CN115455367A - Calculation method, system, device and storage medium of interruptible load - Google Patents

Calculation method, system, device and storage medium of interruptible load Download PDF

Info

Publication number
CN115455367A
CN115455367A CN202211136484.3A CN202211136484A CN115455367A CN 115455367 A CN115455367 A CN 115455367A CN 202211136484 A CN202211136484 A CN 202211136484A CN 115455367 A CN115455367 A CN 115455367A
Authority
CN
China
Prior art keywords
target
type parameter
load
type
parameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211136484.3A
Other languages
Chinese (zh)
Inventor
戴攀
刘曌煜
谢宁
孙可
王蕾
李家桐
郑振华
殷佳敏
谈历
林玲
杨黎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Economic and Technological Research Institute of State Grid Zhejiang Electric Power Co Ltd
Original Assignee
Economic and Technological Research Institute of State Grid Zhejiang Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Economic and Technological Research Institute of State Grid Zhejiang Electric Power Co Ltd filed Critical Economic and Technological Research Institute of State Grid Zhejiang Electric Power Co Ltd
Priority to CN202211136484.3A priority Critical patent/CN115455367A/en
Publication of CN115455367A publication Critical patent/CN115455367A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/18Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Mathematical Physics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Business, Economics & Management (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computational Mathematics (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Economics (AREA)
  • Health & Medical Sciences (AREA)
  • Algebra (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Operations Research (AREA)
  • Probability & Statistics with Applications (AREA)
  • Evolutionary Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明实施例提供了一种可中断负荷量的计算方法、系统、设备及存储介质,其中,方法包括:基于预设负荷分类模型确定目标用户的日负荷曲线的目标类型,基于目标用户的日负荷曲线中的计量参数,求得与目标用户的日负荷曲线对应的目标用户的初始类型参数,基于目标用户的用户标识和初始类型参数,从与目标类型对应的目标预设类型参数分布概率表中,确定目标类型参数组及与目标类型参数组中各类型参数分别对应的类型参数分布概率值,根据目标类型参数组和各类型参数分布概率值,计算目标用户的可中断负荷量。本发明实现了对可中断负荷量的准确计算,从而降低了对供电可靠性要求高的负荷类型误切除的风险,提高了供电可靠性。

Figure 202211136484

An embodiment of the present invention provides a method, system, device, and storage medium for calculating an interruptible load, wherein the method includes: determining the target type of the target user's daily load curve based on a preset load classification model, and determining the target type based on the target user's daily load curve. The metering parameters in the load curve, the initial type parameters of the target user corresponding to the daily load curve of the target user are obtained, based on the user identification and initial type parameters of the target user, from the target preset type parameter distribution probability table corresponding to the target type , determine the target type parameter group and the type parameter distribution probability values corresponding to each type parameter in the target type parameter group, and calculate the interruptible load of the target user according to the target type parameter group and the distribution probability values of each type parameter. The invention realizes the accurate calculation of the interruptible load, thereby reducing the risk of wrong cut-off of load types with high requirements on power supply reliability, and improving the power supply reliability.

Figure 202211136484

Description

一种可中断负荷量的计算方法、系统、设备及存储介质Calculation method, system, device and storage medium of interruptible load

技术领域technical field

本发明涉及可中断负荷管理技术领域,特别是涉及一种可中断负荷量的计算方法、系统、设备及存储介质。The present invention relates to the technical field of interruptible load management, in particular to a calculation method, system, equipment and storage medium of an interruptible load.

背景技术Background technique

可中断负荷是指在用电高峰时段或紧急状况下,用电方可以中断的负荷部分。用电方和供电方通过签订可中断负荷合同来实现对可中断负荷的管理。现有的可中断负荷合同是依据用户可以中断的负荷总量进行制定的。Interruptible load refers to the part of the load that can be interrupted by the power consumer during peak hours or emergency situations. The power consumer and the power supplier realize the management of the interruptible load by signing the interruptible load contract. Existing interruptible load contracts are based on the total amount of load that users can interrupt.

但是,伴随着经济的发展,电力系统中的负荷类型也在逐渐增加。而不同负荷类型对供电可靠性的要求也存在差异。若依据可中断负荷总量制定的合同进行负荷切除,会提高对供电可靠性要求高的负荷类型误切除的风险,进而导致供电可靠性降低。However, with the development of the economy, the types of loads in the power system are gradually increasing. And different load types have different requirements for power supply reliability. If load shedding is carried out according to the contract established by the total amount of interruptible load, the risk of wrong shedding of load types with high requirements on power supply reliability will be increased, which will lead to a decrease in power supply reliability.

发明内容Contents of the invention

本发明实施例的目的在于提供一种可中断负荷量的计算方法、系统、设备及存储介质,以实现降低对供电可靠性要求高的负荷类型误切除的风险,提高供电可靠性的目的。具体技术方案如下:The purpose of the embodiments of the present invention is to provide a calculation method, system, device and storage medium for interruptible loads, so as to reduce the risk of wrong removal of load types that require high power supply reliability and improve power supply reliability. The specific technical scheme is as follows:

一种可中断负荷量的计算方法,所述方法包括:A method for calculating an interruptible load, the method comprising:

基于预设负荷分类模型确定目标用户的日负荷曲线的目标类型;Determine the target type of the daily load curve of the target user based on the preset load classification model;

基于所述目标用户的日负荷曲线中的计量参数,求得与所述目标用户的日负荷曲线对应的目标用户的初始类型参数;Obtaining an initial type parameter of the target user corresponding to the daily load curve of the target user based on the measurement parameters in the daily load curve of the target user;

基于所述目标用户的用户标识和所述初始类型参数,从与目标类型对应的目标预设类型参数分布概率表中,确定目标类型参数组及与所述目标类型参数组中各类型参数分别对应的类型参数分布概率值;Based on the user identification of the target user and the initial type parameters, from the target preset type parameter distribution probability table corresponding to the target type, determine the target type parameter group and corresponding to each type parameter in the target type parameter group respectively The type parameter distribution probability value of ;

根据所述目标类型参数组和各所述类型参数分布概率值,计算所述目标用户的可中断负荷量。The interruptible load of the target user is calculated according to the target type parameter group and the distribution probability value of each type parameter.

可选的,所述计量参数由日总用电量和日最大负荷量组成,所述基于所述目标用户的日负荷曲线中的计量参数,求得与所述目标用户的日负荷曲线对应的目标用户的初始类型参数,包括:Optionally, the metering parameters are composed of total daily electricity consumption and daily maximum load, and the metering parameters corresponding to the daily load curve of the target user are obtained based on the metering parameters corresponding to the daily load curve of the target user. The initial type parameters of the target user, including:

通过公式:By formula:

Figure BDA0003852314950000021
Figure BDA0003852314950000021

求得所述目标用户的日负荷率LR,其中,所述P是所述日总用电量,所述ELmax是所述日最大负荷量;Obtaining the daily load rate LR of the target user, wherein the P is the total daily power consumption, and the EL max is the daily maximum load;

通过公式:By formula:

θ0=1-LRθ 0 =1-LR

求得所述初始类型参数,其中,所述θ0为所述初始类型参数。Obtaining the initial type parameter, wherein the θ 0 is the initial type parameter.

可选的,所述基于所述目标用户的用户标识和所述初始类型参数,从与所述目标类型对应的目标预设类型参数分布概率表中,确定目标类型参数组及与所述目标类型参数组中各类型参数分别对应的类型参数分布概率值,包括:Optionally, based on the user identifier of the target user and the initial type parameter, the target type parameter group and the target type parameter group are determined from the target type parameter distribution probability table corresponding to the target type. The type parameter distribution probability values corresponding to each type parameter in the parameter group, including:

分别计算所述目标预设类型参数分布概率表中各基准类型参数与所述初始类型参数的参数差值;Calculating the parameter difference between each reference type parameter in the target preset type parameter distribution probability table and the initial type parameter;

将各所述参数差值中的最小值对应的基准类型参数确定为目标类型参数,将所述目标类型参数对应的所述类型参数分布概率值设置为第一数值;Determining the reference type parameter corresponding to the minimum value of each of the parameter differences as the target type parameter, and setting the type parameter distribution probability value corresponding to the target type parameter as a first value;

确定所述目标预设类型参数分布概率表中,所述目标类型参数的目标相邻类型参数,并将所述目标相邻类型参数对应的所述类型参数分布概率值设置为第二数值,其中,所述目标相邻类型参数是所述基准类型参数的数值大于所述目标类型参数,且与所述目标类型参数相邻的基准类型参数,所述第一数值和所述第二数值的和为1;Determine the target adjacent type parameter of the target type parameter in the target preset type parameter distribution probability table, and set the type parameter distribution probability value corresponding to the target adjacent type parameter as a second value, wherein , the target adjacent type parameter is a reference type parameter whose value of the reference type parameter is greater than the target type parameter and adjacent to the target type parameter, the sum of the first value and the second value is 1;

获得包括所述目标类型参数和所述目标相邻类型参数的所述目标类型参数组。The target type parameter set including the target type parameter and the target neighbor type parameter is obtained.

可选的,所述根据所述目标类型参数组和各所述类型参数分布概率值,计算所述目标用户的可中断负荷量,包括:Optionally, the calculating the interruptible load of the target user according to the target type parameter group and the distribution probability value of each type parameter includes:

通过公式:By formula:

Figure BDA0003852314950000031
Figure BDA0003852314950000031

求得所述目标用户i的可中断负荷量Xij),其中,所述Pm是预设峰时单位电价参数,所述P0是预设销售单位电价参数,所述λ是预设送电单位成本参数,所述Pij)是所述目标用户i的第j个所述目标类型参数θj对应的类型参数分布概率值,所述θj+1是所述目标类型参数θj的目标相邻类型参数,,所述K1是预设第一断电成本系数,所述K2是预设第二断电成本系数,所述J是所述目标预设类型参数分布概率表中的基准类型参数的总个数,所述Pin)是所述目标用户i的第n个基准类型参数θn对应的所述类型参数分布概率值。obtain the interruptible load Xi (θ j ) of the target user i , wherein, the P m is the preset peak-time unit electricity price parameter, the P 0 is the preset sales unit electricity price parameter, and the λ is Preset power transmission unit cost parameters, the P ij ) is the type parameter distribution probability value corresponding to the jth target type parameter θ j of the target user i, and the θ j+1 is the The target adjacent type parameter of the target type parameter θ j , the K 1 is the preset first power-off cost coefficient, the K 2 is the preset second power-off cost coefficient, and the J is the target preset The total number of reference type parameters in the type parameter distribution probability table, the P in ) is the type parameter distribution probability value corresponding to the nth reference type parameter θ n of the target user i.

可选的,所述预设负荷分类模型的训练过程包括:Optionally, the training process of the preset load classification model includes:

将获取的第一数量个历史日负荷曲线添加至样本数据集合;Add the obtained first quantity of historical daily load curves to the sample data set;

从所述样本数据集合中随机选取一个目标历史日负荷曲线确定为聚类中心曲线集合中的聚类中心曲线;randomly selecting a target historical daily load curve from the sample data set and determining it as the cluster center curve in the cluster center curve set;

分别计算所述样本数据集合中除所述聚类中心曲线外的各所述历史日负荷曲线与聚类中心曲线集合中所述聚类中心曲线的欧氏距离;Calculate the Euclidean distance between each of the historical daily load curves in the sample data set except the cluster center curve and the cluster center curve in the cluster center curve set;

将各所述欧式距离中数值最小的欧氏距离对应的历史日负荷曲线确定为所述聚类中心曲线集合中的聚类中心曲线,并返回执行所述分别计算所述样本数据集合中除所述聚类中心曲线外的各所述历史日负荷曲线与聚类中心曲线集合中所述聚类中心曲线的欧氏距离的步骤;Determine the historical daily load curve corresponding to the Euclidean distance with the smallest numerical value in each of the Euclidean distances as the cluster center curve in the cluster center curve set, and return to perform the respective calculations in the sample data set to divide all The step of the Euclidean distance between each of the historical daily load curves outside the cluster center curve and the cluster center curve in the cluster center curve set;

在所述聚类中心曲线集合中所述聚类中心曲线的数量等于预设分类数量时,终止计算,获得所述预设负荷分类模型。When the number of the cluster center curves in the cluster center curve set is equal to the number of preset classifications, the calculation is terminated to obtain the preset load classification model.

一种可中断负荷量的计算系统,所述计算系统包括:A computing system capable of interrupting loads, the computing system comprising:

曲线分类模块,用于基于预设负荷分类模型确定目标用户的日负荷曲线的目标类型;A curve classification module, configured to determine the target type of the daily load curve of the target user based on a preset load classification model;

参数计算模块,用于基于所述目标用户的日负荷曲线中的计量参数,求得与所述目标用户的日负荷曲线对应的目标用户的初始类型参数;A parameter calculation module, configured to obtain the initial type parameter of the target user corresponding to the target user's daily load curve based on the metering parameters in the target user's daily load curve;

数据确定模块,用于基于所述目标用户的用户标识和所述初始类型参数,从与目标类型对应的目标预设类型参数分布概率表中,确定目标类型参数组及与所述目标类型参数组中各类型参数分别对应的类型参数分布概率值;A data determination module, configured to determine the target type parameter group and the target type parameter group from the target preset type parameter distribution probability table corresponding to the target type based on the user identifier of the target user and the initial type parameter The type parameter distribution probability values corresponding to each type parameter in ;

负荷量计算模块,用于根据所述目标类型参数组和各所述类型参数分布概率值,计算所述目标用户的可中断负荷量。The load calculation module is configured to calculate the interruptible load of the target user according to the target type parameter group and the distribution probability value of each type parameter.

可选的,所述参数计算模块被设置为:Optionally, the parameter calculation module is set to:

通过公式:By formula:

Figure BDA0003852314950000041
Figure BDA0003852314950000041

求得所述目标用户的日负荷率LR,其中,所述P是所述计量参数中的日总用电量,所述ELmax是所述计量参数中的日最大负荷量;Obtaining the daily load rate LR of the target user, wherein the P is the total daily electricity consumption in the metering parameters, and the EL max is the daily maximum load in the metering parameters;

通过公式:By formula:

θ0=1-LRθ 0 =1-LR

求得所述初始类型参数,其中,所述θ0为所述初始类型参数。Obtaining the initial type parameter, wherein the θ 0 is the initial type parameter.

可选的,所述数据确定模块被设置为:Optionally, the data determination module is set to:

分别计算所述目标预设类型参数分布概率表中各基准类型参数与所述初始类型参数的参数差值;Calculating the parameter difference between each reference type parameter in the target preset type parameter distribution probability table and the initial type parameter;

将各所述参数差值中的最小值对应的基准类型参数确定为目标类型参数,将所述目标类型参数对应的所述类型参数分布概率值设置为第一数值;Determining the reference type parameter corresponding to the minimum value of each of the parameter differences as the target type parameter, and setting the type parameter distribution probability value corresponding to the target type parameter as a first value;

确定所述目标预设类型参数分布概率表中,所述目标类型参数的目标相邻类型参数,并将所述目标相邻类型参数对应的所述类型参数分布概率值设置为第二数值,其中,所述目标相邻类型参数是所述基准类型参数的数值大于所述目标类型参数,且与所述目标类型参数相邻的基准类型参数,所述第一数值和所述第二数值的和为1;Determine the target adjacent type parameter of the target type parameter in the target preset type parameter distribution probability table, and set the type parameter distribution probability value corresponding to the target adjacent type parameter as a second value, wherein , the target adjacent type parameter is a reference type parameter whose value of the reference type parameter is greater than the target type parameter and adjacent to the target type parameter, the sum of the first value and the second value is 1;

获得包括所述目标类型参数和所述目标相邻类型参数的所述目标类型参数组。The target type parameter set including the target type parameter and the target neighbor type parameter is obtained.

可选的,所述负荷计量模块被设置为:Optionally, the load metering module is set to:

通过公式:By formula:

Figure BDA0003852314950000051
Figure BDA0003852314950000051

求得所述目标用户i的可中断负荷量Xij),其中,所述Pm是预设峰时单位电价参数,所述P0是预设销售单位电价参数,所述λ是预设送电单位成本参数,所述Pij)是所述目标用户i的第j个所述目标类型参数θj对应的类型参数分布概率值,所述θj+1是所述目标类型参数θj的目标相邻类型参数,,所述K1是预设第一断电成本系数,所述K2是预设第二断电成本系数,所述J是所述目标预设类型参数分布概率表中的基准类型参数的总个数,所述Pin)是所述目标用户i的第n个基准类型参数θn对应的所述类型参数分布概率值。obtain the interruptible load Xi (θ j ) of the target user i , wherein, the P m is the preset peak-time unit electricity price parameter, the P 0 is the preset sales unit electricity price parameter, and the λ is Preset power transmission unit cost parameters, the P ij ) is the type parameter distribution probability value corresponding to the jth target type parameter θ j of the target user i, and the θ j+1 is the The target adjacent type parameter of the target type parameter θ j , the K 1 is the preset first power-off cost coefficient, the K 2 is the preset second power-off cost coefficient, and the J is the target preset The total number of reference type parameters in the type parameter distribution probability table, the P in ) is the type parameter distribution probability value corresponding to the nth reference type parameter θ n of the target user i.

可选的,所述可中断负荷量的计算系统还包括:Optionally, the calculation system of the interruptible load further includes:

模型训练模块,用于将获取的第一数量个历史日负荷曲线添加至样本数据集合;The model training module is used to add the first quantity of historical daily load curves obtained to the sample data set;

从所述样本数据集合中随机选取一个目标历史日负荷曲线确定为聚类中心曲线集合中的聚类中心曲线;randomly selecting a target historical daily load curve from the sample data set and determining it as the cluster center curve in the cluster center curve set;

分别计算所述样本数据集合中除所述聚类中心曲线外的各所述历史日负荷曲线与聚类中心曲线集合中所述聚类中心曲线的欧氏距离;Calculate the Euclidean distance between each of the historical daily load curves in the sample data set except the cluster center curve and the cluster center curve in the cluster center curve set;

将各所述欧式距离中数值最小的欧氏距离对应的历史日负荷曲线确定为所述聚类中心曲线集合中的聚类中心曲线,并返回执行所述分别计算所述样本数据集合中除所述聚类中心曲线外的各所述历史日负荷曲线与聚类中心曲线集合中所述聚类中心曲线的欧氏距离的步骤;Determine the historical daily load curve corresponding to the Euclidean distance with the smallest numerical value in each of the Euclidean distances as the cluster center curve in the cluster center curve set, and return to perform the respective calculations in the sample data set to divide all The step of the Euclidean distance between each of the historical daily load curves outside the cluster center curve and the cluster center curve in the cluster center curve set;

在所述聚类中心曲线集合中所述聚类中心曲线的数量等于预设分类数量时,终止计算,获得所述预设负荷分类模型。When the number of the cluster center curves in the cluster center curve set is equal to the number of preset classifications, the calculation is terminated to obtain the preset load classification model.

一种可中断负荷量的计算设备,所述计算设备包括:An interruptible load computing device, the computing device comprising:

处理器;processor;

用于存储所述处理器可执行指令的存储器;memory for storing said processor-executable instructions;

其中所述处理器被配置为执行所述指令,以实现如上述任一种所述的可中断负荷量的计算方法。Wherein the processor is configured to execute the instructions, so as to realize the calculation method of the interruptible load amount as described in any one of the above.

一种计算机可读存储介质,当所述计算机可读存储介质中的指令由可中断负荷量的计算设备的处理器执行时,使得所述计算设备能够执行如上述任一种所述的可中断负荷量的计算方法。A computer-readable storage medium, when the instructions in the computer-readable storage medium are executed by a processor of a computing device with an interruptible load, the computing device can execute the interruptible How to calculate load.

本发明实施例提供的一种可中断负荷量的计算方法、系统、设备及存储介质,可以通过利用预设负荷分类模型对日负荷曲线进行分类,可以提高类型参数的确定精度,从而提高后续生成可中断负荷量的精度。同时,基于日负荷曲线的计量参数,确定可以表征目标用户类型的初始类型参数。避免了由于运算数据数量庞大造成的计算效率降低,以及数据间干扰导致计算精度降低的问题。最后,本发明根据一个目标预设类型参数分布概率表中的各目标类型参数和类型参数分布概率值,即可实现对属于同一个目标类型的各目标用户的可中断负荷量进行准确计算。可见,本发明实现了对可中断负荷量的准确计算,从而降低了对供电可靠性要求高的负荷类型误切除的风险,提高了供电可靠性。An interruptible load calculation method, system, device, and storage medium provided by the embodiments of the present invention can classify daily load curves by using a preset load classification model, which can improve the determination accuracy of type parameters, thereby improving subsequent generation. Interruptible load accuracy. At the same time, based on the measurement parameters of the daily load curve, the initial type parameters that can characterize the target user type are determined. It avoids the reduction of calculation efficiency due to the huge amount of operation data and the reduction of calculation accuracy caused by the interference between data. Finally, the present invention can accurately calculate the interruptible load of each target user belonging to the same target type according to each target type parameter and type parameter distribution probability value in a target preset type parameter distribution probability table. It can be seen that the present invention realizes accurate calculation of interruptible loads, thereby reducing the risk of mis-cutting load types that require high power supply reliability, and improving power supply reliability.

当然,实施本发明的任一产品或方法必不一定需要同时达到以上所述的所有优点。Of course, implementing any product or method of the present invention does not necessarily need to achieve all the above-mentioned advantages at the same time.

附图说明Description of drawings

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention or the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only These are some embodiments of the present invention. Those skilled in the art can also obtain other drawings based on these drawings without creative work.

图1为本发明实施例提供的一种可中断负荷量的计算方法的流程图;FIG. 1 is a flow chart of a calculation method for an interruptible load provided by an embodiment of the present invention;

图2为本发明的一个可选实施例提供的一种可中断负荷量的计算系统的框图;Fig. 2 is a block diagram of an interruptible load computing system provided by an optional embodiment of the present invention;

图3为本发明的另一个可选实施例提供的一种可中断负荷量的计算设备的框图。Fig. 3 is a block diagram of a computing device capable of interrupting load provided by another optional embodiment of the present invention.

具体实施方式detailed description

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following will clearly and completely describe the technical solutions in the embodiments of the present invention with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some, not all, embodiments of the present invention. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.

本发明实施例提供了一种可中断负荷量的计算方法,如图1所示,该方法包括:An embodiment of the present invention provides a method for calculating an interruptible load, as shown in FIG. 1 , the method includes:

S101、基于预设负荷分类模型确定目标用户的日负荷曲线的目标类型。S101. Determine a target type of a target user's daily load curve based on a preset load classification model.

其中,上述日负荷曲线(Load curve)是用于表征电力系统中各类型电力负荷随时间变化的曲线。Wherein, the above-mentioned daily load curve (Load curve) is a curve used to characterize the change of various types of electric loads in the power system with time.

可选的,在本发明的一个可选实施例中,在实际应用场景下,上述目标类型可以有多种。例如:若日负荷曲线表现为日间负荷量低,晚间负荷量由高降低的趋势,则表明该日负荷曲线对应的目标类型为居民用户。若日负荷曲线表现为全天负荷量高,则表明该日负荷曲线对应的目标类型为工业用户。若日负荷曲线表现为日间负荷量高,晚间负荷量有高降低的趋势,则表明该日负荷曲线对应的目标类型为商业用户。Optionally, in an optional embodiment of the present invention, in an actual application scenario, there may be multiple target types. For example: if the daily load curve shows a trend that the load is low during the day and the load decreases from high at night, it indicates that the target type corresponding to the daily load curve is a residential user. If the daily load curve shows a high load throughout the day, it indicates that the target type corresponding to the daily load curve is an industrial user. If the daily load curve shows that the load in the daytime is high and the load in the evening tends to decrease, it indicates that the target type corresponding to the daily load curve is a commercial user.

可选的,在本发明的另一个可选实施例中,上述预设负荷分类模型可以是基于K均值聚类算法(k-means clustering algorithm,K-means)构建的模型。由于日负荷曲线表征了用户负荷在不同时段的使用情况。且不同类型的用户负荷对应不同的类型参数。因此,本发明通过利用预设负荷分类模型对日负荷曲线进行分类,可以提高类型参数的确定精度。从而提高后续生成可中断负荷量的精度。Optionally, in another optional embodiment of the present invention, the foregoing preset load classification model may be a model constructed based on a K-means clustering algorithm (k-means clustering algorithm, K-means). Since the daily load curve represents the usage of user load in different periods. And different types of user loads correspond to different type parameters. Therefore, the present invention can improve the determination accuracy of type parameters by using a preset load classification model to classify daily load curves. Thereby, the accuracy of subsequent generation of interruptible load is improved.

S102、基于目标用户的日负荷曲线中的计量参数,求得与目标用户的日负荷曲线对应的目标用户的初始类型参数。S102. Based on the measurement parameters in the target user's daily load curve, obtain the target user's initial type parameter corresponding to the target user's daily load curve.

可选的,在本发明的一个可选实施例中,由于日负荷曲线包含了目标用户在一个自然日内的大量负荷数据。若依据大量负荷数据进行后续可中断负荷量的计算,会降低计算效率和计算精度。因此,本发明基于日负荷曲线的计量参数,确定可以表征目标用户类型的初始类型参数。避免了由于运算数据数量庞大造成的计算效率降低,以及数据间干扰导致计算精度降低的问题。Optionally, in an optional embodiment of the present invention, since the daily load curve includes a large amount of load data of the target user in a natural day. If the subsequent calculation of the interruptible load is carried out based on a large amount of load data, the calculation efficiency and calculation accuracy will be reduced. Therefore, the present invention determines the initial type parameters that can characterize the target user type based on the metering parameters of the daily load curve. It avoids the reduction of calculation efficiency due to the huge amount of operation data and the reduction of calculation accuracy caused by the interference between data.

S103、基于目标用户的用户标识和初始类型参数,从与目标类型对应的目标预设类型参数分布概率表中,确定目标类型参数组及与目标类型参数组中各类型参数分别对应的类型参数分布概率值。S103. Based on the target user's user ID and initial type parameters, from the target preset type parameter distribution probability table corresponding to the target type, determine the target type parameter group and the type parameter distribution corresponding to each type parameter in the target type parameter group probability value.

可选的,在本发明的一个可选实施例中,由于不同用户的日负荷曲线无法完全拟合,对具有相同目标类型日负荷曲线的不同目标用户,其初始类型参数会不同。同时,若用户通过临时增加负荷或延长负荷用电时间的方式,致使日负荷曲线无法反应真实用电情况,也会导致初始类型参数发生改变。因此,为了便于对具有相同目标类型日负荷曲线的大量用户的可中断负荷量进行准确计算,需要对各目标用户的初始类型参数进行统一划分,并对同一用户可能出现的多个类型参数的出现概率进行确定。Optionally, in an optional embodiment of the present invention, since the daily load curves of different users cannot be completely fitted, the initial type parameters for different target users with the same target type daily load curves will be different. At the same time, if the user temporarily increases the load or prolongs the power consumption time of the load, the daily load curve cannot reflect the real power consumption situation, and the initial type parameters will also change. Therefore, in order to facilitate the accurate calculation of the interruptible load of a large number of users with the same target type daily load curve, it is necessary to uniformly divide the initial type parameters of each target user, and to analyze the occurrence of multiple type parameters that may appear in the same user. The probability is determined.

可选的,在本发明的另一个可选实施例中,上述类型参数分布概率值可以是基于目标用户的日负荷曲线确定的初始类型参数,与对应目标预设类型参数分布概率表中类型参数的匹配概率。该类型参数分布概率值可以根据历史日负荷曲线和对应的类型参数,经概率学统计后设定。Optionally, in another optional embodiment of the present invention, the above type parameter distribution probability value may be the initial type parameter determined based on the daily load curve of the target user, and the type parameter in the corresponding target preset type parameter distribution probability table match probability. The distribution probability value of this type parameter can be set after probabilistic statistics according to the historical daily load curve and the corresponding type parameters.

可选的,在本发明的另一个可选实施例中,上述目标预设类型参数分布概率表的具体形式可以如下表1所示。Optionally, in another optional embodiment of the present invention, the specific form of the target preset type parameter distribution probability table may be shown in Table 1 below.

Figure BDA0003852314950000091
Figure BDA0003852314950000091

表1Table 1

其中,上述表1中记录了属于同一目标类型的六个用户的预设类型的类型参数分布概率值。Wherein, the above-mentioned Table 1 records the type parameter distribution probability values of the preset types of the six users belonging to the same target type.

S104、根据目标类型参数组和各类型参数分布概率值,计算目标用户的可中断负荷量。S104. Calculate the interruptible load of the target user according to the target type parameter group and the distribution probability value of each type of parameter.

可选的,在本发明的一个可选实施例中,由于上述目标预设类型参数分布概率表中记录了属于同一目标类型的各目标用户所有可能出现的目标类型参数,以及各目标类型参数对应的类型参数分布概率。因此根据一个目标预设类型参数分布概率表中的各目标类型参数和类型参数分布概率值,即可实现对同属于一个目标类型的各目标用户的可中断负荷量进行准确计算。Optionally, in an optional embodiment of the present invention, since the above target preset type parameter distribution probability table records all possible target type parameters of each target user belonging to the same target type, and the corresponding target type parameters The type parameter distribution probability of . Therefore, according to each target type parameter and type parameter distribution probability value in a target preset type parameter distribution probability table, accurate calculation of the interruptible load of each target user belonging to the same target type can be realized.

本发明通过利用预设负荷分类模型对日负荷曲线进行分类,可以提高类型参数的确定精度,从而提高后续生成可中断负荷量的精度。同时,基于日负荷曲线的计量参数,确定可以表征目标用户类型的初始类型参数。避免了由于运算数据数量庞大造成的计算效率降低,以及数据间干扰导致计算精度降低的问题。最后,本发明根据一个目标预设类型参数分布概率表中的各目标类型参数和类型参数分布概率值,即可实现对属于同一个目标类型的各目标用户的可中断负荷量进行准确计算。可见,本发明实现了对可中断负荷量的准确计算,从而降低了对供电可靠性要求高的负荷类型误切除的风险,提高了供电可靠性。The present invention classifies daily load curves by using a preset load classification model, which can improve the determination accuracy of type parameters, thereby improving the accuracy of subsequent generation of interruptible loads. At the same time, based on the measurement parameters of the daily load curve, the initial type parameters that can characterize the target user type are determined. It avoids the reduction of calculation efficiency due to the huge amount of operation data and the reduction of calculation accuracy caused by the interference between data. Finally, the present invention can accurately calculate the interruptible load of each target user belonging to the same target type according to each target type parameter and type parameter distribution probability value in a target preset type parameter distribution probability table. It can be seen that the present invention realizes accurate calculation of interruptible loads, thereby reducing the risk of mis-cutting load types that require high power supply reliability, and improving power supply reliability.

可选的,计量参数由日总用电量和日最大负荷量组成,基于目标用户的日负荷曲线中的计量参数,求得与目标用户的日负荷曲线对应的目标用户的初始类型参数,包括:Optionally, the metering parameters are composed of the total daily electricity consumption and the daily maximum load. Based on the metering parameters in the daily load curve of the target user, the initial type parameters of the target user corresponding to the daily load curve of the target user are obtained, including :

通过公式:By formula:

Figure BDA0003852314950000101
Figure BDA0003852314950000101

求得目标用户的日负荷率LR,其中,P是日总用电量,ELmax是日最大负荷量;Obtain the daily load rate LR of the target user, where P is the total daily electricity consumption, and EL max is the daily maximum load;

通过公式:By formula:

θ0=1-LRθ 0 =1-LR

求得初始类型参数,其中,θ0为初始类型参数。Obtain the initial type parameter, where θ 0 is the initial type parameter.

其中,由于上述日最大负荷量ELmax的单位是千瓦时,而日总用电量的单位是千瓦。为了便于统一计算,因此需要乘以24小时以统一单位。Wherein, since the unit of the above-mentioned maximum daily load EL max is kWh, the unit of the total daily power consumption is kW. In order to facilitate unified calculation, it needs to be multiplied by 24 hours to unify the unit.

可选的,基于目标用户的用户标识和初始类型参数,从与目标类型对应的目标预设类型参数分布概率表中,确定目标类型参数组及与目标类型参数组中各类型参数分别对应的类型参数分布概率值,包括:Optionally, based on the target user's user ID and initial type parameters, determine the target type parameter group and the types corresponding to each type parameter in the target type parameter group from the target preset type parameter distribution probability table corresponding to the target type Parametric distribution probability values, including:

分别计算目标预设类型参数分布概率表中各基准类型参数与初始类型参数的参数差值;Calculate the parameter difference between each benchmark type parameter and the initial type parameter in the target preset type parameter distribution probability table;

将各参数差值中的最小值对应的基准类型参数确定为目标类型参数,将目标类型参数对应的类型参数分布概率值设置为第一数值;The benchmark type parameter corresponding to the minimum value in each parameter difference is determined as the target type parameter, and the type parameter distribution probability value corresponding to the target type parameter is set as the first value;

确定目标预设类型参数分布概率表中,目标类型参数的目标相邻类型参数,并将目标相邻类型参数对应的类型参数分布概率值设置为第二数值,其中,目标相邻类型参数是基准类型参数的数值大于目标类型参数,且与目标类型参数相邻的基准类型参数,第一数值和第二数值的和为1;Determine the target adjacent type parameter of the target type parameter in the target preset type parameter distribution probability table, and set the type parameter distribution probability value corresponding to the target adjacent type parameter as the second value, wherein the target adjacent type parameter is the benchmark The value of the type parameter is greater than the target type parameter, and the base type parameter adjacent to the target type parameter, the sum of the first value and the second value is 1;

获得包括目标类型参数和目标相邻类型参数的目标类型参数组。Obtains an object type parameter group including an object type parameter and an object adjacent type parameter.

可选的,根据目标类型参数组和各类型参数分布概率值,计算目标用户的可中断负荷量,包括:Optionally, calculate the interruptible load of the target user according to the target type parameter group and the distribution probability value of each type of parameter, including:

通过公式:By formula:

Figure BDA0003852314950000111
Figure BDA0003852314950000111

求得目标用户i的可中断负荷量Xij),其中,Pm是预设峰时单位电价参数,P0是预设销售单位电价参数,λ是预设送电单位成本参数,Pij)是目标用户i的第j个目标类型参数θj对应的类型参数分布概率值,θj+1是目标类型参数θj的目标相邻类型参数,,K1是预设第一断电成本系数,K2是预设第二断电成本系数,J是目标预设类型参数分布概率表中的基准类型参数的总个数,Pin)是目标用户i的第n个基准类型参数θn对应的类型参数分布概率值。Obtain the interruptible load X ij ) of the target user i, where P m is the preset peak hour unit electricity price parameter, P 0 is the preset sales unit electricity price parameter, λ is the preset power transmission unit cost parameter, P ij ) is the type parameter distribution probability value corresponding to the jth target type parameter θ j of the target user i, θ j+1 is the target adjacent type parameter of the target type parameter θ j , K 1 is the preset The first power outage cost coefficient, K 2 is the preset second power outage cost coefficient, J is the total number of reference type parameters in the target preset type parameter distribution probability table, P in ) is the target user i The distribution probability value of the type parameter corresponding to the nth benchmark type parameter θ n .

可选的,预设负荷分类模型的训练过程包括:Optionally, the training process of the preset load classification model includes:

将获取的第一数量个历史日负荷曲线添加至样本数据集合;Add the obtained first quantity of historical daily load curves to the sample data set;

从样本数据集合中随机选取一个目标历史日负荷曲线确定为聚类中心曲线集合中的聚类中心曲线;Randomly select a target historical daily load curve from the sample data set and determine it as the cluster center curve in the cluster center curve set;

分别计算样本数据集合中除聚类中心曲线外的各历史日负荷曲线与聚类中心曲线集合中聚类中心曲线的欧氏距离;Calculate the Euclidean distance between each historical daily load curve in the sample data set except the cluster center curve and the cluster center curve in the cluster center curve set;

将各欧式距离中数值最小的欧氏距离对应的历史日负荷曲线确定为聚类中心曲线集合中的聚类中心曲线,并返回执行分别计算样本数据集合中除聚类中心曲线外的各历史日负荷曲线与聚类中心曲线集合中聚类中心曲线的欧氏距离的步骤;Determine the historical daily load curve corresponding to the Euclidean distance with the smallest value in each Euclidean distance as the cluster center curve in the cluster center curve set, and return to execute the calculation of each historical day in the sample data set except the cluster center curve The steps of the Euclidean distance between the load curve and the cluster center curve in the cluster center curve set;

在聚类中心曲线集合中聚类中心曲线的数量等于预设分类数量时,终止计算,获得预设负荷分类模型。When the number of cluster center curves in the cluster center curve set is equal to the number of preset classifications, the calculation is terminated to obtain a preset load classification model.

与上述方法实施例相对应的,本发明还提供了一种可中断负荷量的计算系统,如图2所示,该计算系统包括:Corresponding to the above method embodiments, the present invention also provides a calculation system for interruptible load, as shown in Figure 2, the calculation system includes:

曲线分类模块201,用于基于预设负荷分类模型确定目标用户的日负荷曲线的目标类型;A curve classification module 201, configured to determine the target type of the target user's daily load curve based on a preset load classification model;

参数计算模块202,用于基于目标用户的日负荷曲线中的计量参数,求得与目标用户的日负荷曲线对应的目标用户的初始类型参数;The parameter calculation module 202 is used to obtain the initial type parameter of the target user corresponding to the target user's daily load curve based on the metering parameters in the target user's daily load curve;

数据确定模块203,用于基于目标用户的用户标识和初始类型参数,从与目标类型对应的目标预设类型参数分布概率表中,确定目标类型参数组及与目标类型参数组中各类型参数分别对应的类型参数分布概率值;The data determination module 203 is used to determine the target type parameter group and the respective type parameters in the target type parameter group from the target preset type parameter distribution probability table corresponding to the target type based on the target user's user identification and initial type parameters. The corresponding type parameter distribution probability value;

负荷量计算模块204,用于根据目标类型参数组和各类型参数分布概率值,计算目标用户的可中断负荷量。The load calculation module 204 is configured to calculate the interruptible load of the target user according to the target type parameter group and the distribution probability value of each type parameter.

可选的,上述参数计算模块202被设置为:Optionally, the above parameter calculation module 202 is set to:

通过公式:By formula:

Figure BDA0003852314950000121
Figure BDA0003852314950000121

求得目标用户的日负荷率LR,其中,P是计量参数中的日总用电量,ELmax是计量参数中的日最大负荷量;Obtain the daily load rate LR of the target user, where P is the total daily electricity consumption in the metering parameters, and EL max is the daily maximum load in the metering parameters;

通过公式:By formula:

θ0=1-LRθ 0 =1-LR

求得初始类型参数,其中,θ0为初始类型参数。Obtain the initial type parameter, where θ 0 is the initial type parameter.

可选的,上述数据确定模块203被设置为:Optionally, the above data determination module 203 is set to:

分别计算目标预设类型参数分布概率表中各基准类型参数与初始类型参数的参数差值;Calculate the parameter difference between each benchmark type parameter and the initial type parameter in the target preset type parameter distribution probability table;

将各参数差值中的最小值对应的基准类型参数确定为目标类型参数,将目标类型参数对应的类型参数分布概率值设置为第一数值;The benchmark type parameter corresponding to the minimum value in each parameter difference is determined as the target type parameter, and the type parameter distribution probability value corresponding to the target type parameter is set as the first value;

确定目标预设类型参数分布概率表中,目标类型参数的目标相邻类型参数,并将目标相邻类型参数对应的类型参数分布概率值设置为第二数值,其中,目标相邻类型参数是基准类型参数的数值大于目标类型参数,且与目标类型参数相邻的基准类型参数,第一数值和第二数值的和为1;Determine the target adjacent type parameter of the target type parameter in the target preset type parameter distribution probability table, and set the type parameter distribution probability value corresponding to the target adjacent type parameter as the second value, wherein the target adjacent type parameter is the benchmark The value of the type parameter is greater than the target type parameter, and the base type parameter adjacent to the target type parameter, the sum of the first value and the second value is 1;

获得包括目标类型参数和目标相邻类型参数的目标类型参数组。Obtains an object type parameter group including an object type parameter and an object adjacent type parameter.

可选的,上述负荷量计算模块204被设置为:Optionally, the above load calculation module 204 is set to:

通过公式:By formula:

Figure BDA0003852314950000131
Figure BDA0003852314950000131

求得目标用户i的可中断负荷量Xij),其中,Pm是预设峰时单位电价参数,P0是预设销售单位电价参数,λ是预设送电单位成本参数,Pij)是目标用户i的第j个目标类型参数θj对应的类型参数分布概率值,θj+1是目标类型参数θj的目标相邻类型参数,,K1是预设第一断电成本系数,K2是预设第二断电成本系数,J是目标预设类型参数分布概率表中的基准类型参数的总个数,Pin)是目标用户i的第n个基准类型参数θn对应的类型参数分布概率值。Obtain the interruptible load X ij ) of the target user i, where P m is the preset peak hour unit electricity price parameter, P 0 is the preset sales unit electricity price parameter, λ is the preset power transmission unit cost parameter, P ij ) is the type parameter distribution probability value corresponding to the jth target type parameter θ j of the target user i, θ j+1 is the target adjacent type parameter of the target type parameter θ j , K 1 is the preset The first power outage cost coefficient, K 2 is the preset second power outage cost coefficient, J is the total number of reference type parameters in the target preset type parameter distribution probability table, P in ) is the target user i The distribution probability value of the type parameter corresponding to the nth benchmark type parameter θ n .

可选的,上述如图2所示的可中断负荷量的计算系统还包括:Optionally, the above-mentioned calculation system for the interruptible load shown in Figure 2 also includes:

模型训练模块,用于将获取的第一数量个历史日负荷曲线添加至样本数据集合;The model training module is used to add the first quantity of historical daily load curves obtained to the sample data set;

从样本数据集合中随机选取一个目标历史日负荷曲线确定为聚类中心曲线集合中的聚类中心曲线;Randomly select a target historical daily load curve from the sample data set and determine it as the cluster center curve in the cluster center curve set;

分别计算样本数据集合中除聚类中心曲线外的各历史日负荷曲线与聚类中心曲线集合中聚类中心曲线的欧氏距离;Calculate the Euclidean distance between each historical daily load curve in the sample data set except the cluster center curve and the cluster center curve in the cluster center curve set;

将各欧式距离中数值最小的欧氏距离对应的历史日负荷曲线确定为聚类中心曲线集合中的聚类中心曲线,并返回执行分别计算样本数据集合中除聚类中心曲线外的各历史日负荷曲线与聚类中心曲线集合中聚类中心曲线的欧氏距离的步骤;Determine the historical daily load curve corresponding to the Euclidean distance with the smallest value in each Euclidean distance as the cluster center curve in the cluster center curve set, and return to execute the calculation of each historical day in the sample data set except the cluster center curve The steps of the Euclidean distance between the load curve and the cluster center curve in the cluster center curve set;

在聚类中心曲线集合中聚类中心曲线的数量等于预设分类数量时,终止计算,获得预设负荷分类模型。When the number of cluster center curves in the cluster center curve set is equal to the number of preset classifications, the calculation is terminated to obtain a preset load classification model.

本发明实施例还提供了一种可中断负荷量的计算设备,如图3所示,该计算设备包括:An embodiment of the present invention also provides a computing device capable of interrupting load, as shown in FIG. 3 , the computing device includes:

处理器301;Processor 301;

用于存储处理器301可执行指令的存储器302;A memory 302 for storing instructions executable by the processor 301;

其中处理器301被配置为执行指令,以实现如上述任一种的可中断负荷量的计算方法。Wherein the processor 301 is configured to execute instructions, so as to implement any one of the methods for calculating the interruptible load amount as described above.

本发明实施例还提供了一种计算机可读存储介质,当计算机可读存储介质中的指令由可中断负荷量的计算设备的处理器执行时,使得计算设备能够执行如上述任一种的可中断负荷量的计算方法。An embodiment of the present invention also provides a computer-readable storage medium. When the instructions in the computer-readable storage medium are executed by the processor of the computing device that can interrupt the load, the computing device can execute any of the above-mentioned Calculation method of interruption load.

在一个典型的配置中,设备包括一个或多个处理器(CPU)、存储器和总线。设备还可以包括输入/输出接口、网络接口等。In a typical configuration, a device includes one or more processors (CPUs), memory and a bus. A device may also include input/output interfaces, network interfaces, and the like.

存储器可能包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM),存储器包括至少一个存储芯片。存储器是计算机可读介质的示例。Memory may include non-permanent memory in computer-readable media, random access memory (RAM) and/or non-volatile memory, such as read-only memory (ROM) or flash memory (flash RAM), and memory includes at least one memory chip. The memory is an example of a computer readable medium.

计算机可读介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。按照本文中的界定,计算机可读介质不包括暂存电脑可读媒体(transitory media),如调制的数据信号和载波。Computer-readable media, including both permanent and non-permanent, removable and non-removable media, can be implemented by any method or technology for storage of information. Information may be computer readable instructions, data structures, modules of a program, or other data. Examples of computer storage media include, but are not limited to, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read only memory (ROM), Electrically Erasable Programmable Read-Only Memory (EEPROM), Flash memory or other memory technology, Compact Disc Read-Only Memory (CD-ROM), Digital Versatile Disc (DVD) or other optical storage, Magnetic tape cartridge, tape magnetic disk storage or other magnetic storage device or any other non-transmission medium that can be used to store information that can be accessed by a computing device. As defined herein, computer-readable media excludes transitory computer-readable media, such as modulated data signals and carrier waves.

本领域技术人员应明白,本申请的实施例可提供为方法、系统或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。Those skilled in the art should understand that the embodiments of the present application may be provided as methods, systems or computer program products. Accordingly, the present application can take the form of an entirely hardware embodiment, an entirely software embodiment or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.

需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括要素的过程、方法、商品或者设备中还存在另外的相同要素。It should be noted that in this article, relational terms such as first and second are only used to distinguish one entity or operation from another entity or operation, and do not necessarily require or imply that there is a relationship between these entities or operations. any such actual relationship or order exists between them. It should also be noted that the term "comprises", "comprises" or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article, or apparatus comprising a set of elements includes not only those elements, but also includes Other elements not expressly listed, or elements inherent in the process, method, commodity, or apparatus are also included. Without further limitations, an element defined by the phrase "comprising a ..." does not preclude the presence of additional identical elements in the process, method, article, or apparatus that includes the element.

本说明书中的各个实施例均采用相关的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于系统实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。Each embodiment in this specification is described in a related manner, the same and similar parts of each embodiment can be referred to each other, and each embodiment focuses on the differences from other embodiments. In particular, as for the system embodiment, since it is basically similar to the method embodiment, the description is relatively simple, and for the related parts, please refer to the part of the description of the method embodiment.

以上仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。The above are only examples of the present application, and are not intended to limit the present application. For those skilled in the art, various modifications and changes may occur in this application. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present application shall be included within the scope of the claims of the present application.

Claims (10)

1. A method of calculating an interruptible load amount, the method comprising:
determining a target type of a daily load curve of a target user based on a preset load classification model;
obtaining an initial type parameter of the target user corresponding to the daily load curve of the target user based on the metering parameter in the daily load curve of the target user;
determining a target type parameter group and type parameter distribution probability values respectively corresponding to various types of parameters in the target type parameter group from a target preset type parameter distribution probability table corresponding to a target type based on the user identification of the target user and the initial type parameters;
and calculating the interruptible load quantity of the target user according to the target type parameter group and the distribution probability value of each type parameter.
2. The method according to claim 1, wherein the metering parameters comprise total daily power consumption and maximum daily load, and the obtaining initial type parameters of the target user corresponding to the daily load curve of the target user based on the metering parameters in the daily load curve of the target user comprises:
by the formula:
Figure FDA0003852314940000011
obtaining the daily load rate LR of the target user, wherein P is the total daily power consumption, and EL is max Is the daily maximum load;
by the formula:
θ 0 =1-LR
obtaining the initial type parameter, wherein θ 0 Is the initial type parameter.
3. The method of claim 2, wherein determining a target type parameter set and type parameter distribution probability values corresponding to respective types of parameters in the target type parameter set from a target preset type parameter distribution probability table corresponding to the target type based on the subscriber identity of the target subscriber and the initial type parameter comprises:
respectively calculating the parameter difference value of each reference type parameter and the initial type parameter in the target preset type parameter distribution probability table;
determining a reference type parameter corresponding to the minimum value in the parameter difference values as a target type parameter, and setting the type parameter distribution probability value corresponding to the target type parameter as a first numerical value;
determining a target adjacent type parameter of the target type parameter in the target preset type parameter distribution probability table, and setting the type parameter distribution probability value corresponding to the target adjacent type parameter as a second value, wherein the target adjacent type parameter is a reference type parameter of which the value is greater than that of the target type parameter and is adjacent to the target type parameter, and the sum of the first value and the second value is 1;
obtaining the target type parameter group including the target type parameter and the target neighbor type parameter.
4. The method of claim 3, wherein said calculating an interruptible load amount for the target user based on the target set of type parameters and each of the type parameter distribution probability values comprises:
by the formula:
Figure FDA0003852314940000021
determining an interruptible load X for the target user i ij ) Wherein, said P m Is a preset peak hour unit electricity price parameter, P 0 Is a preset selling unit electricity price parameter, the lambda is a preset power transmission unit cost parameter, and the P is ij ) Is the jth said target type parameter theta of said target user i j Corresponding type parameter distribution probability value, theta j+1 Is the target type parameter θ j Target neighbor type parameter of (c), the K 1 Is to preset a first outage cost coefficient, K 2 Is a preset second outage cost coefficient, J is a total number of reference type parameters in the target preset type parameter distribution probability table, P is in ) Is the nth reference type parameter theta of the target user i n And distributing probability values of the corresponding type parameters.
5. The method of claim 1, wherein the training process of the preset load classification model comprises:
adding the acquired first number of historical daily load curves to a sample data set;
randomly selecting a target historical daily load curve from the sample data set to determine as a clustering center curve in a clustering center curve set;
respectively calculating Euclidean distances between each historical daily load curve in the sample data set except the clustering center curve and the clustering center curve in the clustering center curve set;
determining a historical daily load curve corresponding to the Euclidean distance with the minimum value in each Euclidean distance as a clustering center curve in the clustering center curve set, and returning to execute the step of respectively calculating the Euclidean distances between each historical daily load curve except the clustering center curve in the sample data set and the clustering center curve in the clustering center curve set;
and when the number of the clustering center curves in the clustering center curve set is equal to the preset classification number, stopping the calculation to obtain the preset load classification model.
6. A computing system that can interrupt a load amount, the computing system comprising:
the curve classification module is used for determining a target type of a daily load curve of a target user based on a preset load classification model;
the parameter calculation module is used for solving initial type parameters of the target user corresponding to the daily load curve of the target user based on the metering parameters in the daily load curve of the target user;
a data determining module, configured to determine, based on the user identifier of the target user and the initial type parameter, a target type parameter group and type parameter distribution probability values respectively corresponding to various types of parameters in the target type parameter group from a target preset type parameter distribution probability table corresponding to the target type;
and the load quantity calculation module is used for calculating the interruptible load quantity of the target user according to the target type parameter group and the distribution probability value of each type parameter.
7. The computing system of claim 6, wherein the parameter calculation module is configured to:
by the formula:
Figure FDA0003852314940000031
obtaining the daily load rate LR of the target user, wherein P is the total daily power consumption in the metering parameters, and EL max Is the daily maximum load in the metering parameter;
by the formula:
θ 0 =1-LR
obtaining the initial type parameter, wherein the theta 0 Is the initial type parameter.
8. The computing system of claim 7, wherein the data determination module is configured to:
respectively calculating the parameter difference between each reference type parameter and the initial type parameter in the target preset type parameter distribution probability table;
determining a reference type parameter corresponding to the minimum value in the parameter difference values as a target type parameter, and setting the type parameter distribution probability value corresponding to the target type parameter as a first numerical value;
determining a target adjacent type parameter of the target type parameter in the target preset type parameter distribution probability table, and setting the type parameter distribution probability value corresponding to the target adjacent type parameter as a second numerical value, wherein the target adjacent type parameter is a reference type parameter of which the numerical value of the reference type parameter is greater than that of the target type parameter and adjacent to the target type parameter, and the sum of the first numerical value and the second numerical value is 1;
obtaining the target type parameter set comprising the target type parameter and the target neighbor type parameter.
9. A computing device of interruptible load amounts, the computing device comprising:
a processor;
a memory for storing the processor-executable instructions;
wherein the processor is configured to execute the instructions to implement the method of calculating an interruptible load amount according to any one of claims 1-5.
10. A computer-readable storage medium, wherein instructions in the computer-readable storage medium, when executed by a processor of a computing device of an interruptible load amount, enable the computing device to perform the method of computing an interruptible load amount according to any one of claims 1-5.
CN202211136484.3A 2022-09-19 2022-09-19 Calculation method, system, device and storage medium of interruptible load Pending CN115455367A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211136484.3A CN115455367A (en) 2022-09-19 2022-09-19 Calculation method, system, device and storage medium of interruptible load

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211136484.3A CN115455367A (en) 2022-09-19 2022-09-19 Calculation method, system, device and storage medium of interruptible load

Publications (1)

Publication Number Publication Date
CN115455367A true CN115455367A (en) 2022-12-09

Family

ID=84304484

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211136484.3A Pending CN115455367A (en) 2022-09-19 2022-09-19 Calculation method, system, device and storage medium of interruptible load

Country Status (1)

Country Link
CN (1) CN115455367A (en)

Similar Documents

Publication Publication Date Title
WO2020119051A1 (en) Cloud platform resource usage prediction method and terminal device
US20190139159A1 (en) Energy opportunity optimization system
CN109034505A (en) Metering table demand on-line prediction method and terminal device
CN110852519A (en) Optimal profit method considering various types of loads for electricity selling companies
Pelekis et al. Targeted demand response for flexible energy communities using clustering techniques
CN110084496A (en) A kind of resource allocation methods and device
Javed et al. Fairness in real-time energy pricing for smart grid using unsupervised learning
CN110797872A (en) User side energy storage capacity configuration method, device, equipment and storage medium
CN115907389A (en) Urban area scale demand response potential power consumer positioning method, system and medium based on user portrait
CN115702429A (en) Resource management method and system
CN115455367A (en) Calculation method, system, device and storage medium of interruptible load
CN110994701B (en) Method, device, equipment and storage medium for testing simultaneous feasibility of financial power transmission rights
CN111523083A (en) Method and device for determining power load declaration data
CN113971504B (en) Intelligent contract-based power rush-repair resource allocation method, device and equipment
CN112150269B (en) Enterprise borrowing use verification method and system, computer equipment and storage medium thereof
Forouli et al. AC-feasible Local Flexibility Market with Continuous Trading
CN112001759A (en) Warehouse price data prediction method and device, electronic equipment and readable storage medium
AU2020200492A1 (en) Operation plan creating apparatus, operation plan creating method, and program
CN116826863B (en) Power plant carbon quota adjustment method, device, computer equipment and storage medium
CN110705740B (en) New energy power station power generation plan making method and system
CN119051149A (en) Method, equipment, medium and product for calculating energy storage and new energy source improving trusted capacity
JP6997274B1 (en) Information processing equipment, methods and programs
CN118917737A (en) Adjustable capability calculating method and device of virtual power plant and electronic equipment
Wang et al. Sharing Non-wire Alternatives for Transmission Expansion Deferral
CN114139944A (en) Distribution method, device, equipment and storage medium of power interruption load

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination