CN115457327A - 基于视觉的烤后烟烟叶部位分类方法、装置及电子设备 - Google Patents

基于视觉的烤后烟烟叶部位分类方法、装置及电子设备 Download PDF

Info

Publication number
CN115457327A
CN115457327A CN202211137414.XA CN202211137414A CN115457327A CN 115457327 A CN115457327 A CN 115457327A CN 202211137414 A CN202211137414 A CN 202211137414A CN 115457327 A CN115457327 A CN 115457327A
Authority
CN
China
Prior art keywords
tobacco leaf
picture
flue
cured tobacco
pixel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211137414.XA
Other languages
English (en)
Inventor
高宪辉
周渭皓
张龙
何彬
陈敬悦
史绍新
刘磊
尹晓东
赵庆华
尤谦谦
李艳红
段丽
杨艳波
张海
马云海
章维敏
张云伟
吴天南
郑娇
栾菲菲
孙浩巍
张轲
王春琼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yunnan Tobacco Leaf Co
Original Assignee
Yunnan Tobacco Leaf Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yunnan Tobacco Leaf Co filed Critical Yunnan Tobacco Leaf Co
Priority to CN202211137414.XA priority Critical patent/CN115457327A/zh
Publication of CN115457327A publication Critical patent/CN115457327A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/764Arrangements for image or video recognition or understanding using pattern recognition or machine learning using classification, e.g. of video objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/10Image acquisition
    • G06V10/12Details of acquisition arrangements; Constructional details thereof
    • G06V10/14Optical characteristics of the device performing the acquisition or on the illumination arrangements
    • G06V10/147Details of sensors, e.g. sensor lenses
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/20Image preprocessing
    • G06V10/26Segmentation of patterns in the image field; Cutting or merging of image elements to establish the pattern region, e.g. clustering-based techniques; Detection of occlusion
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/20Image preprocessing
    • G06V10/28Quantising the image, e.g. histogram thresholding for discrimination between background and foreground patterns
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/82Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Evolutionary Computation (AREA)
  • General Health & Medical Sciences (AREA)
  • Computing Systems (AREA)
  • Software Systems (AREA)
  • Medical Informatics (AREA)
  • Databases & Information Systems (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • Vascular Medicine (AREA)
  • Image Analysis (AREA)

Abstract

本说明书实施例提供了一种基于视觉的烤后烟烟叶部位分类方法、装置、及电子设备,其中,方法包括:对烤后烟烟叶图片进行标注,基于标注的烤后烟烟叶图片基于深度自学习网络进行训练,得到语义分割模型,将烤后烟烟叶图片输入所述语义分割模型,根据所述语义分割模型的输出进行烟叶背景及烟叶放置平台上其他杂物的处理,获取处理后的烤后烟烟叶图片;寻找烤后烟烟叶图片烟叶部分的上下左右边界,计算边界点,再使用高分辨率工业相机拍摄黑白棋盘格图片作为参照,计算烤后烟烟叶真实的长宽;根据烤后烟烟叶真实的长宽和黑白棋盘格参照信息,计算烤后烟烟叶实际面积;根据烤后烟烟叶真实的长宽和烤后烟烟叶实际面积,通过分类模型得到部位分类结果。

Description

基于视觉的烤后烟烟叶部位分类方法、装置及电子设备
技术领域
本文件涉及姜丝蒜机技术领域,尤其涉及一种基于视觉的烤后烟烟叶部位分类方法、装置及电子设备。
背景技术
按照《中华人民共和国烤烟国家标准》中有关规定,烟叶分级需要按如下顺序进行,首先对部位进行分类,分为上部中部下部三类;其次对颜色进行分类,对于各部位的烟叶有固定的颜色种类;最后对等级分级,每个部位每种颜色有4个等级,分别用1,2,3,4表示;按照这一系列流程最后可分出42个等级,也就是国标中的烟叶42种等级。由此看出,部位分类在其中非常重要,是整个分级工作的首要步骤,传统的部位分类主要由烟叶分级专家通过逐片观察进行,不利用烟草行业迈向智能化,自动化的发展,同时也存在工作效率低,人力物力资源浪费较大等问题,所以烟叶部位的计算机自动分类方法研究具有重大的实际意义。传统的烟叶部位分类主要由烟叶分级专家通过观察得出结果,效率较低。
发明内容
本发明的目的在于提供一种基于视觉的烤后烟烟叶部位分类方法、装置及电子设备,旨在解决现有技术中的上述问题。
本发明提供一种基于视觉的烤后烟烟叶部位分类方法,包括:
对烤后烟烟叶图片进行标注,基于标注的烤后烟烟叶图片基于深度自学习网络进行训练,得到语义分割模型,将烤后烟烟叶图片输入所述语义分割模型,根据所述语义分割模型的输出进行烟叶背景及烟叶放置平台上其他杂物的处理,获取处理后的烤后烟烟叶图片;
寻找烤后烟烟叶图片烟叶部分的上下左右边界,计算边界点,再使用高分辨率工业相机拍摄黑白棋盘格图片作为参照,计算烤后烟烟叶真实的长宽;
根据烤后烟烟叶真实的长宽和黑白棋盘格参照信息,计算烤后烟烟叶实际面积;
根据烤后烟烟叶真实的长宽和烤后烟烟叶实际面积,通过分类模型得到部位分类结果。
本发明提供一种基于视觉的烤后烟烟叶部位分类装置,包括:
语义分割模型模块,用于对烤后烟烟叶图片进行标注,基于标注的烤后烟烟叶图片基于深度自学习网络进行训练,得到语义分割模型,将烤后烟烟叶图片输入所述语义分割模型,根据所述语义分割模型的输出进行烟叶背景及烟叶放置平台上其他杂物的处理,获取处理后的烤后烟烟叶图片;
第一计算模块,用于寻找烤后烟烟叶图片烟叶部分的上下左右边界,计算边界点,再使用高分辨率工业相机拍摄黑白棋盘格图片作为参照,计算烤后烟烟叶真实的长宽;
第二计算模块,用于根据烤后烟烟叶真实的长宽和黑白棋盘格参照信息,计算烤后烟烟叶实际面积;
分类模块,用于根据烤后烟烟叶真实的长宽和烤后烟烟叶实际面积,通过分类模型得到部位分类结果。
本发明实施例还提供一种基于视觉的烤后烟烟叶部位分类电子设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现上述基于视觉的烤后烟烟叶部位分类方法的步骤。
本发明实施例还提供一种计算机可读存储介质,所述计算机可读存储介质上存储有信息传递的实现程序,所述程序被处理器执行时实现上述基于视觉的烤后烟烟叶部位分类方法的步骤。
采用本发明实施例,综合了专家分级时考虑的几个因素,并通过计算机视觉获取和量化,最后通过分类模型得到部位分类结果,一定程度上提高了部位分类工作的效率,并节省了大量人力资源,相较于原有的人工分类具有效率高成本低的特点,并有利于后续烟叶智能分级等方面的研究。本发明实施例所需的硬件设备简单,仅需要拍摄烟叶图片的高分辨率相机,相较于其他复杂硬件装置具有成本低,速度快的优势。
附图说明
为了更清楚地说明本说明书一个或多个实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本说明书中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例的基于视觉的烤后烟烟叶部位分类方法的流程图;
图2是本发明实施例的基于视觉的烤后烟烟叶部位分类方法的详细步骤的流程图;
图3是本发明实施例的图片预处理方法流程图;
图4是本发明实施例的烟叶实际长宽计算方法流程图;
图5是本发明实施例的烟叶实际面积计算方法流程图;
图6是本发明实施例的烟叶图片语义分割标签标注示意图;
图7是本发明实施例的烟叶长宽示意图;
图8是本发明实施例的作为参考的黑白棋盘格示意图;
图9是本发明实施例的真实烟叶图片分类结果示意图;
图10是本发明实施例的基于视觉的烤后烟烟叶部位分类装置的示意图;
图11是本发明实施例的基于视觉的烤后烟烟叶部位分类电子设备的示意图。
具体实施方式
本发明实施例提出了一种基于视觉的烤后烟烟叶部位分类方法、装置及电子设备,主要目的在于自动的对烟叶部位进行分类,解决人工分类的工作效率低,成本高,资源浪费等问题。本发明首先运用深度学习语义分割和连通区域筛选对拍摄的烟叶图片预处理,排除背景和碎叶等杂物的干扰;其次通过烟叶部分边界点的提取,利用黑白棋盘格作为参考信息,计算烟叶实际长宽;然后利用长宽及其他参考信息计算烟叶实际面积;最后针对多种分类模型进行训练测试,选择最佳方案。
为了使本技术领域的人员更好地理解本说明书一个或多个实施例中的技术方案,下面将结合本说明书一个或多个实施例中的附图,对本说明书一个或多个实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本说明书的一部分实施例,而不是全部的实施例。基于本说明书一个或多个实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都应当属于本文件的保护范围。
方法实施例
根据本发明实施例,提供了一种基于视觉的烤后烟烟叶部位分类方法,图1是本发明实施例的基于视觉的烤后烟烟叶部位分类方法的流程图,如图1所示,根据本发明实施例的基于视觉的烤后烟烟叶部位分类方法具体包括:
步骤101,对烤后烟烟叶图片进行标注,基于标注的烤后烟烟叶图片基于深度自学习网络进行训练,得到语义分割模型,将烤后烟烟叶图片输入所述语义分割模型,根据所述语义分割模型的输出进行烟叶背景及烟叶放置平台上其他杂物的处理,获取处理后的烤后烟烟叶图片;
步骤102,寻找烤后烟烟叶图片烟叶部分的上下左右边界,计算边界点,再使用高分辨率工业相机拍摄黑白棋盘格图片作为参照,计算烤后烟烟叶真实的长宽;
步骤103,根据烤后烟烟叶真实的长宽和黑白棋盘格参照信息,计算烤后烟烟叶实际面积;
步骤104,根据烤后烟烟叶真实的长宽和烤后烟烟叶实际面积,通过分类模型得到部位分类结果。
步骤101具体包括:
对所述烤后烟烟叶图片的图片特征区域和背景进行像素级标注,在每张待训练的所述烤后烟烟叶图片上用自定义多边形曲线标注烟叶部分和背景部分,生成带有烟叶区域像素位置信息的像素级标签;
采用基于mobilenetv2的DeepLab v3+语义分割网络,根据标注好标签的所述烤后烟烟叶图片进行训练,分割所述烤后烟烟叶图片中的烟叶部分,其中,所述基于mobilenetv2的DeepLab v3+语义分割网络共186层,每次通过卷积层进行卷积操作后根据公式1进行批归一化,然后输入激活层,根据公式2使用截断整流线性单元为激活函数,解码器用转置卷积将编码器输出结果还原为输入特征图的大小,并对比原图进行中心裁剪,通过如公式3所示的softmax激活函数后输出通道数为标签个数的分割结果,再将输出输入下一个卷积层。最终得到的语义分割结果为一个类别种类为标签种类的类别矩阵,即矩阵的元素为不同种类的标签名或者标签的标识字符串,即分别是烟叶部分的标签“StopSeg”和背景部分的标签“back”;
Figure BDA0003851966600000051
其中,x(k)和y(k)分别为原始输入数据和输出数据,μ(k)和σ(k)分别是输入数据均值和标准差,β(k)和γ(k)分别为可学习的平移参数和缩放参数,上标k表示数据的第k维,ε是防止分母为0的一个小量;
Figure BDA0003851966600000052
其中,ceiling为设定的阈值;
Figure BDA0003851966600000053
其中,zi为第i个节点的输出值,C为标签种类的个数;
针对背景利用语义分割模型输出的类别矩阵,提取元素为“back”的元素位置,对应到原图像素矩阵中,将对应位置像素值置0,进行初步处理,根据公式4将初步处理的烤后烟烟叶图片转为单通道灰度图像,再转为二值图像求取连通区域,在灰度图像转二值图像时确定合适的像素阈值以将像素二值化,根据公式5采用计算前景背景类间方差的方法寻找像素阈值,计算时在灰度图像中遍历像素值,将高于当前像素值部分作为前景部分,其余为背景部分,依次计算类间方差后取最大方差对应的像素值作为阈值将灰度图像转为二值图像,在二值图像中求取连通区域,选取8连通的方式,即元素为1的像素点上下左右及斜方向共8个方向像素值均为1,则认为该区域为一个连通区域,求取所有的连通区域后选择最大的连通区域,其余区域像素值置0,经过两次处理后的图片背景部分像素值为0,没有烟叶放置平台上残留的碎叶等杂质的影响;
I=0.30R+0.59G+0.11B 公式4;
其中,R,G,B为彩色图片的三通道矩阵,I为合并后的单通道矩阵;
std=num1×(ave1-ave)2+num2×(ave2-ave)2 公式5;
其中,std为类间方差,num1为前景部分像素个数,num2为背景部分像素个数,ave1为前景部分平均灰度值,ave2为背景部分平均灰度值,ave为总的平均灰度值。
步骤102具体包括:
在经处理后的烤后烟烟叶图片的像素矩阵中,烟叶部分像素为原始值,背景部分像素值为0,分别沿上下左右四个方向对图片像素矩阵逐行或逐列遍历,上下方向按行遍历,左右方向按列遍历,寻找第一个不为0的行或列,并返回其中不为0的元素的位置,假设该行或列中不为0的元素总数为N,i为其中第i个元素,则根据公式6计算作为边界点的元素i:
Figure BDA0003851966600000071
在黑白棋盘格上不同位置取5个格子测量方格边长ai,求取平均值作为黑白棋盘中一个方格的实际边长,再对拍摄的黑白棋盘格上以同样方式取5个格子测取像素边长,即图片中像素坐标间的欧氏距离bi,同样求取平均值作为黑白棋盘格的像素边长,根据公式7计算拍摄图片中像素尺寸zp与实际尺寸的zn
Figure BDA0003851966600000072
根据找出的边界点,将上下边界点记作w1,w2,左右边界点记作l1,l2,根据公式8和公式9计算烟叶实际长宽Ln,Wn
Figure BDA0003851966600000073
Figure BDA0003851966600000074
步骤103具体包括:
根据黑白棋盘格图片,假设图片中共有P个小方格,由该台设备拍摄的烟叶图片中烟叶区域的像素个数为p1,图片总的像素个数为p2,则根据公式10计算烟叶的实际面积sn
Figure BDA0003851966600000075
步骤104具体包括:
确定分类模型的6个特征输入具体为:长、宽、面以及颜色的HSV值,其中,根据公式11-13确定颜色的RGB空间转为HSV空间:
Figure BDA0003851966600000076
Figure BDA0003851966600000081
V=max(R,G,B) 公式13;
对已知等级的烟叶图片计算6个特征根据公式14进行均值归一化,经过归一化将原始数据映射到均值为0,标准差为1的分布上,并分为训练集、验证集和测试集输入并输入到分类器中,设置类别标签为上部烟1,中部烟2,下部烟3,测试分类效果:
Figure BDA0003851966600000082
其中,x为原始特征的均值,σ为标准差;
根据得到的分类效果,确定分类模型为如公式15所示的二次核函数的支持向量机:
K(x,y)=(x·y+1)2 公式15;
其中,x,y为两个样本的特征向量;
通过二次核函数分类模型得到部位分类结果。
以下结合附图,对本发明实施例的上述技术方案进行详细说明。图2是本发明实施例的基于视觉的烤后烟烟叶部位分类方法的详细步骤的流程图,如图2所示,具体包括如下处理:
步骤(1)基于深度学习语义分割的图片预处理,如图3所示:先对烤后烟烟叶图片进行标注,选择深度网络进行训练后得到语义分割模型。之后使用已训练模型读入烟叶图片,根据模型输出进行烟叶背景及烟叶放置上其他杂物的处理;
①烟叶图片特征标注
如图6所示,对图片进行语义分割前需要对图片特征区域和背景进行像素级的标注,在每张待训练图片上用自定义多边形曲线标注烟叶部分和背景部分,生成带有烟叶区域像素位置信息的像素级标签。
②烟叶图片烟叶部分分割
本发明采用基于mobilenetv2的DeepLab v3+语义分割网络,利用①中标注好的标签进行训练,分割图片中的烟叶部分。DeepLab v3+网络整体架构为编码器—解码器架构,编码器的主体部分本发明中采用了mobilenetv2网络作为基本网络。网络共186层,每次通过卷积层进行卷积操作后进行批归一化,然后输入激活层,再将输出输入下一个卷积层。使用的批归一化公式为:
Figure BDA0003851966600000091
x(k)和y(k)分别为原始输入数据和输出数据,μ(k)和σ(k)分别是输入数据均值和标准差,β(k)和γ(k)分别为可学习的平移参数和缩放参数,上标k表示数据的第k维,ε是防止分母为0的一个小量。激活层使用截断整流线性单元为激活函数,其公式为:
Figure BDA0003851966600000092
ceiling为设定的阈值,此处设定为6。解码器用转置卷积将编码器输出结果还原为输入特征图的大小,并对比原图进行中心裁剪,通过softmax激活函数后输出通道数为标签个数的分割结果,softmax激活函数公式为:
Figure BDA0003851966600000093
zi为第i个节点的输出值,C为标签种类的个数。最终得到的语义分割结果为一个类别种类为标签种类的类别矩阵,即矩阵的元素为不同种类的标签名或者标签的标识字符串,此处分别是烟叶部分的标签“StopSeg”和背景部分的标签“back”。
③烟叶图片背景及碎叶等杂物处理
首先对于背景,利用语义分割模型输出的类别矩阵,提取元素为“back”的元素位置,对应到原图像素矩阵中,将对应位置像素值置0,进行初步处理。将初步处理的烟叶图片转为单通道灰度图像,再转为二值图像求取连通区域。烟叶图片转单通道灰度图片的公式为:
I=0.30R+0.59G+0.11B ⑷
R,G,B为彩色图片的三通道矩阵,I为合并后的单通道矩阵。灰度图像转二值图像时需要寻找合适的像素阈值以将像素二值化,此处采用计算前景背景类间方差的方法寻找像素阈值。类间方差的计算公式为:
std=num1×(ave1-ave)2+num2×(ave2-ave)2
std为类间方差,num1为前景部分像素个数,num2为背景部分像素个数,ave1为前景部分平均灰度值,ave2为背景部分平均灰度值,ave为总的平均灰度值。计算时在灰度图像中遍历像素值,将高于当前像素值部分作为前景部分,其余为背景部分,依次计算类间方差后取最大方差对应的像素值作为阈值将灰度图像转为二值图像。
在二值图像中求取连通区域,选取8连通的方式,即元素为1的像素点上下左右及斜方向共8个方向像素值均为1,则认为该区域为一个连通区域。求取所有的连通区域后选择最大的连通区域,其余区域像素值置0,经过两次处理后的图片背景部分像素值为0,没有烟叶放置平台上残留的碎叶等杂质的影响。
步骤(2)计算烟叶实际长宽,如图4所示:寻找烟叶图片烟叶部分的上下左右边界,计算边界点,再使用公司配备的烟叶综合测试装置拍摄黑白棋盘格图片作为参照,计算烟叶图片真实的长宽,如图7所示;
①寻找烟叶图片烟叶部分边界点
对于步骤(1)处理后的图片,对其像素矩阵分析。经处理后烟叶图片的像素矩阵中,烟叶部分像素为原始值,背景部分像素值为0,所以分别沿上下左右四个方向对图片像素矩阵逐行或逐列遍历,上下方向按行遍历,左右方向按列遍历,寻找第一个不为0的行或列,并返回其中不为0的元素的位置。假设该行或列中不为0的元素总数为N,i为其中第i个元素,则作为边界点的元素i计算公式为:
Figure BDA0003851966600000111
②获取参考信息
在黑白棋盘格上不同位置取5个格子测量方格边长ai,求取平均值作为黑白棋盘中一个方格的实际边长。再对拍摄的黑白棋盘格上以同样方式取5个格子测取像素边长,即图片中像素坐标间的欧氏距离bi,同样求取平均值作为黑白棋盘格的像素边长。黑白棋盘格如图8所示,拍摄图片中像素尺寸zp与实际尺寸的zn计算方式为:
Figure BDA0003851966600000112
③计算烟叶实际长宽
根据①中找出的边界点,上下边界点记作w1,w2,左右边界点记作l1,l2,烟叶实际长宽Ln,Wn的计算公式为:
Figure BDA0003851966600000113
Figure BDA0003851966600000114
步骤(3)计算烟叶实际面积,如图5所示:根据步骤(2)计算的长宽信息和黑白棋盘格参照信息,计算烟叶图片真实的长宽;
根据步骤(2)具体步骤②中提到的黑白棋盘格图片,假设图片中共有P个小方格,由该台设备拍摄的烟叶图片中烟叶区域的像素个数为p1,图片总的像素个数为p2,则烟叶的实际面积sn计算公式为:
Figure BDA0003851966600000115
步骤(4)通过分类模型得到部位分类结果:利用步骤(2)(3)得到的长宽面积信息,用分类模型测试分类效果;
①综合特征信息
根据《中华人民共和国烤烟国家标准》中关于烟叶部位的描述,影响烟叶部位分类的主要因素为尺寸,但颜色同样存在一定影响,所以在选择分类模型的特征输入时,除长宽面积外,加入颜色的HSV值作为另外3个输入,总计为6个特征输入。颜色的RGB空间转HSV空间公式为:
Figure BDA0003851966600000121
Figure BDA0003851966600000122
V=max(R,G,B)⒀
②选择最佳分类模型
对已知等级的烟叶图片计算①中6个特征输入多个分类器中,其中70%作为训练集,20%作为验证集,10%作为测试集,类别标签为上部烟1,中部烟2,下部烟3,测试分类效果。所有特征输入需要先进行均值归一化,归一化公式为:
Figure BDA0003851966600000123
x为原始特征的均值,σ为标准差,经过归一化可以将原始数据映射到均值为0,标准差为1的分布上,使各个特征的数据处于同一数值量级,以便分析。不同分类器分类效果不同,经过测试得到分类效果最好的模型为二次核函数的支持向量机。其核函数为二次多项式核函数:
K(x,y)=(x·y+1)2
其中x,y为两个样本的特征向量。核函数用以简化支持向量机优化问题中任意两个样本特征向量需要进行点乘这一步骤,减少计算量。
表1为测试的不同分类模型效果:
表1不同分类模型测试效果
Figure BDA0003851966600000124
Figure BDA0003851966600000131
综合验证集和测试集的效果,选择二次核SVM效果最好。实际运用时,除部分因机械损伤造成特征数据失真的烟叶,其余分类效果显著,真实烟叶图片分类结果示意图如图9所示。
装置实施例一
根据本发明实施例,提供了一种基于视觉的烤后烟烟叶部位分类装置,图10是本发明实施例的基于视觉的烤后烟烟叶部位分类装置的示意图,如图10所示,根据本发明实施例的基于视觉的烤后烟烟叶部位分类装置具体包括:
语义分割模型模块100,用于对烤后烟烟叶图片进行标注,基于标注的烤后烟烟叶图片基于深度自学习网络进行训练,得到语义分割模型,将烤后烟烟叶图片输入所述语义分割模型,根据所述语义分割模型的输出进行烟叶背景及烟叶放置平台上其他杂物的处理,获取处理后的烤后烟烟叶图片;
第一计算模块102,用于寻找烤后烟烟叶图片烟叶部分的上下左右边界,计算边界点,再使用高分辨率工业相机拍摄黑白棋盘格图片作为参照,计算烤后烟烟叶真实的长宽;
第二计算模块104,用于根据烤后烟烟叶真实的长宽和黑白棋盘格参照信息,计算烤后烟烟叶实际面积;
分类模块106,用于根据烤后烟烟叶真实的长宽和烤后烟烟叶实际面积,通过分类模型得到部位分类结果。
所述语义分割模型模块100具体用于:
对所述烤后烟烟叶图片的图片特征区域和背景进行像素级标注,在每张待训练的所述烤后烟烟叶图片上用自定义多边形曲线标注烟叶部分和背景部分,生成带有烟叶区域像素位置信息的像素级标签;
采用基于mobilenetv2的DeepLab v3+语义分割网络,根据标注好标签的所述烤后烟烟叶图片进行训练,分割所述烤后烟烟叶图片中的烟叶部分,其中,所述基于mobilenetv2的DeepLab v3+语义分割网络共186层,每次通过卷积层进行卷积操作后根据公式1进行批归一化,然后输入激活层,根据公式2使用截断整流线性单元为激活函数,解码器用转置卷积将编码器输出结果还原为输入特征图的大小,并对比原图进行中心裁剪,通过如公式3所示的softmax激活函数后输出通道数为标签个数的分割结果,再将输出输入下一个卷积层。最终得到的语义分割结果为一个类别种类为标签种类的类别矩阵,即矩阵的元素为不同种类的标签名或者标签的标识字符串,即分别是烟叶部分的标签“StopSeg”和背景部分的标签“back”;
Figure BDA0003851966600000141
其中,x(k)和y(k)分别为原始输入数据和输出数据,μ(k)和σ(k)分别是输入数据均值和标准差,β(k)和γ(k)分别为可学习的平移参数和缩放参数,上标k表示数据的第k维,ε是防止分母为0的一个小量;
Figure BDA0003851966600000142
其中,ceiling为设定的阈值;
Figure BDA0003851966600000143
其中,zi为第i个节点的输出值,C为标签种类的个数;
针对背景利用语义分割模型输出的类别矩阵,提取元素为“back”的元素位置,对应到原图像素矩阵中,将对应位置像素值置0,进行初步处理,根据公式4将初步处理的烤后烟烟叶图片转为单通道灰度图像,再转为二值图像求取连通区域,在灰度图像转二值图像时确定合适的像素阈值以将像素二值化,根据公式5采用计算前景背景类间方差的方法寻找像素阈值,计算时在灰度图像中遍历像素值,将高于当前像素值部分作为前景部分,其余为背景部分,依次计算类间方差后取最大方差对应的像素值作为阈值将灰度图像转为二值图像,在二值图像中求取连通区域,选取8连通的方式,即元素为1的像素点上下左右及斜方向共8个方向像素值均为1,则认为该区域为一个连通区域,求取所有的连通区域后选择最大的连通区域,其余区域像素值置0,经过两次处理后的图片背景部分像素值为0,没有烟叶放置平台上残留的碎叶等杂质的影响;
I=0.30R+0.59G+0.11B 公式4;
其中,R,G,B为彩色图片的三通道矩阵,I为合并后的单通道矩阵;
std=num1×(ave1-ave)2+num2×(ave2-ave)2 公式5;
其中,std为类间方差,num1为前景部分像素个数,num2为背景部分像素个数,ave1为前景部分平均灰度值,ave2为背景部分平均灰度值,ave为总的平均灰度值。
所述第一计算模块102具体用于:
在经处理后的烤后烟烟叶图片的像素矩阵中,烟叶部分像素为原始值,背景部分像素值为0,分别沿上下左右四个方向对图片像素矩阵逐行或逐列遍历,上下方向按行遍历,左右方向按列遍历,寻找第一个不为0的行或列,并返回其中不为0的元素的位置,假设该行或列中不为0的元素总数为N,i为其中第i个元素,则根据公式6计算作为边界点的元素i:
Figure BDA0003851966600000151
在黑白棋盘格上不同位置取5个格子测量方格边长ai,求取平均值作为黑白棋盘中一个方格的实际边长,再对拍摄的黑白棋盘格上以同样方式取5个格子测取像素边长,即图片中像素坐标间的欧氏距离bi,同样求取平均值作为黑白棋盘格的像素边长,根据公式7计算拍摄图片中像素尺寸zp与实际尺寸的zn
Figure BDA0003851966600000161
根据找出的边界点,将上下边界点记作w1,w2,左右边界点记作l1,l2,根据公式8和公式9计算烟叶实际长宽Ln,Wn
Figure BDA0003851966600000162
Figure BDA0003851966600000163
所述第二计算模块104具体用于:
根据黑白棋盘格图片,假设图片中共有P个小方格,由该台设备拍摄的烟叶图片中烟叶区域的像素个数为p1,图片总的像素个数为p2,则根据公式10计算烟叶的实际面积sn
Figure BDA0003851966600000164
所述分类模块106具体用于:
确定分类模型的6个特征输入具体为:长、宽、面以及颜色的HSV值,其中,根据公式11-13确定颜色的RGB空间转为HSV空间:
Figure BDA0003851966600000165
Figure BDA0003851966600000166
V=max(R,G,B) 公式13;
对已知等级的烟叶图片计算6个特征根据公式14进行均值归一化,经过归一化将原始数据映射到均值为0,标准差为1的分布上,并分为训练集、验证集和测试集输入并输入到分类器中,设置类别标签为上部烟1,中部烟2,下部烟3,测试分类效果:
Figure BDA0003851966600000171
其中,x为原始特征的均值,σ为标准差;
根据得到的分类效果,确定分类模型为如公式15所示的二次核函数的支持向量机:
K(x,y)=(x·y+1)2 公式15;
其中,x,y为两个样本的特征向量;
通过二次核函数分类模型得到部位分类结果。
本发明实施例是与上述方法实施例对应的装置实施例,各个模块的具体操作可以参照方法实施例的描述进行理解,在此不再赘述。
装置实施例二
本发明实施例提供一种基于视觉的烤后烟烟叶部位分类电子设备,如图11所示,包括:存储器110、处理器112及存储在所述存储器110上并可在所述处理112上运行的计算机程序,所述计算机程序被所述处理器112执行时实现如方法实施例中所述的步骤。
装置实施例三
本发明实施例提供一种计算机可读存储介质,所述计算机可读存储介质上存储有信息传输的实现程序,所述程序被处理器112执行时实现如方法实施例中所述的步骤。
本实施例所述计算机可读存储介质包括但不限于为:ROM、RAM、磁盘或光盘等。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

1.一种基于视觉的烤后烟烟叶部位分类方法,其特征在于,包括:
对烤后烟烟叶图片进行标注,基于标注的烤后烟烟叶图片基于深度自学习网络进行训练,得到语义分割模型,将烤后烟烟叶图片输入所述语义分割模型,根据所述语义分割模型的输出进行烟叶背景及烟叶放置平台上其他杂物的处理,获取处理后的烤后烟烟叶图片;
寻找烤后烟烟叶图片烟叶部分的上下左右边界,计算边界点,再使用高分辨率工业相机拍摄黑白棋盘格图片作为参照,计算烤后烟烟叶真实的长宽;
根据烤后烟烟叶真实的长宽和黑白棋盘格参照信息,计算烤后烟烟叶实际面积;
根据烤后烟烟叶真实的长宽和烤后烟烟叶实际面积,通过分类模型得到部位分类结果。
2.根据权利要求1所述的方法,其特征在于,对烤后烟烟叶图片进行标注,基于标注的烤后烟烟叶图片基于深度自学习网络进行训练,得到语义分割模型,将烤后烟烟叶图片输入所述语义分割模型,根据所述语义分割模型的输出进行烟叶背景及烟叶放置平台上其他杂物的处理,获取处理后的烤后烟烟叶图片具体包括:
对所述烤后烟烟叶图片的图片特征区域和背景进行像素级标注,在每张待训练的所述烤后烟烟叶图片上用自定义多边形曲线标注烟叶部分和背景部分,生成带有烟叶区域像素位置信息的像素级标签;
采用基于mobilenetv2的DeepLab v3+语义分割网络,根据标注好标签的所述烤后烟烟叶图片进行训练,分割所述烤后烟烟叶图片中的烟叶部分,其中,所述基于mobilenetv2的DeepLab v3+语义分割网络共186层,每次通过卷积层进行卷积操作后根据公式1进行批归一化,然后输入激活层,根据公式2使用截断整流线性单元为激活函数,解码器用转置卷积将编码器输出结果还原为输入特征图的大小,并对比原图进行中心裁剪,通过如公式3所示的softmax激活函数后输出通道数为标签个数的分割结果,再将输出输入下一个卷积层,最终得到的语义分割结果为一个类别种类为标签种类的类别矩阵,即矩阵的元素为不同种类的标签名或者标签的标识字符串,即分别是烟叶部分的标签“StopSeg”和背景部分的标签“back”;
Figure FDA0003851966590000021
其中,x(k)和y(k)分别为原始输入数据和输出数据,μ(k)和σ(k)分别是输入数据均值和标准差,β(k)和γ(k)分别为可学习的平移参数和缩放参数,上标k表示数据的第k维,ε是防止分母为0的一个小量;
Figure FDA0003851966590000022
其中,ceiling为设定的阈值;
Figure FDA0003851966590000023
其中,zi为第i个节点的输出值,C为标签种类的个数;
针对背景利用语义分割模型输出的类别矩阵,提取元素为“back”的元素位置,对应到原图像素矩阵中,将对应位置像素值置0,进行初步处理,根据公式4将初步处理的烤后烟烟叶图片转为单通道灰度图像,再转为二值图像求取连通区域,在灰度图像转二值图像时确定合适的像素阈值以将像素二值化,根据公式5采用计算前景背景类间方差的方法寻找像素阈值,计算时在灰度图像中遍历像素值,将高于当前像素值部分作为前景部分,其余为背景部分,依次计算类间方差后取最大方差对应的像素值作为阈值将灰度图像转为二值图像,在二值图像中求取连通区域,选取8连通的方式,即元素为1的像素点上下左右及斜方向共8个方向像素值均为1,则认为该区域为一个连通区域,求取所有的连通区域后选择最大的连通区域,其余区域像素值置0,经过两次处理后的图片背景部分像素值为0,没有烟叶放置平台上残留的碎叶等杂质的影响;
I=0.30R+0.59G+0.11B 公式4;
其中,R,G,B为彩色图片的三通道矩阵,I为合并后的单通道矩阵;
std=num1×(ave1-ave)2+num2×(ave2-ave)2 公式5;
其中,std为类间方差,num1为前景部分像素个数,num2为背景部分像素个数,ave1为前景部分平均灰度值,ave2为背景部分平均灰度值,ave为总的平均灰度值。
3.根据权利要求1所述的方法,其特征在于,寻找烤后烟烟叶图片烟叶部分的上下左右边界,计算边界点,再使用高分辨率工业相机拍摄黑白棋盘格图片作为参照,计算烤后烟烟叶真实的长宽具体包括:
在经处理后的烤后烟烟叶图片的像素矩阵中,烟叶部分像素为原始值,背景部分像素值为0,分别沿上下左右四个方向对图片像素矩阵逐行或逐列遍历,上下方向按行遍历,左右方向按列遍历,寻找第一个不为0的行或列,并返回其中不为0的元素的位置,假设该行或列中不为0的元素总数为N,i为其中第i个元素,则根据公式6计算作为边界点的元素i:
Figure FDA0003851966590000031
在黑白棋盘格上不同位置取5个格子测量方格边长ai,求取平均值作为黑白棋盘中一个方格的实际边长,再对拍摄的黑白棋盘格上以同样方式取5个格子测取像素边长,即图片中像素坐标间的欧氏距离bi,同样求取平均值作为黑白棋盘格的像素边长,根据公式7计算拍摄图片中像素尺寸zp与实际尺寸的zn
Figure FDA0003851966590000032
根据找出的边界点,将上下边界点记作w1,w2,左右边界点记作l1,l2,根据公式8和公式9计算烟叶实际长宽Ln,Wn
Figure FDA0003851966590000033
Figure FDA0003851966590000034
4.根据权利要求1所述的方法,其特征在于,根据烤后烟烟叶真实的长宽和黑白棋盘格参照信息,计算烤后烟烟叶实际面积具体包括:
根据黑白棋盘格图片,假设图片中共有P个小方格,由该台设备拍摄的烟叶图片中烟叶区域的像素个数为p1,图片总的像素个数为p2,则根据公式10计算烟叶的实际面积sn
Figure FDA0003851966590000041
5.根据权利要求1所述的方法,其特征在于,根据烤后烟烟叶真实的长宽和烤后烟烟叶实际面积,通过分类模型得到部位分类结果具体包括:
确定分类模型的6个特征输入具体为:长、宽、面以及颜色的HSV值,其中,根据公式11-13确定颜色的RGB空间转为HSV空间:
Figure FDA0003851966590000042
Figure FDA0003851966590000043
V=max(R,G,B)公式13;
对已知等级的烟叶图片计算6个特征根据公式14进行均值归一化,经过归一化将原始数据映射到均值为0,标准差为1的分布上,并分为训练集、验证集和测试集输入并输入到分类器中,设置类别标签为上部烟1,中部烟2,下部烟3,测试分类效果:
Figure FDA0003851966590000044
其中,x为原始特征的均值,σ为标准差;
根据得到的分类效果,确定分类模型为如公式15所示的二次核函数的支持向量机:
K(x,y)=(x·y+1)2公式15;
其中,x,y为两个样本的特征向量;
通过二次核函数分类模型得到部位分类结果。
6.一种基于视觉的烤后烟烟叶部位分类装置,其特征在于,包括:
语义分割模型模块,用于对烤后烟烟叶图片进行标注,基于标注的烤后烟烟叶图片基于深度自学习网络进行训练,得到语义分割模型,将烤后烟烟叶图片输入所述语义分割模型,根据所述语义分割模型的输出进行烟叶背景及烟叶放置平台上其他杂物的处理,获取处理后的烤后烟烟叶图片;
第一计算模块,用于寻找烤后烟烟叶图片烟叶部分的上下左右边界,计算边界点,再使用高分辨率工业相机拍摄黑白棋盘格图片作为参照,计算烤后烟烟叶真实的长宽;
第二计算模块,用于根据烤后烟烟叶真实的长宽和黑白棋盘格参照信息,计算烤后烟烟叶实际面积;
分类模块,用于根据烤后烟烟叶真实的长宽和烤后烟烟叶实际面积,通过分类模型得到部位分类结果。
7.根据权利要求6所述的装置,其特征在于,所述语义分割模型模块具体用于:
对所述烤后烟烟叶图片的图片特征区域和背景进行像素级标注,在每张待训练的所述烤后烟烟叶图片上用自定义多边形曲线标注烟叶部分和背景部分,生成带有烟叶区域像素位置信息的像素级标签;
采用基于mobilenetv2的DeepLab v3+语义分割网络,根据标注好标签的所述烤后烟烟叶图片进行训练,分割所述烤后烟烟叶图片中的烟叶部分,其中,所述基于mobilenetv2的DeepLab v3+语义分割网络共186层,每次通过卷积层进行卷积操作后根据公式1进行批归一化,然后输入激活层,根据公式2使用截断整流线性单元为激活函数,解码器用转置卷积将编码器输出结果还原为输入特征图的大小,并对比原图进行中心裁剪,通过如公式3所示的softmax激活函数后输出通道数为标签个数的分割结果,再将输出输入下一个卷积层,最终得到的语义分割结果为一个类别种类为标签种类的类别矩阵,即矩阵的元素为不同种类的标签名或者标签的标识字符串,即分别是烟叶部分的标签“StopSeg”和背景部分的标签“back”;
Figure FDA0003851966590000061
其中,x(k)和y(k)分别为原始输入数据和输出数据,μ(k)和σ(k)分别是输入数据均值和标准差,β(k)和γ(k)分别为可学习的平移参数和缩放参数,上标k表示数据的第k维,ε是防止分母为0的一个小量;
Figure FDA0003851966590000062
其中,ceiling为设定的阈值;
Figure FDA0003851966590000063
其中,zi为第i个节点的输出值,C为标签种类的个数;
针对背景利用语义分割模型输出的类别矩阵,提取元素为“back”的元素位置,对应到原图像素矩阵中,将对应位置像素值置0,进行初步处理,根据公式4将初步处理的烤后烟烟叶图片转为单通道灰度图像,再转为二值图像求取连通区域,在灰度图像转二值图像时确定合适的像素阈值以将像素二值化,根据公式5采用计算前景背景类间方差的方法寻找像素阈值,计算时在灰度图像中遍历像素值,将高于当前像素值部分作为前景部分,其余为背景部分,依次计算类间方差后取最大方差对应的像素值作为阈值将灰度图像转为二值图像,在二值图像中求取连通区域,选取8连通的方式,即元素为1的像素点上下左右及斜方向共8个方向像素值均为1,则认为该区域为一个连通区域,求取所有的连通区域后选择最大的连通区域,其余区域像素值置0,经过两次处理后的图片背景部分像素值为0,没有烟叶放置平台上残留的碎叶等杂质的影响;
I=0.30R+0.59G+0.11B 公式4;
其中,R,G,B为彩色图片的三通道矩阵,I为合并后的单通道矩阵;
std=num1×(ave1-ave)2+num2×(ave2-ave)2 公式5;
其中,std为类间方差,num1为前景部分像素个数,num2为背景部分像素个数,ave1为前景部分平均灰度值,ave2为背景部分平均灰度值,ave为总的平均灰度值。
8.根据权利要求6所述的装置,其特征在于,
所述第一计算模块具体用于:
在经处理后的烤后烟烟叶图片的像素矩阵中,烟叶部分像素为原始值,背景部分像素值为0,分别沿上下左右四个方向对图片像素矩阵逐行或逐列遍历,上下方向按行遍历,左右方向按列遍历,寻找第一个不为0的行或列,并返回其中不为0的元素的位置,假设该行或列中不为0的元素总数为N,i为其中第i个元素,则根据公式6计算作为边界点的元素i:
Figure FDA0003851966590000071
在黑白棋盘格上不同位置取5个格子测量方格边长ai,求取平均值作为黑白棋盘中一个方格的实际边长,再对拍摄的黑白棋盘格上以同样方式取5个格子测取像素边长,即图片中像素坐标间的欧氏距离bi,同样求取平均值作为黑白棋盘格的像素边长,根据公式7计算拍摄图片中像素尺寸zp与实际尺寸的zn
Figure FDA0003851966590000072
根据找出的边界点,将上下边界点记作w1,w2,左右边界点记作l1,l2,根据公式8和公式9计算烟叶实际长宽Ln,Wn
Figure FDA0003851966590000073
Figure FDA0003851966590000074
所述第二计算模块具体用于:
根据黑白棋盘格图片,假设图片中共有P个小方格,由该台设备拍摄的烟叶图片中烟叶区域的像素个数为p1,图片总的像素个数为p2,则根据公式10计算烟叶的实际面积sn
Figure FDA0003851966590000081
所述分类模块具体用于:
确定分类模型的6个特征输入具体为:长、宽、面以及颜色的HSV值,其中,根据公式11-13确定颜色的RGB空间转为HSV空间:
Figure FDA0003851966590000082
Figure FDA0003851966590000083
V=max(R,G,B)公式13;
对已知等级的烟叶图片计算6个特征根据公式14进行均值归一化,经过归一化将原始数据映射到均值为0,标准差为1的分布上,并分为训练集、验证集和测试集输入并输入到分类器中,设置类别标签为上部烟1,中部烟2,下部烟3,测试分类效果:
Figure FDA0003851966590000084
其中,x为原始特征的均值,σ为标准差;
根据得到的分类效果,确定分类模型为如公式15所示的二次核函数的支持向量机:
K(x,y)=(x·y+1)2公式15;
其中,x,y为两个样本的特征向量;
通过二次核函数分类模型得到部位分类结果。
9.一种基于视觉的烤后烟烟叶部位分类电子设备,其特征在于,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至5中任一项所述的基于视觉的烤后烟烟叶部位分类方法的步骤。
10.一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有信息传递的实现程序,所述程序被处理器执行时实现如权利要求1至5中任一项所述的基于视觉的烤后烟烟叶部位分类方法的步骤。
CN202211137414.XA 2022-09-19 2022-09-19 基于视觉的烤后烟烟叶部位分类方法、装置及电子设备 Pending CN115457327A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211137414.XA CN115457327A (zh) 2022-09-19 2022-09-19 基于视觉的烤后烟烟叶部位分类方法、装置及电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211137414.XA CN115457327A (zh) 2022-09-19 2022-09-19 基于视觉的烤后烟烟叶部位分类方法、装置及电子设备

Publications (1)

Publication Number Publication Date
CN115457327A true CN115457327A (zh) 2022-12-09

Family

ID=84304201

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211137414.XA Pending CN115457327A (zh) 2022-09-19 2022-09-19 基于视觉的烤后烟烟叶部位分类方法、装置及电子设备

Country Status (1)

Country Link
CN (1) CN115457327A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115641434A (zh) * 2022-12-26 2023-01-24 浙江天铂云科光电股份有限公司 电力设备定位方法、系统、终端及存储介质
CN115953384A (zh) * 2023-01-10 2023-04-11 杭州首域万物互联科技有限公司 一种烟叶形态参数在线检测和预测方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115641434A (zh) * 2022-12-26 2023-01-24 浙江天铂云科光电股份有限公司 电力设备定位方法、系统、终端及存储介质
CN115953384A (zh) * 2023-01-10 2023-04-11 杭州首域万物互联科技有限公司 一种烟叶形态参数在线检测和预测方法
CN115953384B (zh) * 2023-01-10 2024-02-02 杭州首域万物互联科技有限公司 一种烟叶形态参数在线检测和预测方法

Similar Documents

Publication Publication Date Title
CN110059694B (zh) 电力行业复杂场景下的文字数据的智能识别方法
CN109800631B (zh) 基于掩膜区域卷积神经网络的荧光编码微球图像检测方法
CN108564085B (zh) 一种自动读取指针式仪表读数的方法
CN115457327A (zh) 基于视觉的烤后烟烟叶部位分类方法、装置及电子设备
CN103049763B (zh) 一种基于上下文约束的目标识别方法
CN111325203A (zh) 一种基于图像校正的美式车牌识别方法及系统
CN107038416B (zh) 一种基于二值图像改进型hog特征的行人检测方法
CN103886342A (zh) 基于光谱和邻域信息字典学习的高光谱图像分类方法
CN108520215B (zh) 基于多尺度联合特征编码器的单样本人脸识别方法
CN104008401A (zh) 一种图像文字识别的方法及装置
CN111539330B (zh) 一种基于双svm多分类器的变电站数显仪表识别方法
CN112365497A (zh) 基于TridentNet和Cascade-RCNN结构的高速目标检测方法和系统
CN111882555B (zh) 基于深度学习的网衣检测方法、装置、设备及存储介质
CN108108753A (zh) 一种基于支持向量机的复选框选择状态的识别方法及装置
CN113435407B (zh) 一种输电系统的小目标识别方法及装置
CN113781510A (zh) 边缘检测方法、装置及电子设备
CN109509188A (zh) 一种基于hog特征的输电线路典型缺陷识别方法
CN115272225A (zh) 一种基于对抗学习网络的带钢表面缺陷检测方法及系统
CN113019993B (zh) 一种籽棉的杂质分类识别方法及系统
CN113052234A (zh) 一种基于图像特征和深度学习技术的玉石分类方法
CN111414855B (zh) 基于端到端回归模型的电线杆标牌目标检测及识别方法
CN112509026A (zh) 一种绝缘子裂缝长度识别方法
CN109829511B (zh) 基于纹理分类的下视红外图像中云层区域检测方法
CN112364844B (zh) 一种基于计算机视觉技术的数据采集方法及系统
CN114066861A (zh) 一种基于交叉算法边缘检测理论和视觉特征的煤矸识别方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination