CN115457401A - 一种针对不同淡水资源类型的sar遥感精细识别方法 - Google Patents
一种针对不同淡水资源类型的sar遥感精细识别方法 Download PDFInfo
- Publication number
- CN115457401A CN115457401A CN202211047586.8A CN202211047586A CN115457401A CN 115457401 A CN115457401 A CN 115457401A CN 202211047586 A CN202211047586 A CN 202211047586A CN 115457401 A CN115457401 A CN 115457401A
- Authority
- CN
- China
- Prior art keywords
- fresh water
- water resource
- sar
- sample points
- types
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000013505 freshwater Substances 0.000 title claims abstract description 128
- 238000000034 method Methods 0.000 title claims abstract description 36
- 238000003066 decision tree Methods 0.000 claims abstract description 16
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 15
- 238000001914 filtration Methods 0.000 claims description 21
- 230000011218 segmentation Effects 0.000 claims description 13
- 230000015572 biosynthetic process Effects 0.000 claims description 11
- 238000003786 synthesis reaction Methods 0.000 claims description 11
- 238000010586 diagram Methods 0.000 claims description 10
- 238000000605 extraction Methods 0.000 claims description 10
- 230000010287 polarization Effects 0.000 claims description 6
- 238000007781 pre-processing Methods 0.000 claims description 6
- 238000011160 research Methods 0.000 claims description 6
- 244000025254 Cannabis sativa Species 0.000 claims description 4
- 238000004364 calculation method Methods 0.000 claims description 3
- 238000012937 correction Methods 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 16
- 238000009826 distribution Methods 0.000 abstract description 5
- 230000008859 change Effects 0.000 abstract description 4
- 238000009360 aquaculture Methods 0.000 abstract description 3
- 244000144974 aquaculture Species 0.000 abstract description 3
- 230000033228 biological regulation Effects 0.000 abstract description 3
- 239000003621 irrigation water Substances 0.000 abstract description 3
- 238000007726 management method Methods 0.000 abstract description 3
- 230000009286 beneficial effect Effects 0.000 abstract description 2
- 230000000694 effects Effects 0.000 description 4
- 238000004590 computer program Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 239000000284 extract Substances 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000003709 image segmentation Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/10—Terrestrial scenes
- G06V20/13—Satellite images
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/50—Image enhancement or restoration using two or more images, e.g. averaging or subtraction
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/70—Denoising; Smoothing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/11—Region-based segmentation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/136—Segmentation; Edge detection involving thresholding
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10032—Satellite or aerial image; Remote sensing
- G06T2207/10044—Radar image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20212—Image combination
- G06T2207/20221—Image fusion; Image merging
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Astronomy & Astrophysics (AREA)
- Remote Sensing (AREA)
- Multimedia (AREA)
- Image Processing (AREA)
Abstract
Description
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211047586.8A CN115457401B (zh) | 2022-08-30 | 2022-08-30 | 一种针对不同淡水资源类型的sar遥感精细识别方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211047586.8A CN115457401B (zh) | 2022-08-30 | 2022-08-30 | 一种针对不同淡水资源类型的sar遥感精细识别方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115457401A true CN115457401A (zh) | 2022-12-09 |
CN115457401B CN115457401B (zh) | 2023-11-03 |
Family
ID=84300726
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211047586.8A Active CN115457401B (zh) | 2022-08-30 | 2022-08-30 | 一种针对不同淡水资源类型的sar遥感精细识别方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115457401B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117392433A (zh) * | 2023-09-15 | 2024-01-12 | 宁波大学 | 联合sar和光学影像的不同淡水资源类型精细识别方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102541480A (zh) * | 2010-12-21 | 2012-07-04 | 北大方正集团有限公司 | 打印作业的过滤方法和装置 |
CN106405545A (zh) * | 2016-08-20 | 2017-02-15 | 甘宗平 | 一种双时相异模双极化SAR类Pauli假彩色影像合成方法 |
CN107491758A (zh) * | 2017-08-18 | 2017-12-19 | 南京林业大学 | 长江流域水体信息提取及其空间编码方法 |
CN109472304A (zh) * | 2018-10-30 | 2019-03-15 | 厦门理工学院 | 基于sar与光学遥感时序数据的树种分类方法、装置和设备 |
CN112101256A (zh) * | 2020-09-21 | 2020-12-18 | 河南大学 | 基于云平台的耦合主被动遥感影像的大蒜作物识别方法 |
CN114387516A (zh) * | 2022-01-07 | 2022-04-22 | 宁波大学 | 一种针对复杂地形环境下中小田块的单季稻sar识别方法 |
-
2022
- 2022-08-30 CN CN202211047586.8A patent/CN115457401B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102541480A (zh) * | 2010-12-21 | 2012-07-04 | 北大方正集团有限公司 | 打印作业的过滤方法和装置 |
CN106405545A (zh) * | 2016-08-20 | 2017-02-15 | 甘宗平 | 一种双时相异模双极化SAR类Pauli假彩色影像合成方法 |
CN107491758A (zh) * | 2017-08-18 | 2017-12-19 | 南京林业大学 | 长江流域水体信息提取及其空间编码方法 |
CN109472304A (zh) * | 2018-10-30 | 2019-03-15 | 厦门理工学院 | 基于sar与光学遥感时序数据的树种分类方法、装置和设备 |
CN112101256A (zh) * | 2020-09-21 | 2020-12-18 | 河南大学 | 基于云平台的耦合主被动遥感影像的大蒜作物识别方法 |
CN114387516A (zh) * | 2022-01-07 | 2022-04-22 | 宁波大学 | 一种针对复杂地形环境下中小田块的单季稻sar识别方法 |
Non-Patent Citations (3)
Title |
---|
姚金玺: "青海诺木洪地区多源遥感及多特征组合地物分类", 农业工程学报 * |
陈帮乾: "基于PALSAR 雷达数据与多时相TM/ETM+影像的海南岛土地利用分类研究", 热带作物学报2015 * |
陈鲁皖: "地表组合粗糙度不确定性引起的SAR反演土壤水分的不确定性分析", 地球信息科学 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117392433A (zh) * | 2023-09-15 | 2024-01-12 | 宁波大学 | 联合sar和光学影像的不同淡水资源类型精细识别方法 |
CN117392433B (zh) * | 2023-09-15 | 2024-06-21 | 宁波大学 | 联合sar和光学影像的不同淡水资源类型精细识别方法 |
Also Published As
Publication number | Publication date |
---|---|
CN115457401B (zh) | 2023-11-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Bailly et al. | Agrarian landscapes linear features detection from LiDAR: application to artificial drainage networks | |
Gavazzi et al. | Evaluation of seabed mapping methods for fine-scale classification of extremely shallow benthic habitats–application to the Venice Lagoon, Italy | |
Dai et al. | Integrated edge detection and terrain analysis for agricultural terrace delineation from remote sensing images | |
Spinosa et al. | Remote sensing-based automatic detection of shoreline position: A case study in apulia region | |
Duan et al. | Mapping the soil types combining multi-temporal remote sensing data with texture features | |
Liu et al. | Mapping China’s offshore mariculture based on dense time-series optical and radar data | |
Yang et al. | Deriving ephemeral gullies from VHR image in loess hilly areas through directional edge detection | |
Biswas et al. | Estimation of land surface temperature in response to land use/land cover transformation in Kolkata city and its suburban area, India | |
Eichmanns et al. | Influence of sand trapping fences on dune toe growth and its relation with potential aeolian sediment transport | |
CN115457401B (zh) | 一种针对不同淡水资源类型的sar遥感精细识别方法 | |
Ali et al. | Monitoring degradation of wetland areas using satellite imagery and geographic information system techniques. | |
Chen et al. | 3D model construction and ecological environment investigation on a regional scale using UAV remote sensing | |
Zhang et al. | Water quality parameters retrieval of coastal mariculture ponds based on UAV multispectral remote sensing | |
Yang et al. | Accurate estimation of fractional vegetation cover for winter wheat by integrated unmanned aerial systems and satellite images | |
El-Sharkawy et al. | Precision agriculture using remote sensing and GIS for peanut crop production in arid land | |
Dong et al. | Fine mapping of key soil nutrient content using high resolution remote sensing image to support precision agriculture in Northwest China | |
Mridha et al. | Near real-time mapping of jute (C orchorus sp.) area using multi-temporal Sentinel-1 intensity data over the central part of West Bengal, India | |
Chen et al. | How Can We Understand the Past from Now On? Three-Dimensional Modelling and Landscape Reconstruction of the Shuanghuaishu Site in the Central Plains of China | |
Huang et al. | Extraction of agricultural plastic film mulching in karst fragmented arable lands based on unmanned aerial vehicle visible light remote sensing | |
Millard | Development of methods to map and monitor peatland ecosystems and hydrologic conditions using Radarsat-2 Synthetic Aperture Radar | |
Le Guillou et al. | Machine and deep learning methods for detection and mapping of coastal wetlands of Crozon Peninsula (Brittany, France) used metric and sub-metric spatial resolution | |
Murugesan et al. | Estimation of deforestation rate for LBA-ECO LC-14 modeled deforestation scenarios, Amazon Basin: 2002-2050 using fuzzy k-means clustering | |
Devrani | Development of automated mapping methods for birch woodlands in the Norðurhraun lava field, Hekla | |
Zhang et al. | Extracting the winter wheat using the decision tree based on time series dual-polarization SAR feature and NDVI | |
Liu et al. | Remote sensing detection and mapping of plastic greenhouses based on YOLOX+: A case study in Weifang, China |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20230920 Address after: 916, Building 2, No. 128 South Fourth Ring West Road, Fengtai District, Beijing, 100071 Applicant after: Zhonghai Yunke (Beijing) Technology Co.,Ltd. Address before: 518000 1002, Building A, Zhiyun Industrial Park, No. 13, Huaxing Road, Henglang Community, Longhua District, Shenzhen, Guangdong Province Applicant before: Shenzhen Wanzhida Technology Co.,Ltd. Effective date of registration: 20230920 Address after: 518000 1002, Building A, Zhiyun Industrial Park, No. 13, Huaxing Road, Henglang Community, Longhua District, Shenzhen, Guangdong Province Applicant after: Shenzhen Wanzhida Technology Co.,Ltd. Address before: 315211, Fenghua Road, Jiangbei District, Zhejiang, Ningbo 818 Applicant before: Ningbo University |
|
GR01 | Patent grant | ||
GR01 | Patent grant |