CN115469555B - Spatial image prediction and image quality optimization method for sensor chip projection lithography machine - Google Patents
Spatial image prediction and image quality optimization method for sensor chip projection lithography machine Download PDFInfo
- Publication number
- CN115469555B CN115469555B CN202211417846.6A CN202211417846A CN115469555B CN 115469555 B CN115469555 B CN 115469555B CN 202211417846 A CN202211417846 A CN 202211417846A CN 115469555 B CN115469555 B CN 115469555B
- Authority
- CN
- China
- Prior art keywords
- light source
- mask
- matrix
- model
- imaging
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005457 optimization Methods 0.000 title claims abstract description 67
- 238000001459 lithography Methods 0.000 title claims abstract description 56
- 238000000034 method Methods 0.000 title claims abstract description 55
- 238000003384 imaging method Methods 0.000 claims abstract description 67
- 238000001228 spectrum Methods 0.000 claims abstract description 36
- 238000009826 distribution Methods 0.000 claims abstract description 30
- 230000002068 genetic effect Effects 0.000 claims abstract description 11
- 239000011159 matrix material Substances 0.000 claims description 64
- 230000001427 coherent effect Effects 0.000 claims description 21
- 238000005286 illumination Methods 0.000 claims description 21
- 210000001747 pupil Anatomy 0.000 claims description 17
- 238000013178 mathematical model Methods 0.000 claims description 16
- 230000008569 process Effects 0.000 claims description 13
- 230000003287 optical effect Effects 0.000 claims description 12
- 229920002120 photoresistant polymer Polymers 0.000 claims description 9
- 238000000605 extraction Methods 0.000 claims description 6
- 238000001914 filtration Methods 0.000 claims description 6
- 238000005070 sampling Methods 0.000 claims description 5
- 238000012546 transfer Methods 0.000 claims description 3
- 238000013519 translation Methods 0.000 claims description 3
- 238000004364 calculation method Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 9
- 238000000206 photolithography Methods 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 6
- 230000002265 prevention Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 2
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 2
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 2
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011478 gradient descent method Methods 0.000 description 1
- 238000000671 immersion lithography Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000010845 search algorithm Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
- G05B13/04—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
- G05B13/042—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Computation (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
Abstract
本发明公开一种用于传感芯片投影光刻机的空间像预测及像质优化方法,是禁忌搜索‑遗传算法的混合方法。光刻系统空间像成像模型以Abbe成像方法为基础,通过提取掩模有效衍射频谱信息完成空间像强度分布的计算。光源S由四个对称的子区域组成,提取子区域有效单元作为光源优化的变量。掩模M由对称规则图形组成,提取子区域图形边缘附近单元作为掩模优化的变量。将图形误差及边缘放置误差作为目标函数F1和F2,将优化后的光源进行高斯滤波操作,通过阈值方法对优化后的灰度掩模进行二值处理。本发明为光刻系统空间像成像模型提供方法,并提出一种快速光源掩模优化方法,为传感芯片投影光刻机工作效率的提高提供有效的帮助。
The invention discloses a spatial image prediction and image quality optimization method for a sensor chip projection lithography machine, which is a hybrid method of tabu search and genetic algorithm. The spatial image imaging model of the lithography system is based on the Abbe imaging method, and the calculation of the spatial image intensity distribution is completed by extracting the effective diffraction spectrum information of the mask. The light source S is composed of four symmetrical sub-regions, and the effective units of the sub-regions are extracted as variables for light source optimization. The mask M is composed of symmetrical regular graphics, and the cells near the edge of the sub-region graphics are extracted as variables for mask optimization. Taking the graphic error and edge placement error as the objective functions F 1 and F 2 , the optimized light source is subjected to Gaussian filter operation, and the optimized gray mask is binary processed by the threshold method. The invention provides a method for the spatial image imaging model of the lithography system, and proposes a fast light source mask optimization method, which provides effective help for improving the working efficiency of the sensor chip projection lithography machine.
Description
技术领域Technical Field
本发明属于投影光刻领域,具体涉及一种用于传感芯片投影光刻机的空间像预测及像质优化方法。The present invention belongs to the field of projection lithography, and in particular relates to a method for predicting a spatial image and optimizing image quality for a projection lithography machine for a sensor chip.
背景技术Background Art
投影光刻技术作为超大规模集成电路制造的主流技术。目前,超大规模集成电路性能的提升及微型化是通过减小单个晶体管的特征尺寸、增大同等面积内的晶体管数量来实现。根据瑞利判据,缩短曝光波长和增大物镜数值孔径,能够有效提高光刻成像分辨率。而关键尺寸的不断缩减,导致光学衍射效应加剧,使得在成像过程中,引入较为明显的光学邻近效应,造成光刻成像质量下降。因此,如何提高光刻成像表现性已成为亟待解决的问题。Projection lithography is the mainstream technology for VLSI manufacturing. At present, the performance improvement and miniaturization of VLSI are achieved by reducing the characteristic size of a single transistor and increasing the number of transistors in the same area. According to the Rayleigh criterion, shortening the exposure wavelength and increasing the numerical aperture of the objective lens can effectively improve the resolution of lithography imaging. However, the continuous reduction of the critical size leads to the intensification of the optical diffraction effect, which introduces a more obvious optical proximity effect during the imaging process, resulting in a decrease in the quality of lithography imaging. Therefore, how to improve the performance of lithography imaging has become an urgent problem to be solved.
基于像素化光源掩模优化的光刻逆优化模型的关键在于光刻的正向成像模型及逆优化模型。其中,正向成像模型主要包含光源模型、掩模模型和光瞳模型。根据Abbe成像理论,按照三者之间的频谱关系,建立正向成型模型获取光刻空间像强度分布。在逆光刻优化模型中,为了符合迭代算法的优化规则,将光刻胶图形与理想图形之间每个元素差值的绝对值之和作为代价函数,即图形误差。其中,光刻胶图形可以用sigmoid函数近似表示光刻胶效应。在光源优化模型中,标记光源有效单元,并将它们作为迭代模型的优化变量。根据照明光源关于光轴对称的特性,仅需要四分之一优化变量,降低优化模型的复杂度,提高优化效率。在掩模优化模型中,采用边缘优化策略,即将特征图形边缘附近单元作为优化变量,并通过迭代不断更新变量值。The key to the inverse optimization model of lithography based on pixelated light source mask optimization lies in the forward imaging model and inverse optimization model of lithography. Among them, the forward imaging model mainly includes the light source model, the mask model and the pupil model. According to the Abbe imaging theory, according to the spectral relationship between the three, a forward molding model is established to obtain the lithography space image intensity distribution. In the inverse lithography optimization model, in order to meet the optimization rules of the iterative algorithm, the sum of the absolute values of the difference between each element of the photoresist pattern and the ideal pattern is used as the cost function, that is, the pattern error. Among them, the photoresist pattern can be approximated by the sigmoid function to represent the photoresist effect. In the light source optimization model, the effective units of the light source are marked and used as the optimization variables of the iterative model. According to the symmetric characteristics of the illumination light source about the optical axis, only one quarter of the optimization variables are needed, which reduces the complexity of the optimization model and improves the optimization efficiency. In the mask optimization model, the edge optimization strategy is adopted, that is, the units near the edge of the feature pattern are used as optimization variables, and the variable values are continuously updated through iteration.
在逆优化模型中,根据优化算法的不同,所得到效果不同。但对于同一种特征图形,被优化的光源强度分布有相似的趋势,而掩模图形的优化结果根据优化策略不同而存在差异。在先技术1 (Yao Peng, Jinyu Zhang, Yan Wang, and Zhiping Yu, "Gradient-Based Source and Mask Optimization in Optical Lithography," IEEE Trans. onImage Process. 20(10), 2856–2864 (2011).) 提出梯度下降法的光源掩模优化方法。该方法采用Abbe成像模型完成光源优化,采用相干系统之和(SOCS)完成掩模优化。在光源掩模优化模型中,优化变量的取值范围被余弦函数约束,同时采用阈值函数,根据掩模变量的取值进行二值操作。在先技术2 (X. Ma, C. Han, Y. Li, L. Dong, and G. R. Arce, "Pixelated source and mask optimization for immersion lithography," J. Opt.Soc. Am. A 30(1), 112 (2013).) 提出基于像素表征的梯度方法的光刻光源掩模优化模型。该模型建立以矢量Abbe成像方法的光刻成像模型,并提出同步光源掩模优化模型及序列光源掩模优化模型,对光源强度分布及掩模图形布局进行优化。在先技术3 (C. Yang,S. Li, and X. Wang, "Efficient source mask optimization using multipolesource representation," J. Micro/Nanolith. MEMS MOEMS 13(4), 043001 (2014).)提出基于遗传算法的光源掩模优化方法。该方法采用极坐标方式标记光源有效单元变量的分布。In the inverse optimization model, different optimization algorithms can produce different results. However, for the same feature graph, the optimized light source intensity distribution has a similar trend, while the optimization results of the mask graph vary depending on the optimization strategy. Prior art 1 (Yao Peng, Jinyu Zhang, Yan Wang, and Zhiping Yu, "Gradient-Based Source and Mask Optimization in Optical Lithography," IEEE Trans. onImage Process. 20(10), 2856–2864 (2011).) proposed a light source mask optimization method using a gradient descent method. This method uses the Abbe imaging model to optimize the light source and the sum of coherent systems (SOCS) to optimize the mask. In the light source mask optimization model, the value range of the optimization variable is constrained by a cosine function, and a threshold function is used to perform binary operations based on the value of the mask variable. Prior art 2 (X. Ma, C. Han, Y. Li, L. Dong, and G. R. Arce, "Pixelated source and mask optimization for immersion lithography," J. Opt.Soc. Am. A 30(1), 112 (2013).) proposed a lithography light source mask optimization model based on a gradient method with pixel representation. The model established a lithography imaging model based on the vector Abbe imaging method, and proposed a synchronous light source mask optimization model and a sequential light source mask optimization model to optimize the light source intensity distribution and mask pattern layout. Prior art 3 (C. Yang,S. Li, and X. Wang, "Efficient source mask optimization using multipolesource representation," J. Micro/Nanolith. MEMS MOEMS 13(4), 043001 (2014).) proposed a light source mask optimization method based on a genetic algorithm. The method uses polar coordinates to mark the distribution of light source effective unit variables.
在先技术1和2都采用了基于梯度的方法建立优化光源掩模的模型,虽然该方法能够收敛速度很高,但是其代价函数的求导过程较为复杂,且该优化模型易陷于局部最优的情况。在先技术3 采用遗传算法作为优化光源强度分布及掩模图形布局的核,遗传算法作为一种全局优化的启发式算法,具有较为简单的优化结构及搜索速度高等优点。但,由于光刻成像模型及光刻模型较为复杂,导致变量矩阵维度较大,使得该方法容易出现过早收敛的状态,造成该算法收敛效率下降。
发明内容Summary of the invention
为解决上述技术问题,本发明提供一种用于传感芯片投影光刻机的空间像预测及像质优化方法。其采用提取有效特征图形频谱信息的方式实现光刻系统空间像成像过程,降低该过程计算复杂度,同时提高成像模型精度。全局光源掩模优化方法适用于图形误差、边缘放置误差等多种目标函数F,该方法在保证掩模优化结果复杂度低的同时,有效提高了光刻系统成像表现性。In order to solve the above technical problems, the present invention provides a method for predicting and optimizing the spatial image quality of a sensor chip projection lithography machine. The method realizes the spatial image imaging process of the lithography system by extracting effective characteristic pattern spectrum information, reduces the computational complexity of the process, and improves the accuracy of the imaging model. The global light source mask optimization method is applicable to a variety of objective functions F such as pattern error and edge placement error. This method effectively improves the imaging performance of the lithography system while ensuring the low complexity of the mask optimization result.
为达到上述目的,本发明采用的技术解决方案如下:To achieve the above purpose, the technical solutions adopted by the present invention are as follows:
一种用于传感芯片投影光刻机的空间像预测及像质优化方法,其为禁忌搜索-遗传算法的混合方法,该方法包括如下步骤:A method for spatial image prediction and image quality optimization for a sensor chip projection lithography machine is a hybrid method of taboo search and genetic algorithm, and the method comprises the following steps:
步骤1:初始化光刻系统空间像成像模型参数,输入光源S及掩模图形M;Step 1: Initialize the parameters of the lithography system spatial image model, input the light source S and the mask pattern M ;
步骤2:编码光源及掩模有效单元作为目标函数变量;Step 2: Encode the light source and mask effective units as objective function variables;
步骤3:根据启发式优化算法结构,随机产生待优化群体变量全体矩阵P;因此,在该光源掩模优化模型中,随机产生光源及掩模初始群体——光源变量群体矩阵P S 和掩模变量群体矩阵P M ,所述光源变量群体矩阵P S 与掩模变量群体矩阵P M 分别为P S =[S 1,S 2,S 3,…,S P ],P M =[M 1,M 2,M 3,…,M P ];Step 3: According to the heuristic optimization algorithm structure, randomly generate the matrix P of all population variables to be optimized; therefore , in the light source mask optimization model, randomly generate the initial population of light sources and masks, namely, the light source variable population matrix PS and the mask variable population matrix PM, wherein the light source variable population matrix PS and the mask variable population matrix PM are PS = [ S1 , S2 , S3 , … , SP ] and PM = [ M1 , M2 , M3 , … , MP ] respectively ;
步骤4:根据初始的光源变量矩阵P S ,通过上述光刻系统空间像成像模型计算每个个体所产生的空间像强度分布I S ,实现不同成像条件下空间像预测;并根据目标函数F1和F2计算适应值,并通过对比选出当前最佳初始光源变量个体及适应值;其中,表示在该光刻系统空间像成像模型中,根据不同光源变量群体矩阵P S 的个体S P 所得空间像强度分布矩阵I S ,即,;Step 4: According to the initial light source variable matrix P S , the spatial image intensity distribution I S generated by each individual is calculated through the above-mentioned lithography system spatial image imaging model to achieve spatial image prediction under different imaging conditions; and the fitness value is calculated according to the objective functions F 1 and F 2 , and the current best initial light source variable individual is selected by comparison. and fitness value ;in, It means that in the lithography system aerial image imaging model, the aerial image intensity distribution matrix IS is obtained according to the individual SP of the different light source variable group matrix PS , that is, , ;
步骤5:将步骤4所得到的当前最佳初始光源变量个体作为禁忌搜索-遗传算法优化模型的输入条件,进行迭代更新光源变量个体至迭代停止;Step 5: The current optimal initial light source variable individual obtained in step 4 As the input condition of the taboo search-genetic algorithm optimization model, iteratively update the light source variable individuals until the iteration stops;
步骤6:根据迭代停止后的光源变量个体,执行矩阵反转镜像及高斯滤波操纵,恢复光源形貌;Step 6: According to the individual light source variables after the iteration, perform matrix inversion mirroring and Gaussian filtering operations to restore the light source shape;
步骤7:将上述获得的光源作为掩模优化模型的光源条件;按照掩模变量群体矩阵P M 计算并记录当前最佳初始掩模变量个体及适应值;Step 7: Use the light source obtained above as the light source condition of the mask optimization model; calculate and record the current best initial mask variable individual according to the mask variable population matrix PM and fitness value ;
步骤8:将步骤7所得到的当前最佳初始掩模变量个体作为禁忌搜索-遗传算法优化模型的输入条件,进行迭代更新掩模变量个体至迭代停止;Step 8: The current best initial mask variable individual obtained in step 7 As the input condition of the taboo search-genetic algorithm optimization model, the mask variable individuals are iteratively updated until the iteration stops;
步骤9:输出最佳光源强度分布及掩模图形布局。Step 9: Output the optimal light source intensity distribution and mask pattern layout.
进一步地,所述步骤1中,将掩模图形M及输入光源S进行网格化处理,并采用有效频谱提取的方法,提取掩模图形有效特征信息,结合Abbe成像方法,将经过光刻光学系统生成的空间像用下列数学模型表示:Furthermore, in
其中,I表示空间像强度分布,即部分相干成像的结果;N ' S 表示像素化光源中有效点光源的个数;CCI i 表示由单个点光源产生的相干成像结果,其通过下列数学模型表示:Wherein, I represents the spatial image intensity distribution, i.e., the result of partial coherent imaging; N 'S represents the number of effective point light sources in the pixelated light source; CCI i represents the coherent imaging result generated by a single point light source, which is represented by the following mathematical model:
, ,
其中,(x i ,y i )表示相干像平面空间坐标系;(f,g)表示光瞳面频谱坐标系;(f',g')表示掩模频谱坐标系;H表示成像系统的光学传递函数,即光瞳函数;H i 表示根据点光源位置(S x ,S y )进行平移后的光瞳;M表示掩模频谱;Wherein, ( xi , yi ) represents the spatial coordinate system of the coherent image plane; ( f , g ) represents the pupil plane spectrum coordinate system; ( f ', g ' ) represents the mask spectrum coordinate system; H represents the optical transfer function of the imaging system, i.e., the pupil function; Hi represents the pupil after translation according to the position of the point light source ( Sx , Sy ) ; M represents the mask spectrum;
将相干成像模型离散化,由下列数学模型表示:The coherent imaging model is discretized and expressed by the following mathematical model:
其中,表示离散化相干像平面空间坐标系;(j,k)表示离散化光瞳面频谱坐标系;(j',k')表示离散化掩模频谱坐标系;N ext 表示被提取的有效频谱采样点数,;in, represents the discretized coherent image plane spatial coordinate system; ( j , k ) represents the discretized pupil plane spectrum coordinate system; ( j ', k ') represents the discretized mask spectrum coordinate system; Next represents the number of effective spectrum sampling points extracted, ;
根据Abbe方法,部分相干成像过程所得到的空间像I ext 被下列数学模型表示:According to the Abbe method, the spatial image I ext obtained by the partial coherence imaging process is represented by the following mathematical model:
其中,在以m, n为索引方式的坐标系建立的光刻系统照明光源模型。S(m,n)表示在光源模型坐标系中位于(m,n)位置处的点光源,光刻系统照明光源模型矩阵大小为N S ×N S ,m,n=1,2,3,…,N S 。Among them, the lithography system illumination source model is established in a coordinate system with m , n as the index. S ( m , n ) represents a point light source located at the position ( m , n ) in the light source model coordinate system, and the lithography system illumination source model matrix size is N S × N S , m , n = 1,2,3,…, N S.
进一步地,所述步骤4中,定义光刻胶图形矩阵与理想图形各单元的差值的绝对值之和为图形误差,以所述图像误差作为目标函数F1;标记掩模图形边界附近内外两个像素点的区域,并用来计算边缘放置误差,以所述边缘防止误差作为目标函数F2;目标函数F1和F2分别被表示为下列数学模型:Furthermore, in the step 4, the sum of the absolute values of the differences between the photoresist pattern matrix and each unit of the ideal pattern is defined as the pattern error, and the image error is used as the objective function F1 ; the area of two inner and outer pixel points near the boundary of the mask pattern is marked and used to calculate the edge placement error, and the edge prevention error is used as the objective function F2 ; the objective functions F1 and F2 are respectively expressed as the following mathematical models:
, ,
, ,
其中,RP(x i ,y i ) 表示光刻胶图形,M * (x i ,y i ) 表示理想图形;ICC Edge 表示提取的边缘像素点构成的矩阵;S ext 表示提取的光源矩阵;M ' ext 表示按照索引位置提取理想图形边缘像素点构成的矩阵;minimize表示在基于禁忌搜索-遗传迭代寻优模型中,保证迭代停止时,目标函数的数值为最小。Among them, RP ( xi , yi ) represents the photoresist pattern, M * ( xi , yi ) represents the ideal pattern; ICC Edge represents the matrix composed of the extracted edge pixels; Sext represents the extracted light source matrix; M'ext represents the matrix composed of the edge pixels of the ideal pattern extracted according to the index position; minimize means that in the taboo search-genetic iterative optimization model, the value of the objective function is guaranteed to be the minimum when the iteration stops.
与现有技术相比,本发明具有如下的优点:Compared with the prior art, the present invention has the following advantages:
1、本发明提出基于混合型的遗传算法,提高遗传算法的收敛效率,保证光刻系统具有较好的成像表现性。1. The present invention proposes a hybrid genetic algorithm to improve the convergence efficiency of the genetic algorithm and ensure that the lithography system has good imaging performance.
2、本发明根据光刻照明系统的光学特性,将光源形貌拆分为四个相同的部分,并进行编码有效光源变量,通过高斯滤波方法,提高光源强度分布梯度化。2. The present invention divides the light source morphology into four identical parts according to the optical characteristics of the lithography illumination system, encodes the effective light source variables, and improves the gradient distribution of the light source intensity through the Gaussian filtering method.
3、本发明提出的优化方法适用于多种目标函数,如图形误差、边缘防止误差等。3. The optimization method proposed in the present invention is applicable to a variety of objective functions, such as graphic error, edge prevention error, etc.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1为本发明所提出的用于传感芯片投影光刻机的空间像预测及像质优化方法流程示意图;FIG1 is a schematic flow chart of a method for spatial image prediction and image quality optimization for a sensor chip projection lithography machine proposed by the present invention;
图2为本发明所采用的掩模示意图;FIG2 is a schematic diagram of a mask used in the present invention;
图3为本发明所提出的掩模有效特征频谱提取方法示意图;FIG3 is a schematic diagram of a method for extracting effective characteristic spectrum of a mask proposed in the present invention;
图4为本发明所采用的光刻系统空间像成像方法示意图;FIG4 is a schematic diagram of a method for imaging an aerial image of a lithography system used in the present invention;
图5为本发明所采用的光源编码及高斯滤波方法示意图。FIG. 5 is a schematic diagram of the light source coding and Gaussian filtering method used in the present invention.
具体实施方式DETAILED DESCRIPTION
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。In order to make the purpose, technical solutions and advantages of the present invention more clearly understood, the present invention is further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are only used to explain the present invention and are not intended to limit the present invention. In addition, the technical features involved in the various embodiments of the present invention described below can be combined with each other as long as they do not conflict with each other.
为了提高光刻系统空间像成像表现性,本发明通过以下实施例公开一种用于传感芯片投影光刻机的空间像预测及像质优化方法。In order to improve the imaging performance of the aerial image of the lithography system, the present invention discloses a method for predicting the aerial image and optimizing the image quality for a sensor chip projection lithography machine through the following embodiments.
如图1所示,本发明的用于传感芯片投影光刻机的空间像预测及像质优化方法为禁忌搜索-遗传算法的混合方法,其中空间像预测在步骤4完成,目标函数为F1和F2,该方法包括如下步骤:As shown in FIG1 , the method for predicting the spatial image and optimizing the image quality of the sensor chip projection lithography machine of the present invention is a hybrid method of taboo search and genetic algorithm, wherein the spatial image prediction is completed in step 4, the objective functions are F 1 and F 2 , and the method comprises the following steps:
步骤1:初始化光刻系统空间像成像模型参数,输入光源S及掩模图形M;Step 1: Initialize the parameters of the lithography system spatial image model, input the light source S and the mask pattern M ;
步骤2:以编码光源及掩模有效单元作为目标函数变量;Step 2: Use the coded light source and mask effective units as objective function variables;
步骤3: 根据启发式优化算法结构,需随机产生待优化群体变量全体矩阵P。因此,在该光源掩模优化模型中,随机产生光源及掩模初始群体——光源变量群体矩阵P S 和掩模变量群体矩阵P M ,所述光源变量群体矩阵P S 与掩模变量群体矩阵P M 分别为P S =[S 1,S 2,S 3,…,S P ],P M =[M 1,M 2,M 3,…,M P ];Step 3: According to the structure of the heuristic optimization algorithm, it is necessary to randomly generate the matrix P of all the population variables to be optimized. Therefore, in the light source mask optimization model, the initial population of light sources and masks , namely, the light source variable population matrix PS and the mask variable population matrix PM, are randomly generated. The light source variable population matrix PS and the mask variable population matrix PM are PS = [S1, S2 , S3 , … , SP ] , PM = [ M1 , M2 , M3 , …, MP ] respectively ;
步骤4:根据初始的光源变量矩阵P S ,通过上述光刻系统空间像成像模型计算每个个体所产生的空间像强度分布I S ,实现不同成像条件下空间像预测。并根据目标函数F1和F2计算适应值,并通过对比选出当前最佳初始光源变量个体及适应值;其中,表示在该光刻系统空间像成像模型中,根据不同光源变量群体矩阵P S 的个体S P 所得空间像强度分布矩阵I S ,即,;Step 4: Based on the initial light source variable matrix P S , the above-mentioned lithography system spatial image imaging model is used to calculate the spatial image intensity distribution IS generated by each individual, and the spatial image prediction under different imaging conditions is realized. The fitness value is calculated based on the objective functions F 1 and F 2 , and the current best initial light source variable individual is selected by comparison. and fitness value ;in, It means that in the lithography system aerial image imaging model, the aerial image intensity distribution matrix IS is obtained according to the individual SP of the different light source variable group matrix PS , that is, , ;
步骤5:将步骤4所得到的当前最佳初始光源变量个体作为禁忌搜索-遗传算法优化模型的输入条件,进行迭代更新光源变量个体至迭代停止;Step 5: The current optimal initial light source variable individual obtained in step 4 As the input condition of the taboo search-genetic algorithm optimization model, iteratively update the light source variable individuals until the iteration stops;
步骤6:根据迭代停止后的光源变量个体,执行矩阵反转镜像及高斯滤波操纵,恢复光源形貌;Step 6: According to the individual light source variables after the iteration, perform matrix inversion mirroring and Gaussian filtering operations to restore the light source shape;
步骤7:将上述获得的光源作为掩模优化模型的光源条件。按照掩模变量群体矩阵P M 计算并记录当前最佳初始掩模变量个体及适应值;Step 7: Use the light source obtained above as the light source condition of the mask optimization model. Calculate and record the current best initial mask variable individual according to the mask variable population matrix PM and fitness value ;
步骤8:将步骤7所得到的当前最佳初始掩膜变量个体作为禁忌搜索-遗传算法优化模型的输入条件,进行迭代更新掩模变量个体至迭代停止;Step 8: The current best initial mask variable individual obtained in step 7 As the input condition of the taboo search-genetic algorithm optimization model, the mask variable individuals are iteratively updated until the iteration stops;
步骤9:输出空间像强度分布、最佳光源强度分布及掩模图形布局。Step 9: Output the spatial image intensity distribution, the optimal light source intensity distribution and the mask pattern layout.
本实施例中,设光刻系统空间像成像模型横向采样点数N=521,像素点的物理尺寸为5.625nm×5.625nm。那么,光源横向采样点数N S =41,环形照明光源的相干因子σ inner =0.68和σ outer =0.95。掩模特征图形线条宽度为45 nm,间隔为45 nm,如图2所示。光刻系统空间像成像模型采用有效频谱提取的方法,如图3所示。其中,步骤301表示光栅阵列图形作为示意图的输入图形。步骤302表示通过采用快速傅里叶变换操作将特征图形用频谱的形式表示特征信息,步骤303表示特征图形通过三维频谱图表示,步骤304表示有效频谱提取操作,即根据截止频率范围,对掩模图形的频谱信息进行提取处理,步骤305表示在光刻系统空间像成像模型中,根据参与成像的有效频谱与截止频谱的之间的关系,可获取特征图形的有效三维频谱,步骤306表示特征图形有效频谱通过二维分布图表示,其中DC表示半径为R f 的圆形区域,该区域为有效截止频谱范围。In this embodiment, the number of lateral sampling points of the spatial image imaging model of the lithography system is N = 521, and the physical size of the pixel is 5.625 nm × 5.625 nm . Then, the number of lateral sampling points of the light source is N S = 41, and the coherence factors of the annular illumination light source are σ inner = 0.68 and σ outer = 0.95. The line width of the mask feature pattern is 45 nm and the interval is 45 nm, as shown in Figure 2. The spatial image imaging model of the lithography system adopts the method of effective spectrum extraction, as shown in Figure 3. Among them,
如图4所示的光刻系统空间像成像过程示意图,假设光刻系统空间像成像模型中的光源为环形照明光源S,步骤401表示将光源用离散化矩阵表示为环形照明光源S,即,像素化表征照明光源强度分布。步骤402表示提取有效光源点及矩阵转换操作。矩阵转换操作将有效光源矩阵由多维矩阵转换成列向量S ext 。步骤403表示将有效光源用一维列向量表示。根据相干成像理论,在离散化的环形照明光源S中,每个点光源能够产生相干像CCI i 。步骤404表示将提取的每一部分相干像CCI i 的边缘像素点构成照明交叉系数矩阵ICC ext ,该矩阵每一列代表每个点光源产生的相干像强度分布。步骤405表示矩阵转换操作,表示将多维矩阵转换成列向量和照明交叉系数矩阵乘积的结果进行转换,即可得到光刻系统空间像强度部分I ext 。步骤406表示将空间像强度部分I ext 离散化表达。根据大小为N M ×N M 的掩模图形,可知通过光刻系统空间像成像模型,获得空间像强度分布矩阵的大小为N M ×N M ,需要步骤408进行操作。所述步骤408表示通过插值操作获取完整的空间像强度分布I。步骤409表示最终得到标准的空间像强度分布I。步骤407和步骤410表示将提取的空间像强度部分I ext 和I的矩阵采用局部信息放大表示。根据Abbe成像方法,该成像模型可以通过下列数学模型进行表示:As shown in FIG4 , the schematic diagram of the process of the lithography system aerial image imaging is assumed to be a ring-shaped illumination
其中,I表示空间像强度分布,即部分相干成像的结果。N ' S 表示像素化光源中有效点光源的个数。CCI i 表示由单个点光源产生的相干成像结果,其能够通过下列数学模型表示:Where, I represents the spatial image intensity distribution, i.e., the result of partial coherent imaging. N 'S represents the number of effective point light sources in the pixelated light source. CCI i represents the coherent imaging result generated by a single point light source, which can be represented by the following mathematical model:
, ,
其中,(x i ,y i )表示相干像平面空间坐标系;(f,g)表示光瞳面频谱坐标系;(f',g')表示掩模频谱坐标系;H表示成像系统的光学传递函数,即光瞳函数;H i 表示根据点光源位置(S x ,S y )进行平移后的光瞳;M表示掩模频谱。 Among them, ( xi , yi ) represents the coherent image plane spatial coordinate system; ( f , g ) represents the pupil plane spectrum coordinate system; ( f ', g ') represents the mask spectrum coordinate system; H represents the optical transfer function of the imaging system, that is, the pupil function; Hi represents the pupil after translation according to the position of the point light source ( Sx , Sy ) ; M represents the mask spectrum.
根据光刻成像理论,光刻的成像系统是一个严格的光学衍射受限系统其截止频率近似等于数值孔径NA与照明波长λ的比值,即NA/λ。在光刻成像模型中,光瞳函数相当于圆形低通滤波器,其半径为光学系统的截止频率。According to the theory of photolithography, the imaging system of photolithography is a strict optical diffraction-limited system, and its cutoff frequency is approximately equal to the ratio of the numerical aperture NA to the illumination wavelength λ , that is, NA / λ . In the photolithography imaging model, the pupil function is equivalent to a circular low-pass filter, whose radius is the cutoff frequency of the optical system.
光刻成像过程为经典的部分相干成像,其光源的部分相干因子可被定义为照明光源半径r S 与光瞳半径r H 的比值,即σ=r S /r H 。因此,在部分相干成像模型中,光源为半径为σ NA/λ的圆。根据Hopkins成像方法,光瞳矩阵中心根据点光源位置进行偏移。因此,光瞳矩阵中心最大的偏移区域为半径为r S +r H 的圆形。在光刻成像过程中,参与该过程的掩模频谱即为有效频谱,其覆盖区域是一个半径为r S +2r H 的圆形区域DC(如图3所示),也仅有此部分参与成像过程。将相干成像模型离散化,可由下列数学模型表示:The photolithography imaging process is a classic partially coherent imaging, and the partial coherence factor of its light source can be defined as the ratio of the radius of the illumination light source r S to the radius of the pupil r H , that is, σ = r S / r H. Therefore, in the partial coherence imaging model, the light source is a circle with a radius of σ NA / λ . According to the Hopkins imaging method, the center of the pupil matrix is offset according to the position of the point light source. Therefore, the area with the largest offset of the center of the pupil matrix is a circle with a radius of r S + r H. In the photolithography imaging process, the mask spectrum participating in the process is the effective spectrum, and its coverage area is a circular area DC with a radius of r S +2 r H (as shown in Figure 3), and only this part participates in the imaging process. Discretizing the coherent imaging model can be represented by the following mathematical model:
其中,表示离散化相干像平面空间坐标系;(j,k)表示离散化光瞳面频谱坐标系;(j',k')表示离散化掩模频谱坐标系;N ext 表示被提取的有效频谱采样点数,;in, represents the discretized coherent image plane spatial coordinate system; ( j , k ) represents the discretized pupil plane spectrum coordinate system; ( j ', k ') represents the discretized mask spectrum coordinate system; Next represents the number of effective spectrum sampling points extracted, ;
根据Abbe方法,部分相干成像过程所得到的空间像I ext 被下列数学模型表示:According to the Abbe method, the spatial image I ext obtained by the partial coherence imaging process is represented by the following mathematical model:
其中,在以m, n为索引方式的坐标系建立的光刻系统照明光源模型。S(m,n)表示在光源模型坐标系中位于(m,n)位置处的点光源,光刻系统照明光源模型矩阵大小为N S ×N S ,m,n=1,2,3,…,N S 。Among them, the lithography system illumination source model is established in a coordinate system with m , n as the index. S ( m , n ) represents a point light source located at the position ( m , n ) in the light source model coordinate system, and the lithography system illumination source model matrix size is N S × N S , m , n = 1,2,3,…, N S.
采用插值法对上述数学模型进行放大,即可得到标准的空间像强度分布I。By using the interpolation method to enlarge the above mathematical model, the standard spatial image intensity distribution I can be obtained.
所述的目标函数F1和F2是关于空间像强度分布I的函数,定义光刻胶图形矩阵与理想图形各单元的差值的绝对值之和为图形误差,以所述图像误差作为目标函数F1。标记掩模图形边界附近内外两个像素点的区域,并用来计算边缘放置误差,以所述边缘防止误差作为目标函数F2。目标函数F1和F2分别被表示为下列数学模型:The objective functions F1 and F2 are functions of the spatial image intensity distribution I. The sum of the absolute values of the differences between the photoresist pattern matrix and each unit of the ideal pattern is defined as the pattern error, and the image error is used as the objective function F1 . The area of two inner and outer pixel points near the boundary of the mask pattern is marked and used to calculate the edge placement error, and the edge prevention error is used as the objective function F2 . The objective functions F1 and F2 are respectively expressed as the following mathematical models:
, ,
, ,
其中,RP(x i ,y i ) 表示光刻胶图形,M * (x i ,y i ) 表示理想图形。ICC Edge 表示提取的边缘像素点构成的矩阵。S ext 表示提取的光源矩阵。M ' ext 表示按照索引位置提取理想图形边缘像素点构成的矩阵。minimize表示在基于禁忌搜索-遗传迭代寻优模型中,保证迭代停止时,目标函数的数值为最小。Wherein, RP ( xi , yi ) represents the photoresist pattern , M * ( xi , yi ) represents the ideal pattern. ICC Edge represents the matrix of extracted edge pixels. Sext represents the extracted light source matrix. M'ext represents the matrix of ideal edge pixels extracted according to the index position . minimize represents the value of the objective function to be minimized when the iteration stops in the taboo search-genetic iterative optimization model.
图5为光刻系统成像模型采用的光源编码及高斯滤波方法示意图。根据照明光源特殊的光学对称性,可将光源分为四个相同的部分,即环形照明光源S中的第一部分J 1,第二部分J 2,第三部分J 3,第四部分J 4。在优化模型中,仅需要四分之一的光源点作为优化变量。步骤501表示提取光源S四分之一有效区域作为优化区域,通过编码标记每个有效点的位置,并执行矩阵转换操作。通过编码及矩阵转换操作,将有效光源点编码为列向量S ' ,其矩阵大小为m×1。步骤502表示根据优化区域变量个数,在初始化阶段,随机产生优化变量群体S r ,即光源变量群体矩阵P S 。步骤503表示根据目标函数值,选择当前最佳光源变量个体S opt 。步骤504表示通过矩阵转换等操作得到完整的离散光源强度分布。由于光刻系统中光源强度分布呈连续梯度变化,因此通过步骤505将离散光源进行高斯滤波操作,获得灰度连续变化的照明光源S * 。FIG5 is a schematic diagram of the light source encoding and Gaussian filtering method used in the imaging model of the lithography system. According to the special optical symmetry of the illumination light source, the light source can be divided into four identical parts, namely the first part J1 , the second part J2 , the third part J3 , and the fourth part J4 of the annular illumination light source S. In the optimization model, only one quarter of the light source points are needed as optimization variables. Step 501 represents extracting one quarter of the effective area of the light source S as the optimization area, marking the position of each effective point by encoding, and performing a matrix conversion operation. Through the encoding and matrix conversion operations, the effective light source points are encoded into a column vector S ' , and its matrix size is m ×1. Step 502 represents randomly generating an optimization variable group Sr , that is, a light source variable group matrix Ps , according to the number of variables in the optimization area in the initialization stage. Step 503 represents selecting the current best light source variable individual Sopt according to the objective function value. Step 504 represents obtaining a complete discrete light source intensity distribution through operations such as matrix conversion. Since the intensity distribution of the light source in the photolithography system varies in a continuous gradient, the discrete light source is subjected to a Gaussian filter operation in
以上结合具体实施方式及附图描述对申请进行了详细说明。本发明对掩模特征衍射频谱信息进行局部提取处理,减小空间像成像模型计算复杂度。对照明光源及掩模进行四分之一编码及优化,提高优化模型的寻优速度。将禁忌搜索算法与遗传算法结合,提高遗传算法全局收敛表现性,并结合目标函数图形误差及边缘防止误差,有效提高了光刻系统成像表现性。The above application is described in detail in combination with the specific implementation methods and the accompanying drawings. The present invention performs local extraction and processing on the mask feature diffraction spectrum information to reduce the computational complexity of the aerial image imaging model. The illumination light source and the mask are quarter-encoded and optimized to improve the optimization speed of the optimization model. The taboo search algorithm is combined with the genetic algorithm to improve the global convergence performance of the genetic algorithm, and combined with the objective function graphic error and edge prevention error, the imaging performance of the lithography system is effectively improved.
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。It will be easily understood by those skilled in the art that the above description is only a preferred embodiment of the present invention and is not intended to limit the present invention. Any modifications, equivalent substitutions and improvements made within the spirit and principles of the present invention should be included in the protection scope of the present invention.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211417846.6A CN115469555B (en) | 2022-11-14 | 2022-11-14 | Spatial image prediction and image quality optimization method for sensor chip projection lithography machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211417846.6A CN115469555B (en) | 2022-11-14 | 2022-11-14 | Spatial image prediction and image quality optimization method for sensor chip projection lithography machine |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115469555A CN115469555A (en) | 2022-12-13 |
CN115469555B true CN115469555B (en) | 2023-03-31 |
Family
ID=84338115
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211417846.6A Active CN115469555B (en) | 2022-11-14 | 2022-11-14 | Spatial image prediction and image quality optimization method for sensor chip projection lithography machine |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115469555B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117406548A (en) * | 2023-10-11 | 2024-01-16 | 安徽工程大学 | An optimization method for photolithography masks based on improved genetic algorithm |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101118421A (en) * | 2007-09-13 | 2008-02-06 | 北京航空航天大学 | Parameter Tuning Method of Nonlinear PID Control Based on Adaptive Ant Colony Intelligence |
CN101349871A (en) * | 2008-09-05 | 2009-01-21 | 上海微电子装备有限公司 | Photo-etching illuminating apparatus |
CN102193937A (en) * | 2010-03-12 | 2011-09-21 | 同济大学 | Image search method based on quick intelligent taboo search |
CN102692814A (en) * | 2012-06-18 | 2012-09-26 | 北京理工大学 | Light source-mask mixed optimizing method based on Abbe vector imaging model |
CN104111592A (en) * | 2014-08-06 | 2014-10-22 | 中国科学院光电技术研究所 | Method for realizing variable free illumination pupil based on micro-mirror array |
CN105051737A (en) * | 2013-02-22 | 2015-11-11 | 新思科技有限公司 | Hybrid evolutionary algorithm for triple-patterning |
CN105069194A (en) * | 2015-07-20 | 2015-11-18 | 中国科学院长春光学精密机械与物理研究所 | Genetic algorithm based optimization method for photoetching attenuation type mask |
TWI545519B (en) * | 2011-04-12 | 2016-08-11 | 尼康股份有限公司 | Imaging apparatus and program |
WO2020108861A1 (en) * | 2018-11-26 | 2020-06-04 | Asml Netherlands B.V. | Determining a mark layout across a patterning device or substrate |
CN111290281A (en) * | 2020-03-23 | 2020-06-16 | 中国科学院光电技术研究所 | Wavefront control method based on ADRC-Smith algorithm |
CN113242997A (en) * | 2018-12-19 | 2021-08-10 | Asml荷兰有限公司 | Method for sample plan generation and optimization |
CN113911728A (en) * | 2021-09-30 | 2022-01-11 | 江苏白王口腔护理用品有限公司 | Electric toothbrush brush head dynamic feeding system and feeding method based on vision |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7330291B2 (en) * | 2001-03-02 | 2008-02-12 | Dai Nippon Printing Co., Ltd. | Dither mask creating method and creating device |
-
2022
- 2022-11-14 CN CN202211417846.6A patent/CN115469555B/en active Active
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101118421A (en) * | 2007-09-13 | 2008-02-06 | 北京航空航天大学 | Parameter Tuning Method of Nonlinear PID Control Based on Adaptive Ant Colony Intelligence |
CN101349871A (en) * | 2008-09-05 | 2009-01-21 | 上海微电子装备有限公司 | Photo-etching illuminating apparatus |
CN102193937A (en) * | 2010-03-12 | 2011-09-21 | 同济大学 | Image search method based on quick intelligent taboo search |
TWI545519B (en) * | 2011-04-12 | 2016-08-11 | 尼康股份有限公司 | Imaging apparatus and program |
CN102692814A (en) * | 2012-06-18 | 2012-09-26 | 北京理工大学 | Light source-mask mixed optimizing method based on Abbe vector imaging model |
CN105051737A (en) * | 2013-02-22 | 2015-11-11 | 新思科技有限公司 | Hybrid evolutionary algorithm for triple-patterning |
CN104111592A (en) * | 2014-08-06 | 2014-10-22 | 中国科学院光电技术研究所 | Method for realizing variable free illumination pupil based on micro-mirror array |
CN105069194A (en) * | 2015-07-20 | 2015-11-18 | 中国科学院长春光学精密机械与物理研究所 | Genetic algorithm based optimization method for photoetching attenuation type mask |
WO2020108861A1 (en) * | 2018-11-26 | 2020-06-04 | Asml Netherlands B.V. | Determining a mark layout across a patterning device or substrate |
CN113168110A (en) * | 2018-11-26 | 2021-07-23 | Asml荷兰有限公司 | Determining the layout of marks on the entire patterning device or substrate |
CN113242997A (en) * | 2018-12-19 | 2021-08-10 | Asml荷兰有限公司 | Method for sample plan generation and optimization |
CN111290281A (en) * | 2020-03-23 | 2020-06-16 | 中国科学院光电技术研究所 | Wavefront control method based on ADRC-Smith algorithm |
CN113911728A (en) * | 2021-09-30 | 2022-01-11 | 江苏白王口腔护理用品有限公司 | Electric toothbrush brush head dynamic feeding system and feeding method based on vision |
Non-Patent Citations (3)
Title |
---|
Global optimization of source and mask in inverse lithography via tabu search combined with genetic algorithm;haifeng Sun etal.;《Optics Express》;20220731;第24166-24185页 * |
基于遗传禁忌混合搜索算法的设备布局研究;齐继阳等;《2004 年"安徽制造业发展"博士科技论坛》;20041231;第1-5页 * |
基于遗传算法的光刻机性能匹配方法;茅言杰等;《第十七届全国光学测试学术交流会摘要集》;20181231;第143页 * |
Also Published As
Publication number | Publication date |
---|---|
CN115469555A (en) | 2022-12-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chen et al. | DevelSet: Deep neural level set for instant mask optimization | |
Jia et al. | Machine learning for inverse lithography: using stochastic gradient descent for robustphotomask synthesis | |
CN113568278B (en) | Curved Inverse Lithography Method Based on Fast Covariance Matrix Adaptive Evolution Strategy | |
CN105573066B (en) | The optimization method of mask aligner mask | |
CN115469555B (en) | Spatial image prediction and image quality optimization method for sensor chip projection lithography machine | |
CN104133348B (en) | A kind of adaptive optical etching system light source optimization method | |
CN104155852B (en) | A kind of optimization method of litho machine light source | |
CN112639810A (en) | Face key point positioning system and method | |
CN114326329A (en) | Photoetching mask optimization method based on residual error network | |
CN106444301B (en) | A kind of light source optimization method using self-adapting compressing cognition technology | |
CN119452362A (en) | Neural Networks for Metasurface Configuration Optimization | |
CN112578644B (en) | Self-adaptive full-chip light source optimization method and system | |
CN102096336A (en) | Method for determining illumination intensity distribution of light source of photoetching process | |
CN112083631B (en) | An Informatics Computational Lithography Method | |
CN108614390B (en) | Light source mask optimization method adopting compressed sensing technology | |
CN111338179A (en) | Key pattern screening method for full-chip light source mask optimization based on multi-width characterization | |
CN110335197B (en) | Demosaicing method based on non-local statistical eigen | |
Sun et al. | Inverse lithography source optimization via particle swarm optimization and genetic combined algorithm | |
CN115222829A (en) | Mask optimization method and device based on neural network model | |
CN113589644A (en) | Curve type reverse photoetching method based on sub-resolution auxiliary graph seed insertion | |
CN111929983A (en) | Method for screening key graph of full-chip light source mask optimization based on polygonal region representation | |
CN109709772B (en) | A semi-implicit light source mask collaborative optimization method based on accelerated operator splitting | |
Moreau et al. | A deep learning workflow to generate free-form masks for grayscale lithography | |
Feng et al. | HR-xNet: A novel high-resolution network for human pose estimation with low resource consumption | |
CN109656107B (en) | Photoetching light source graph optimization method adopting transformation L1 norm constraint |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |