跟踪控制系统,所述系统包括目标检测模块、障碍物检测模块、运动规划模块和运动控制模块;Another aspect of the present application provides an intelligent wheelchair target tracking control system adapted to a dynamic environment, the system comprising a target detection module, an obstacle detection module, a motion planning module and a motion control module;
所述目标检测模块用于识别目标并且根据历史信息预测目标位置;The target detection module is used to identify the target and predict the position of the target according to historical information;
所述障碍物检测模块用于识别障碍物并且根据历史信息预测障碍物位置的概率分布;The obstacle detection module is used to identify obstacles and predict the probability distribution of obstacle positions according to historical information;
所述运动规划模块用于根据预测的目标位置以及预测的障碍物位置的概率分布分别构造引力势场和斥力势场,引力势场和斥力势场共同作用生成智能轮椅的安全路径;The motion planning module is used to construct the gravitational potential field and the repulsive force potential field respectively according to the probability distribution of the predicted target position and the predicted obstacle position, and the gravitational potential field and the repulsive force potential field work together to generate a safe path for the intelligent wheelchair;
所述运动控制模块用于跟踪运动规划模块生成的安全路径,并且执行智能轮椅运动指令。The motion control module is used to track the safe path generated by the motion planning module, and execute the motion command of the intelligent wheelchair.
本申请实施例提供的技术方案可以包括以下有益效果:The technical solutions provided by the embodiments of the present application may include the following beneficial effects:
本方案中通过目标检测模块结合半监督On-lineBoosting算法识别目标,并根据历史数据采用最小二乘支持向量回归机方法分析预测的目标位置;与此同时,障碍物检测模块识别障碍物,并根据历史数据分析预测的障碍物位置的概率分布,基于预测的目标位置生成引力势场,基于预测的障碍物位置的概率分布生成斥力势场,通过两个势场共同作用,规划出一条安全的跟随路径。智能轮椅按照规划的跟随路径运动,实现智能轮椅在动态环境中对目标对象的稳定、安全和高效的跟随。In this program, the target detection module is combined with the semi-supervised On-lineBoosting algorithm to identify the target, and the least squares support vector regression method is used to analyze the predicted target position according to the historical data; at the same time, the obstacle detection module identifies the obstacle, and according to The historical data analysis predicts the probability distribution of the obstacle position, generates the gravitational potential field based on the predicted target position, generates the repulsive potential field based on the predicted probability distribution of the obstacle position, and plans a safe following through the joint action of the two potential fields. path. The smart wheelchair moves according to the planned following path, realizing the stable, safe and efficient following of the target object by the smart wheelchair in a dynamic environment.
附图说明Description of drawings
图1是一种适应于动态环境的智能轮椅目标跟踪控制系统的原理框图;Fig. 1 is a functional block diagram of an intelligent wheelchair target tracking control system adapted to a dynamic environment;
图2是智能轮椅的硬件结构框架图。Figure 2 is a frame diagram of the hardware structure of the intelligent wheelchair.
具体实施方式detailed description
下面详细描述本发明的实施方式,实施方式的示例在附图中示出,其中,相同或类似的标号自始至终表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。Embodiments of the present invention are described in detail below, and examples of the embodiments are shown in the drawings, wherein the same or similar reference numerals denote the same or similar elements or elements having the same or similar functions throughout. The embodiments described below by referring to the figures are exemplary only for explaining the present invention and should not be construed as limiting the present invention.
一种适应于动态环境的智能轮椅目标跟踪控制方法,包括以下步骤:An intelligent wheelchair target tracking control method adapted to a dynamic environment, comprising the following steps:
步骤S1:识别目标并且根据历史信息预测目标位置;Step S1: Identify the target and predict the target position according to the historical information;
步骤S2:识别障碍物并且根据历史信息预测障碍物位置的概率分布;Step S2: Identify obstacles and predict the probability distribution of obstacle positions based on historical information;
步骤S3:根据预测的目标位置以及预测的障碍物位置的概率分布分别构造引力势场和斥力势场,引力势场和斥力势场共同作用生成智能轮椅的安全路径;Step S3: Construct the gravitational potential field and the repulsive potential field respectively according to the predicted target position and the probability distribution of the predicted obstacle position, and the gravitational potential field and the repulsive potential field work together to generate a safe path for the smart wheelchair;
步骤S4:基于所述智能轮椅安全路径控制器生成智能轮椅运动指令,并且执行智能轮椅运动指令。Step S4: Generate an intelligent wheelchair movement instruction based on the intelligent wheelchair safety path controller, and execute the intelligent wheelchair movement instruction.
本方法是通过目标检测模块,即视觉传感器结合半监督On-line Boosting算法识别目标,并根据历史数据采用最小二乘支持向量回归机方法分析预测的目标位置;与此同时,障碍物检测模块,即激光传感器识别障碍物,并根据历史数据分析预测的障碍物位置的概率分布,基于预测的目标位置生成引力势场,基于预测的障碍物位置的概率分布生成斥力势场,通过两个势场共同作用,规划出一条安全的跟随路径。智能轮椅按照规划的跟随路径运动,实现智能轮椅在动态环境中对目标对象的稳定、安全和高效跟随。This method uses the target detection module, that is, the visual sensor combined with the semi-supervised On-line Boosting algorithm to identify the target, and uses the least squares support vector regression method to analyze and predict the target position according to the historical data; at the same time, the obstacle detection module, That is, the laser sensor identifies obstacles, analyzes and predicts the probability distribution of obstacle positions based on historical data, generates a gravitational potential field based on the predicted target position, and generates a repulsive potential field based on the predicted probability distribution of obstacle positions. Work together to plan a safe following path. The smart wheelchair moves according to the planned following path, realizing the stable, safe and efficient tracking of the target object by the smart wheelchair in a dynamic environment.
优选的,步骤S1中,具体包括以下步骤:Preferably, step S1 specifically includes the following steps:
步骤S11:获取目标的图像数据,选择Haar-like特征作为目标灰度特征,利用半监督On-line Boosting算法处理图像数据,计算得到目标的图像空间位置坐标,并进一步基于深度图像信息得到目标的任务空间位置坐标;Step S11: Acquire the image data of the target, select the Haar-like feature as the gray feature of the target, use the semi-supervised On-line Boosting algorithm to process the image data, calculate the image space position coordinates of the target, and further obtain the target's position based on the depth image information. Task space position coordinates;
步骤S12:基于任务空间中目标位姿坐标的历史数据,利用最小二乘支持向量回归机(Least Squares Support Vector Machine,LS-SVR)算法对目标的任务空间位姿进行预测,得到预测的动态目标位姿信息Pp(xp,yp);Step S12: Based on the historical data of the target pose coordinates in the task space, use the least squares support vector regression machine (Least Squares Support Vector Machine, LS-SVR) algorithm to predict the task space pose of the target, and obtain the predicted dynamic target Pose information P p (x p , y p );
步骤S13:根据预测的动态目标位姿信息Pp(xp,yp)及设定的跟随方位θf计算轮椅最终期望的位置PD(xD,yD)。Step S13: Calculate the final desired position PD (x D , y D ) of the wheelchair according to the predicted dynamic target pose information P p (x p , y p ) and the set following orientation θ f .
本实施例中,通过半监督On-line Boosting算法处理图像数据,计算得到目标的图像空间位置坐标,进而基于深度图像信息得到目标点在任务空间的位置坐标。然后,基于目标位置坐标的历史数据,利用LS-SVR算法对目标位置进行预测,得到动态目标的可靠预测。这样有利于减少系统的时滞,提高系统跟随动态目标的反应速度。In this embodiment, the image data is processed through a semi-supervised On-line Boosting algorithm, the image space position coordinates of the target are calculated, and then the position coordinates of the target point in the task space are obtained based on the depth image information. Then, based on the historical data of the target position coordinates, the LS-SVR algorithm is used to predict the target position, and a reliable prediction of the dynamic target is obtained. This is beneficial to reduce the time lag of the system and improve the response speed of the system to follow the dynamic target.
优选的,步骤S11中,On-line Boosting算法具体包括以下步骤:Preferably, in step S11, the On-line Boosting algorithm specifically includes the following steps:
步骤S111:选定目标区域,按照一定的比例放大所述目标区域形成搜索区域;所述搜索区域包括下次目标移动后所在的可能位置;当所述目标区域和所述搜索区域都确定之后,根据目标位置,选择样本依次训练先验分类器和跟踪器,每次训练都使用5个样本,5个样本包括目标本身以及目标周边的4个样本;Step S111: Select the target area, enlarge the target area according to a certain ratio to form a search area; the search area includes the possible position of the target after the next movement; when both the target area and the search area are determined, According to the position of the target, select samples to train the prior classifier and tracker in turn, and each training uses 5 samples, 5 samples including the target itself and 4 samples around the target;
步骤S112:将所述搜索区域划分成多个小块,其中,划分出来的小块与所述目标区域的大小相同,划分出来的小块之间有重叠部分;利用上一个阶段训练好的跟踪器对划分完成的所有小块进行评价,计算每个小块作为目标的可信度,从中选取可信度最高的那个小块作为目标下一个时刻的位置;Step S112: Divide the search area into a plurality of small blocks, wherein the divided small blocks are the same size as the target area, and there are overlapping parts between the divided small blocks; use the tracker trained in the previous stage The device evaluates all the small blocks that have been divided, calculates the credibility of each small block as the target, and selects the small block with the highest reliability as the position of the target at the next moment;
步骤S113:根据预测出来的目标新位置,利用跟踪器重新选择样本进行训练,更新分类器参数,其中,以新的目标位置和4个周边的小块作为样本,通过先验分类器确定样本的标签。Step S113: According to the predicted new position of the target, use the tracker to reselect samples for training, and update the parameters of the classifier, where the new target position and 4 surrounding small blocks are used as samples, and the classifier is used to determine the position of the sample Label.
具体地,半监督的On-line Boosting算法认为除了在初始阶段的样本的标签是确定的之外,所有在更新阶段的样本的标签都是未知的。更新阶段的样本的标签是通过一个只携带最初目标信息的离线的先验分类器来确定的。这个先验分类器只在跟随目标初始化阶段进行训练,此后都不参与更新。因此,它只包含有最初目标的信息即先验信息。Specifically, the semi-supervised On-line Boosting algorithm considers that the labels of all samples in the update stage are unknown except for the labels of samples in the initial stage. The labels of samples in the update stage are determined by an offline prior classifier carrying only the original target information. This prior classifier is only trained following the target initialization phase and does not participate in updates thereafter. Therefore, it only contains information about the original target, that is, prior information.
在半监督On-line Boosting算法中存在两个强分类器:先验分类器和跟踪器。其中,先验分类器并不参与更新,它只用来评价当前样本与最初目标样本之间的匹配程度。根据样本之间的匹配程度,赋予当前样本一个标签。当赋予了样本标签后,这些样本就可以按照监督学习的方式来更新跟踪器。整个半监督On-lineBoosting算法主要包括初始化训练阶段和跟踪阶段,跟踪阶段又分为预测阶段和更新阶段。There are two strong classifiers in the semi-supervised On-line Boosting algorithm: prior classifier and tracker. Among them, the prior classifier does not participate in the update, it is only used to evaluate the matching degree between the current sample and the original target sample. According to the degree of matching between samples, assign a label to the current sample. After the samples are labeled, these samples can be used to update the tracker in a supervised learning manner. The entire semi-supervised On-lineBoosting algorithm mainly includes an initialization training phase and a tracking phase, and the tracking phase is further divided into a prediction phase and an update phase.
优选的,步骤S12中,LS-SVR算法具体包括以下步骤:Preferably, in step S12, the LS-SVR algorithm specifically includes the following steps:
步骤S121:给定数据集选择适当的模型参数γ>0;其中,d是训练集大小,m是测试集大小;l是数据集大小;xi代表输入样本的第i行,yi表示相应输出值;Step S121: given data set Select an appropriate model parameter γ>0; where, d is the size of the training set, m is the size of the test set; l is the size of the data set; x i represents the i-th row of the input sample, and y i represents the corresponding output value;
步骤S122:选择径向基函数作为核函数;Step S122: Select radial basis function as a kernel function;
步骤S123:计算p=H-1y,q=H-1L和s=LTq;其中p为轮椅位姿,H为正定矩阵,q为转换矩阵,L=(1,···,1)T∈Rl;Step S123: Calculate p=H -1 y, q=H -1 L and s=L T q; where p is the wheelchair pose, H is a positive definite matrix, q is a transformation matrix, L=(1,..., 1) T ∈ R l ;
步骤S124:计算b*=ηTy/s和a*=p-bq;其中b为偏移向量;η为参数矩阵;a*为拉格朗日乘子组成的向量;Step S124: Calculate b * = ηT y/s and a * =p-bq; wherein b is an offset vector; n is a parameter matrix; a * is a vector composed of Lagrangian multipliers;
步骤S125:构造回归函数 Step S125: Constructing a regression function
在智能轮椅对目标跟踪的时候普遍存在“短视”的问题,只考虑当前的位置,没有考虑目标未来出现的位置。因此为了更好的跟踪动态目标,需要了解环境中动态目标的运动规律,即对动态目标进行预测。本实施例中,采用的最小二乘支持向量回归机(leastsquares support vector regression,LS-SVR)方法是将动态目标轨迹预测视为一个小样本、非线性的时间序列数据分析和预测的问题,该问题中,输入的是时间,输出的是该段时间所对应的动态目标轨迹。根据过去一段时间内的轨迹去学习目标的运动模型即时间和动态目标之间的非线性关系,从而预测该目标未来一段时间的运动轨迹。When the smart wheelchair tracks the target, there is a common problem of "short-sightedness". It only considers the current position and does not consider the future position of the target. Therefore, in order to better track the dynamic target, it is necessary to understand the movement rules of the dynamic target in the environment, that is, to predict the dynamic target. In this embodiment, the least squares support vector regression (LS-SVR) method adopted considers dynamic target trajectory prediction as a small sample, non-linear time series data analysis and prediction problem. In the problem, the input is time, and the output is the dynamic target trajectory corresponding to this period of time. According to the trajectory of the past period of time to learn the motion model of the target, that is, the nonlinear relationship between time and dynamic targets, so as to predict the trajectory of the target for a period of time in the future.
具体地,利用LS-SVR可以很好地近似非线性关系,从而对目标进行轨迹预测。在使用SVR进行轨迹预测时,将该问题视为一个时序数据的预测问题,即建立时间和动态目标轨迹之间的映射关系。训练数据中的输入变量X=(t1,t2,…,tn)是时间序列,对应的输出变量Y=(p1,p2,…,pn),其中pk表示k时刻的位姿。Specifically, the nonlinear relationship can be well approximated by LS-SVR for trajectory prediction of the target. When using SVR for trajectory prediction, the problem is regarded as a time series data prediction problem, that is, the mapping relationship between time and dynamic target trajectory is established. The input variable X=(t 1 ,t 2 ,…,t n ) in the training data is a time series, and the corresponding output variable Y=(p 1 ,p 2 ,…,p n ), where p k represents the pose.
选择不同的核函数对于SVR的回归效果影响很大,动态目标的运动轨迹一般是非线性的,本实施例采用径向基函数(Radial basis function,RBF)核函数,通过对数据进行简单的处理,对于线性回归和非线性回归均能产生较好的效果。Selecting different kernel functions has a great influence on the regression effect of SVR, and the trajectory of the dynamic target is generally nonlinear. In this embodiment, the radial basis function (RBF) kernel function is used to simply process the data. It can produce good results for both linear regression and nonlinear regression.
优选的,步骤S13中,轮椅最终的期望位置可由公式(1)获得:Preferably, in step S13, the final desired position of the wheelchair can be obtained by formula (1):
步骤S13:令预测的目标任务空间位姿为Pp(xp,yp),设定的跟随方位θf,根据公式(1)可以得到智能轮椅的期望位置PD(xD,yD):Step S13: Let the predicted target task space pose be P p (x p , y p ), set the following orientation θ f , and obtain the expected position P D (x D , y D ) of the smart wheelchair according to formula (1) ):
其中d为跟随中期望保持的相对距离。where d is the relative distance expected to be maintained during the follow-up.
具体的,智能轮椅的期望位置PD(xD,yD)的计算使智能轮椅能够更好地规划行走路径,进一步实现智能轮椅在动态障碍物的情况下自主跟随动态目标对象。Specifically, the calculation of the expected position P D (x D , y D ) of the smart wheelchair enables the smart wheelchair to better plan the walking path, and further realizes that the smart wheelchair can autonomously follow the dynamic target object in the case of dynamic obstacles.
优选的,步骤S2中,具体包括以下步骤:Preferably, step S2 specifically includes the following steps:
步骤S21:通过上一时刻第i个障碍物的位置和当前时刻该障碍物的位置计算得到下一时刻该障碍物的位置 Step S21: pass the position of the i-th obstacle at the previous moment and the position of the obstacle at the current moment Calculate the position of the obstacle at the next moment
步骤S22:将相邻两时刻障碍物的位移记录为(ox,i,oy,i),对障碍物进行概率学分析,得到障碍物的期望值μx和μy,方差σx和σy,协方差σxy,和相关系数ρxy:Step S22: Record the displacement of the obstacle at two adjacent moments as (o x,i ,o y,i ), conduct a probabilistic analysis on the obstacle, and obtain the expected value μ x and μ y of the obstacle, and the variance σ x and σ y , covariance σ xy , and correlation coefficient ρ xy :
其中,N为参与预测的历史数据量,截取最近的N个历史序列作为预测,可以避免规划后期的数据膨胀;Among them, N is the amount of historical data involved in the prediction, and the most recent N historical sequences are intercepted as predictions, which can avoid data expansion in the later stage of planning;
步骤S23:将坐标系分成若干个栅格,每个栅格(m,n)的概率密度Uob(m,n)可通过下式获得:Step S23: divide the coordinate system into several grids, and the probability density U ob (m, n) of each grid (m, n) can be obtained by the following formula:
其中,Uob(m,n)为每个栅格(m,n)的概率密度。Among them, U ob (m,n) is the probability density of each grid (m,n).
具体的,智能轮椅在动态环境中对目标点进行跟踪时,有效的导航避障是必不可少的部分,需要智能轮椅规划一条无碰撞的安全路径。传统的一些避障方法没有考虑障碍物的动态特性,本申请采用了一种适应动态障碍物的导航方法,即随机势场法(Probability potential fields.PPF),该方法在智能轮椅上通过激光传感器采集智能轮椅周围的环境信息并传输到工控机,其之间通过以太网连接通信,应用程序对采集到的数据处理,预测障碍物下一时刻位置的概率分布,并产生一条无碰撞轨迹。Specifically, when the smart wheelchair tracks the target point in a dynamic environment, effective navigation and obstacle avoidance is an essential part, and the smart wheelchair needs to plan a safe path without collision. Some traditional obstacle avoidance methods do not consider the dynamic characteristics of obstacles. This application adopts a navigation method that adapts to dynamic obstacles, that is, the random potential field method (Probability potential fields.PPF). The environmental information around the smart wheelchair is collected and transmitted to the industrial computer, which communicates through the Ethernet connection. The application program processes the collected data, predicts the probability distribution of the position of the obstacle at the next moment, and generates a collision-free trajectory.
优选的,步骤S3中,具体包括以下步骤:Preferably, step S3 specifically includes the following steps:
步骤S31:按照步骤S13的计算原理,得到智能轮椅的最终期望位置PD(xD,yD),且根据智能轮椅的最终期望位置作为目标点形成引力势场,其中,引力势场在栅格位置(m,n)产生的势能Uatt(m,n)由式(8)表示:Step S31: According to the calculation principle of step S13, the final expected position P D (x D , y D ) of the smart wheelchair is obtained, and the gravitational potential field is formed according to the final expected position of the smart wheelchair as the target point, wherein the gravitational potential field is in the grid The potential energy U att (m,n) generated by the lattice position (m,n) is expressed by formula (8):
其中,S表示实际运动环境的大小,(xD,yD)代表目标位置;Among them, S represents the size of the actual motion environment, (x D , y D ) represents the target position;
步骤S32:根据引力势场和斥力势场叠加计算得到当前点(x,y)的合势场Ut(m,n);具体计算为:Step S32: Obtain the resultant potential field U t (m, n) of the current point (x, y) according to the superposition calculation of the gravitational potential field and the repulsive potential field; the specific calculation is:
Ut(m,n)=Uatt(m,n)+Uob(m,n) (9)U t (m,n)=U att (m,n)+U ob (m,n) (9)
步骤S33:对产生的合势场进行求偏导运算,得到如下势场梯度:Step S33: Perform a partial derivative operation on the resultant potential field to obtain the following potential field gradient:
根据势场梯度求出下一时刻智能轮椅的期望位置,具体计算如下:According to the potential field gradient, the expected position of the smart wheelchair at the next moment is calculated, and the specific calculation is as follows:
其中,xd和yd表示轮椅下一时刻期望的X轴坐标和Y轴坐标;θd表示轮椅下一时刻期望的姿态,x和y表示轮椅当前时刻的X轴坐标和Y轴坐标;D表示轮椅一个周期内移动的距离,可以被视为参考速度值,这个值越小,智能轮椅的运动更加安全;R为一个周期内智能轮椅运动距离的参考范值。Among them, x d and y d represent the desired X-axis coordinates and Y-axis coordinates of the wheelchair at the next moment; θ d represents the expected posture of the wheelchair at the next moment, and x and y represent the X-axis coordinates and Y-axis coordinates of the wheelchair at the current moment; D Indicates the moving distance of the wheelchair in one cycle, which can be regarded as a reference speed value. The smaller the value, the safer the movement of the smart wheelchair; R is the reference value of the moving distance of the smart wheelchair in one cycle.
R表示如下:R is expressed as follows:
具体的,通过随机势场法给智能轮椅规划出来的无碰撞轨迹,可以使智能轮椅在跟踪动态目标对象时安全、有效。Specifically, the collision-free trajectory planned for the smart wheelchair through the random potential field method can make the smart wheelchair safe and effective when tracking the dynamic target object.
优选的,步骤S4中,所述智能轮椅运动指令的生成是基于运动学模型的反演控制器跟踪的势场法规划的轨迹,具体包括以下步骤:Preferably, in step S4, the generation of the motion instruction of the intelligent wheelchair is based on the trajectory planned by the potential field method tracked by the inversion controller of the kinematic model, specifically comprising the following steps:
步骤S41:引人虚拟输入α,根据式机器人运动学方程,取Step S41: Introduce virtual input α, according to the equation of robot kinematics, take
其中v为机器人线速度,Lyapunov函数用于判断非线性系统的稳定性;令Lyapunov函数V1为Where v is the linear velocity of the robot, and the Lyapunov function is used to judge the stability of the nonlinear system; let the Lyapunov function V 1 be
其中ex表示轮椅在X方向上的位置误差,ey表示轮椅在Y方向上的位置误差;Where e x represents the position error of the wheelchair in the X direction, and e y represents the position error of the wheelchair in the Y direction;
ex=xd-x (15)e x = x d -x (15)
ey=yd-ye y =y d -y
由式(16)式可得From formula (16) can get
通过设计虚拟量α,使得By designing the virtual quantity α, so that
其中,xd和yd表示轮椅下一时刻期望的X轴坐标和Y轴坐标,则Among them, x d and y d represent the desired X-axis coordinates and Y-axis coordinates of the wheelchair at the next moment, then
其中,c1、c2为可调参数;Among them, c 1 and c 2 are adjustable parameters;
令将线速度v和虚拟控制律α设计为:make The linear velocity v and virtual control law α are designed as:
则保证式(20)成立;Then guarantee formula (20) is established;
步骤S42:令e=α-θ,定义Lyapunov函数V2为:Step S42: let e=α-θ, define the Lyapunov function V 2 as:
则but
将角速度控制律ω设计为:The angular velocity control law ω is designed as:
其中c3为可调参数,则where c 3 is an adjustable parameter, then
其中Cm为常数,Cm≤min(c1,c2,c3);Where C m is a constant, C m ≤ min(c 1 ,c 2 ,c 3 );
则即V2(t)以指数形式收敛于零,从而t→∞时,ex→0,ey→0,θ→θd且以指数形式收敛。but That is, V 2 (t) converges to zero exponentially, so when t→∞, ex→0, e y → 0 , θ→θd converge exponentially.
本申请采用基于运动学模型的反演控制器对势场法规划的轨迹进行跟踪。控制器在跟踪过程中,基于增量式编码盘的里程计对智能轮椅进行实时定位,对控制器提供运动反馈。This application uses an inversion controller based on a kinematic model to track the trajectory planned by the potential field method. During the tracking process of the controller, the odometer based on the incremental encoder disc locates the smart wheelchair in real time and provides motion feedback to the controller.
一种实施例中,步骤S41中,令xe=0,ye=0,则为了实现θ跟踪θd,步骤S42要保证θ跟踪α。In one embodiment, in step S41, set x e =0, y e =0, then In order to realize that θ tracks θ d , step S42 should ensure that θ tracks α.
本申请的另一方面提供了一种适应于动态环境的智能轮椅目标跟踪控制系统,所述系统包括目标检测模块、障碍物检测模块、运动规划模块和运动控制模块;Another aspect of the present application provides an intelligent wheelchair target tracking control system adapted to a dynamic environment, the system comprising a target detection module, an obstacle detection module, a motion planning module and a motion control module;
所述目标检测模块用于识别目标并且根据历史信息预测目标位置;The target detection module is used to identify the target and predict the position of the target according to historical information;
所述障碍物检测模块用于识别障碍物并且预测的障碍物位置的概率分布;The obstacle detection module is used to identify obstacles and predict the probability distribution of obstacle positions;
所述运动规划模块用于根据预测的目标位置以及预测的障碍物位置的概率分布分别构造引力势场和斥力势场,引力势场和斥力势场共同作用生成智能轮椅的安全路径;The motion planning module is used to construct the gravitational potential field and the repulsive force potential field respectively according to the probability distribution of the predicted target position and the predicted obstacle position, and the gravitational potential field and the repulsive force potential field work together to generate a safe path for the intelligent wheelchair;
所述运动控制模块用于跟踪运动规划模块生成的安全路径,并且执行智能轮椅运动指令。The motion control module is used to track the safe path generated by the motion planning module, and execute the motion command of the intelligent wheelchair.
本方案中的一种适应于动态环境的智能轮椅目标跟踪控制系统,如图1-2所示,智能轮椅包括电源组件、主控组件、运动组件和感知组件;由24V直流电源和变压器组成的电源组件为整个智能轮椅系统提供直流电源。工控机作为智能轮椅系统的主控组件,搭载了视觉传感器和激光传感器组成的感知组件。由轮子连接上安装有编码盘的直流电机和伺服驱动器组成了智能轮椅的运动组件。当智能轮椅对目标进行跟随控制时,感知组件获取目标信息和环境信息,发送到工控机进行数据处理分析,由主控组件发送指令给运动组件,控制轮子转速和方向。An intelligent wheelchair target tracking control system adapted to a dynamic environment in this scheme, as shown in Figure 1-2, the intelligent wheelchair includes a power supply component, a main control component, a motion component and a sensing component; The power supply module provides DC power for the entire intelligent wheelchair system. As the main control component of the intelligent wheelchair system, the industrial computer is equipped with a perception component composed of a visual sensor and a laser sensor. The motion components of the smart wheelchair are composed of a DC motor and a servo drive with a code disc installed on the wheels. When the smart wheelchair follows and controls the target, the perception component acquires target information and environmental information, sends them to the industrial computer for data processing and analysis, and the main control component sends instructions to the motion component to control the wheel speed and direction.
进一步说明,电源组件中,由24V直流电源给工控机、伺服驱动器和激光传感器进行直接供电,显示屏由24V直流电源连接变压器降压至12V进行供电。主控组件中,工控机一方面利用编写的应用程序接收外部传感器的数据并进行分析;另一方面,通过应用程序给智能轮椅发送控制指令执行不同的任务。感知组件中,激光传感器和工控机之间通过以太网口连接通信,激光传感器采集智能轮椅周围的环境信息并传输到工控机;视觉传感器与工控机通过USB连接,将采集到的图像信息传输给工控机。运动组件中,伺服驱动器与工控机之间通过CAN总线连接,以此来接收控制命令和发送智能轮椅运动的相关数据,驱动器接收控制命令并通过内置集成芯片的处理和换算,产生电机的转速传输给电机驱动智能轮椅运动;同时,驱动器内置的数据接口可以通过增量式编码器实时获取电机的精确位置,并把数据反向传输到工控机,从而实现了状态信息的反馈控制。To further explain, in the power supply components, the industrial computer, servo driver and laser sensor are directly powered by 24V DC power supply, and the display screen is powered by stepping down the 24V DC power supply to 12V through a transformer. In the main control component, on the one hand, the industrial computer uses the written application program to receive and analyze the data of external sensors; on the other hand, it sends control instructions to the smart wheelchair through the application program to perform different tasks. In the perception component, the laser sensor and the industrial computer are connected and communicated through the Ethernet port. The laser sensor collects the environmental information around the smart wheelchair and transmits it to the industrial computer; the vision sensor and the industrial computer are connected through USB to transmit the collected image information to the industrial computer. In the motion component, the servo driver and the industrial computer are connected through the CAN bus to receive control commands and send relevant data about the movement of the smart wheelchair. The driver receives the control commands and processes and converts them through the built-in integrated chip to generate the motor speed transmission. The motor drives the smart wheelchair to move; at the same time, the built-in data interface of the driver can obtain the precise position of the motor in real time through the incremental encoder, and reversely transmit the data to the industrial computer, thereby realizing the feedback control of the status information.
本方案中通过目标检测模块识别目标并且根据历史信息预测目标位置,与此同时,障碍物检测模块识别障碍物并且根据历史信息预测障碍物位置的概率分布,基于预测的目标位置生成引力势场,基于预测障碍物位置的概率分布生成斥力势场,通过两个势场共同作用,规划出一条安全的跟随路径。本方案区别于传统的目标跟随方法,基于目标检测模块和障碍物检测模块的历史数据,系统对目标和障碍物的运动具有预测能力,从而使规划的轨迹对动态环境具有更好的适应性。In this scheme, the target detection module is used to identify the target and predict the target position according to the historical information. At the same time, the obstacle detection module identifies the obstacle and predicts the probability distribution of the obstacle position according to the historical information, and generates a gravitational potential field based on the predicted target position. A repulsive potential field is generated based on the probability distribution of the predicted obstacle position, and a safe following path is planned through the joint action of the two potential fields. This solution is different from the traditional target following method. Based on the historical data of the target detection module and obstacle detection module, the system has the ability to predict the movement of targets and obstacles, so that the planned trajectory has better adaptability to the dynamic environment.
此外,在本发明的各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。In addition, each functional unit in each embodiment of the present invention may be integrated into one processing module, each unit may exist separately physically, or two or more units may be integrated into one module. The above-mentioned integrated modules can be implemented in the form of hardware or in the form of software function modules. If the integrated modules are realized in the form of software function modules and sold or used as independent products, they can also be stored in a computer-readable storage medium.
尽管上面已经示出和描述了本发明的实施方式,可以理解的是,上述实施方式是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施实施进行变化、修改、替换和变型。Although the embodiment of the present invention has been shown and described above, it can be understood that the above embodiment is exemplary and should not be construed as a limitation of the present invention, and those skilled in the art can make the above-mentioned Implementing implements changes, modifications, substitutions and variations.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211127474.3A CN115469665B (en) | 2022-09-16 | 2022-09-16 | Intelligent wheelchair target tracking control method and system suitable for dynamic environment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211127474.3A CN115469665B (en) | 2022-09-16 | 2022-09-16 | Intelligent wheelchair target tracking control method and system suitable for dynamic environment |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115469665A true CN115469665A (en) | 2022-12-13 |
CN115469665B CN115469665B (en) | 2023-07-04 |
Family
ID=84332962
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211127474.3A Active CN115469665B (en) | 2022-09-16 | 2022-09-16 | Intelligent wheelchair target tracking control method and system suitable for dynamic environment |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115469665B (en) |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2251157A1 (en) * | 2009-05-15 | 2010-11-17 | Honda Research Institute Europe GmbH | Autonomous robots with planning in unpredictable, dynamic and complex environments |
CN108673501A (en) * | 2018-05-17 | 2018-10-19 | 中国科学院深圳先进技术研究院 | A kind of the target follower method and device of robot |
CN110111880A (en) * | 2019-04-22 | 2019-08-09 | 北京航空航天大学 | The Artificial Potential Field paths planning method and device based on obstacle classification of flexible needle |
CN110471422A (en) * | 2019-08-29 | 2019-11-19 | 南京理工大学 | The detection of obstacles and automatic obstacle avoiding method of intelligent wheel chair |
CN111258824A (en) * | 2020-01-18 | 2020-06-09 | 重庆邮电大学 | Increment check point fault tolerance method based on artificial potential field in cloud computing |
CN112344943A (en) * | 2020-11-20 | 2021-02-09 | 安徽工程大学 | Intelligent vehicle path planning method for improving artificial potential field algorithm |
CN112683288A (en) * | 2020-11-30 | 2021-04-20 | 北方工业大学 | Intelligent guide robot system and method for assisting blind in crossing street in intersection environment |
CN113342047A (en) * | 2021-06-23 | 2021-09-03 | 大连大学 | Unmanned aerial vehicle path planning method for improving artificial potential field method based on obstacle position prediction in unknown environment |
CN113759936A (en) * | 2021-09-30 | 2021-12-07 | 哈尔滨工业大学 | A Path Planning Method Combined with Proportional Guidance Method and Artificial Potential Field Method for Dynamic Target Tracking |
CN114063621A (en) * | 2021-11-22 | 2022-02-18 | 燕山大学 | Wheeled robot formation tracking and obstacle avoidance control method |
CN114442637A (en) * | 2022-02-10 | 2022-05-06 | 北京理工大学 | A local dynamic obstacle avoidance path planning method for unmanned vehicles |
CN114821764A (en) * | 2022-01-25 | 2022-07-29 | 哈尔滨工程大学 | A method and system for gesture image recognition based on KCF tracking detection |
CN114848315A (en) * | 2022-05-05 | 2022-08-05 | 广东工业大学 | Intelligent wheelchair man-machine cooperative control system based on surface electromyogram signals |
-
2022
- 2022-09-16 CN CN202211127474.3A patent/CN115469665B/en active Active
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2251157A1 (en) * | 2009-05-15 | 2010-11-17 | Honda Research Institute Europe GmbH | Autonomous robots with planning in unpredictable, dynamic and complex environments |
CN108673501A (en) * | 2018-05-17 | 2018-10-19 | 中国科学院深圳先进技术研究院 | A kind of the target follower method and device of robot |
CN110111880A (en) * | 2019-04-22 | 2019-08-09 | 北京航空航天大学 | The Artificial Potential Field paths planning method and device based on obstacle classification of flexible needle |
CN110471422A (en) * | 2019-08-29 | 2019-11-19 | 南京理工大学 | The detection of obstacles and automatic obstacle avoiding method of intelligent wheel chair |
CN111258824A (en) * | 2020-01-18 | 2020-06-09 | 重庆邮电大学 | Increment check point fault tolerance method based on artificial potential field in cloud computing |
CN112344943A (en) * | 2020-11-20 | 2021-02-09 | 安徽工程大学 | Intelligent vehicle path planning method for improving artificial potential field algorithm |
CN112683288A (en) * | 2020-11-30 | 2021-04-20 | 北方工业大学 | Intelligent guide robot system and method for assisting blind in crossing street in intersection environment |
CN113342047A (en) * | 2021-06-23 | 2021-09-03 | 大连大学 | Unmanned aerial vehicle path planning method for improving artificial potential field method based on obstacle position prediction in unknown environment |
CN113759936A (en) * | 2021-09-30 | 2021-12-07 | 哈尔滨工业大学 | A Path Planning Method Combined with Proportional Guidance Method and Artificial Potential Field Method for Dynamic Target Tracking |
CN114063621A (en) * | 2021-11-22 | 2022-02-18 | 燕山大学 | Wheeled robot formation tracking and obstacle avoidance control method |
CN114821764A (en) * | 2022-01-25 | 2022-07-29 | 哈尔滨工程大学 | A method and system for gesture image recognition based on KCF tracking detection |
CN114442637A (en) * | 2022-02-10 | 2022-05-06 | 北京理工大学 | A local dynamic obstacle avoidance path planning method for unmanned vehicles |
CN114848315A (en) * | 2022-05-05 | 2022-08-05 | 广东工业大学 | Intelligent wheelchair man-machine cooperative control system based on surface electromyogram signals |
Non-Patent Citations (1)
Title |
---|
缪露: "基于双目视觉的轮椅自动跟随方法研究", pages 27 - 29 * |
Also Published As
Publication number | Publication date |
---|---|
CN115469665B (en) | 2023-07-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chebotar et al. | Path integral guided policy search | |
CN110202583B (en) | A humanoid manipulator control system based on deep learning and its control method | |
Shabbir et al. | A survey of deep learning techniques for mobile robot applications | |
Wang et al. | A hybrid visual servo controller for robust grasping by wheeled mobile robots | |
US20150032258A1 (en) | Apparatus and methods for controlling of robotic devices | |
Maravall et al. | Vision-based anticipatory controller for the autonomous navigation of an UAV using artificial neural networks | |
Gao et al. | Contextual task-aware shared autonomy for assistive mobile robot teleoperation | |
Zhao et al. | Terrain classification and adaptive locomotion for a hexapod robot Qingzhui | |
CN112192614A (en) | Man-machine cooperation based shaft hole assembling method for nuclear operation and maintenance robot | |
Ren et al. | Integrated task sensing and whole body control for mobile manipulation with series elastic actuators | |
Chamorro et al. | Neural network based lidar gesture recognition for realtime robot teleoperation | |
Jangid et al. | Kinematics-based end-effector path control of a mobile manipulator system on an uneven terrain using a two-stage Support Vector Machine | |
Liu et al. | Serocs: Safe and efficient robot collaborative systems for next generation intelligent industrial co-robots | |
Srivastava et al. | Least square policy iteration for ibvs based dynamic target tracking | |
Li et al. | BAS optimized ELM for KUKA iiwa robot learning | |
Li et al. | A novel semi-autonomous teleoperation method for the tiangong-2 manipulator system | |
CN115469665B (en) | Intelligent wheelchair target tracking control method and system suitable for dynamic environment | |
CN113547501A (en) | SLAM-based mobile mechanical arm cart task planning and control method | |
Rahul et al. | Deep reinforcement learning with inverse jacobian based model-free path planning for deburring in complex industrial environment | |
Panwar et al. | Generalised regression neural network (GRNN) architecture-based motion planning and control of an e-puck robot in V-Rep software platform | |
Koshelev et al. | Intelligent control of mobile robot with redundant manipulator & stereovision: quantum/soft computing toolkit | |
Navarro-Cabrera et al. | Multi-objective tuning for torque PD controllers of cobots | |
Jiang et al. | Deep learning based human-robot co-manipulation for a mobile manipulator | |
Wang et al. | Optimizing robot arm reaching ability with different joints functionality | |
Man et al. | Robot bolt skill learning based on GMM-GMR |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |