CN115449840A - 一种P-MoO2/P-Fe3O4异质结构纳米带的制备方法及其电催化应用 - Google Patents

一种P-MoO2/P-Fe3O4异质结构纳米带的制备方法及其电催化应用 Download PDF

Info

Publication number
CN115449840A
CN115449840A CN202211152688.6A CN202211152688A CN115449840A CN 115449840 A CN115449840 A CN 115449840A CN 202211152688 A CN202211152688 A CN 202211152688A CN 115449840 A CN115449840 A CN 115449840A
Authority
CN
China
Prior art keywords
moo
heterostructure
alpha
nanoribbon
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211152688.6A
Other languages
English (en)
Inventor
李忠成
王文嫔
崔志杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University of Science and Technology
Original Assignee
Qingdao University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University of Science and Technology filed Critical Qingdao University of Science and Technology
Priority to CN202211152688.6A priority Critical patent/CN115449840A/zh
Publication of CN115449840A publication Critical patent/CN115449840A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明涉及一种P‑MoO2/P‑Fe3O4异质结构纳米带的制备方法及其电催化应用,具体的说是将α‑MoO3粉末溶解在H2O2溶液中,采用水热合成法得到α‑MoO3纳米带;然后将α‑MoO3纳米带和Fe(NO3)3·9H2O的混合物研磨均匀,然后放入瓷舟中;取NaH2PO2·H2O放入另一个瓷舟中,将两个瓷舟放入管式炉中,其中装有NaH2PO2·H2O的瓷舟放置在上游,在Ar氛围中加热,得到P‑MoO2/P‑Fe3O4异质结构纳米带;该P‑MoO2/P‑Fe3O4异质结构纳米带在电催化水氧化反应和电催化水分解反应中的应用。

Description

一种P-MoO2/P-Fe3O4异质结构纳米带的制备方法及其电催化 应用
技术领域
本发明涉及一种P-MoO2/P-Fe3O4异质结构纳米带的制备方法及其电催化应用,属于材料的制备及其应用领域。
背景技术
Mo基氧化物包含MoO3、MoO2等形式,价格低廉,制备方法简单,引起了人们极大的研究兴趣。其中,MoO2是因Mo的价电子为4d2,具有一定的导电性。电催化分解水是绿色制备氢气的重要途径。MoO2电催化分解水能力较弱,因此调控MoO2表面结构实现高效催化水分解,具有重要的理论和现实意义。
杂原子掺杂、构建异质结构、形成缺陷位等方法可以有效调控材料电子结构,暴露更多的活性位点。例如:Lyu等利用ZIF-67和Na2MoO4合成了CoO-MoO2纳米笼,实现了在低电压下催化水分解氧气,当电压为312mV时,电催化水氧化为10mA/cm2(Advanced FunctionalMaterials,2017;27(34):1702324)。Wang等利用(NH4)6Mo7O2·4H2O、Na2WO4·2H2O和NaH2PO2合成了(P,W)-MoO2/NF,实现了在低电压下表现出良好的电解水反应活性,当电压为308mV时,电催化水氧化为40mA/cm2(Applied Surface Science,2020;529:146987)。Zhou等通过构建Ni-MoO2@SCG复合材料,在常温下催化水反应中具有较高的活性,当电压为278mV时,电催化水氧化为10mA/cm2(Journal of Electroanalytical Chemistry,2021;897:115555)。综上所述,形貌可控调变MoO2实现高效电催化水氧化反应、电催化分解水反应的研究较少。
研究表明电解水可以高效制备氢气,是实现绿色能源解决环境问题的挑战。因此P掺杂、增加空位、构建P-MoO2/P-Fe3O4异质界面结构,对调控MoO2制备高活性、高稳定性的电解水分解催化剂具有重要的现实意义。
发明内容:
本发明旨在提供一种P-MoO2/P-Fe3O4异质结构纳米带的制备方法及其电催化应用。
基于上述目的,本发明所涉及的技术方案如下:
(1)一种P-MoO2/P-Fe3O4异质结构纳米带的制备方法:将α-MoO3粉末溶解在H2O2溶液中,采用水热合成法在140-200℃下反应2-24h,将反应得到的产物离心,干燥得到α-MoO3纳米带;然后将α-MoO3纳米带和Fe(NO3)3·9H2O的混合物研磨均匀,然后放入瓷舟中;取NaH2PO2·H2O放入另一个瓷舟中,将两个瓷舟放入管式炉中,其中装有NaH2PO2·H2O的瓷舟放置在上游,在Ar氛围中加热,得到P-MoO2/P-Fe3O4异质结构纳米带。
上述的制备方法,所述α-MoO3粉末质量为0.5-2g,H2O2溶液体积为5-20mL。
上述的制备方法,所述α-MoO3纳米带的宽度为90-300nm、长度为400-6000nm。
上述的制备方法,所述α-MoO3纳米带的质量为20-40mg,Fe(NO3)3·9H2O的质量为20-40g,NaH2PO2·H2O的质量为0.5-2g。
上述的制备方法,所述然后将α-MoO3纳米带和Fe(NO3)3·9H2O的混合物研磨均匀,然后放入瓷舟中;取NaH2PO2·H2O放入另一个瓷舟中,将两个瓷舟放入管式炉中,其中装有NaH2PO2·H2O的瓷舟放置在上游,在10-30mL/min Ar氛围中加热,加热温度为200-400℃,加热时间为1-5小时。
上述的制备方法,所述P-MoO2/P-Fe3O4异质结构纳米带宽度为120-300nm、长度为350-7000nm,P/Mo/Fe摩尔比为(1-2):(10-13):(0.05-2)。
上述的制备方法,所述P-MoO2/P-Fe3O4异质结构纳米带中P掺杂MoO2、P掺杂Fe3O4形成异质结构,MoO2晶相归属于标准卡片JCPDS#32-0671,Fe3O4晶相归属于标准卡片JCPDS#19-0629。
(2)一种上述的制备方法制备得到的P-MoO2/P-Fe3O4异质结构纳米带在电催化水氧化反应和电催化水分解反应中的应用;电催化水氧化反应,电压为1.48-1.5V时电流密度为10mA/cm2;电催化水分解反应,电压为1.7-1.72V时电流密度为10mA/cm2
本发明具有如下优点:
1)利用α-MoO3、Fe(NO3)3·9H2O为前驱体,采用磷化的工艺制备了P-MoO2/P-Fe3O4异质结构纳米带,开发了P-MoO2/P-Fe3O4异质结构纳米带的新合成路径。
2)P-MoO2/P-Fe3O4异质结构纳米带在电催化水氧化反应和电催化水分解反应中具有较好的性能。
3)本发明具有方法简单易操作的优点。
附图说明:
图1是P-MoO2/P-Fe3O4异质结构纳米带的表征结果;(a)XRD,(b,c)SEM,(d-f)TEM,(g-j)P、Mo、O、Fe的Mapping。
具体实施方式
下列实施例用来进一步说明本发明,但不因此而限制本发明。
实施例1
一种P-MoO2/P-Fe3O4异质结构纳米带的制备方法:将1.4gα-MoO3粉末溶解在11mLH2O2溶液中,采用水热合成法在170℃下反应12h,将反应得到的产物离心,干燥得到宽度为90-260nm、长度为500-6000nm的α-MoO3纳米带;然后将25mgα-MoO3纳米带和25mg Fe(NO3)3·9H2O的混合物研磨均匀,然后放入瓷舟中;取1g NaH2PO2·H2O放入另一个瓷舟中,将两个瓷舟放入管式炉中,其中装有NaH2PO2·H2O的瓷舟放置在上游,在20mL/min流速的Ar氛围中350℃加热2h,得到140-240nm、长度为400-6500nm的P-MoO2/P-Fe3O4异质结构纳米带,P/Mo/Fe摩尔比为1:10:0.05。将该P-MoO2/P-Fe3O4异质结构纳米带、Nafion、乙醇按照5mg、25μL、500μL比例混合,将0.6mg/cm2混合液涂到Ni电极上,将其在电催化水氧化反应和电催化水分解反应中应用;电催化水氧化反应,电压为1.5V时电流密度为10mA/cm2;电催化水分解反应,电压为1.72V时电流密度为10mA/cm2
实施例2
一种P-MoO2/P-Fe3O4异质结构纳米带的制备方法:将0.5gα-MoO3粉末溶解在5mLH2O2溶液中,采用水热合成法在140℃下反应2h,将反应得到的产物离心,干燥得到宽度为90-300nm、长度为400-6000nm的α-MoO3纳米带;然后将20mgα-MoO3纳米带和20mg Fe(NO3)3·9H2O的混合物研磨均匀,然后放入瓷舟中;取0.5g NaH2PO2·H2O放入另一个瓷舟中,将两个瓷舟放入管式炉中,其中装有NaH2PO2·H2O的瓷舟放置在上游,在10mL/min流速的Ar氛围中200℃加热1h,得到120-300nm、长度为350-7000nm的P-MoO2/P-Fe3O4异质结构纳米带,P/Mo/Fe摩尔比为2:13:2。将该P-MoO2/P-Fe3O4异质结构纳米带、Nafion、乙醇按照5mg、25μL、500μL比例混合,将0.6mg/cm2混合液涂到Ni电极上,将其在电催化水氧化反应和电催化水分解反应中应用;电催化水氧化反应,电压为1.48V时电流密度为10mA/cm2;电催化水分解反应,电压为1.71V时电流密度为10mA/cm2
实施例3
一种P-MoO2/P-Fe3O4异质结构纳米带的制备方法:将2gα-MoO3粉末溶解在20mLH2O2溶液中,采用水热合成法在200℃下反应24h,将反应得到的产物离心,干燥得到宽度为100-300nm、长度为400-5000nm的α-MoO3纳米带;然后将40mgα-MoO3纳米带和40mg Fe(NO3)3·9H2O的混合物研磨均匀,然后放入瓷舟中;取2g NaH2PO2·H2O放入另一个瓷舟中,将两个瓷舟放入管式炉中,其中装有NaH2PO2·H2O的瓷舟放置在上游,在30mL/min流速的Ar氛围中400℃加热5h,得到120-240nm、长度为350-6500nm的P-MoO2/P-Fe3O4异质结构纳米带,P/Mo/Fe摩尔比为1.5:11:1.5。将该P-MoO2/P-Fe3O4异质结构纳米带、Nafion、乙醇按照5mg、25μL、500μL比例混合,将0.6mg/cm2混合液涂到Ni电极上,将其在电催化水氧化反应和电催化水分解反应中应用;电催化水氧化反应,电压为1.49V时电流密度为10mA/cm2;电催化水分解反应,电压为1.7V时电流密度为10mA/cm2

Claims (5)

1.一种P-MoO2/P-Fe3O4异质结构纳米带的制备方法其特征在于,包括以下步骤:
将α-MoO3粉末溶解在H2O2溶液中,采用水热合成法在140-200℃下反应2-24h,将反应得到的产物离心,干燥得到α-MoO3纳米带;然后将α-MoO3纳米带和Fe(NO3)3·9H2O的混合物研磨均匀,然后放入瓷舟中;取NaH2PO2·H2O放入另一个瓷舟中,将两个瓷舟放入管式炉中,其中装有NaH2PO2·H2O的瓷舟放置在上游,在Ar氛围中加热,得到P-MoO2/P-Fe3O4异质结构纳米带。
2.如权利要求1所述的制备方法,其特征在于,α-MoO3粉末的质量为0.5-2g,H2O2溶液体积为5-20mL,所得到α-MoO3纳米带宽度为90-300nm,长度为400-6000nm。
3.如权利要求1所述的制备方法,其特征在于,20-40mgα-MoO3纳米带和20-40mg Fe(NO3)3·9H2O的混合物研磨均匀,NaH2PO2·H2O的质量为0.5-2g,Ar流速为10-30mL/min,加热1-5小时。
4.一种由权利要求1-3任一项所述的制备方法制备得到的P-MoO2/P-Fe3O4异质结构纳米带,其特征在于,所述P-MoO2/P-Fe3O4异质结构纳米带宽度为120-300nm、长度为350-7000nm,P/Mo/Fe摩尔比为(1-2):(10-13):(0.05-2),所述P-MoO2/P-Fe3O4异质结构纳米带中P掺杂MoO2、P掺杂Fe3O4形成异质结构,MoO2晶相归属于标准卡片JCPDS#32-0671,Fe3O4晶相归属于标准卡片JCPDS#19-0629。
5.一种由权利要求1-3任一项所述的制备方法制备得到的P-MoO2/P-Fe3O4异质结构纳米带在电催化中的应用;电催化水氧化反应,电压为1.48-1.5V时电流密度为10mA/cm2;电催化水分解反应,电压为1.7-1.72V时电流密度为10mA/cm2
CN202211152688.6A 2022-09-21 2022-09-21 一种P-MoO2/P-Fe3O4异质结构纳米带的制备方法及其电催化应用 Pending CN115449840A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211152688.6A CN115449840A (zh) 2022-09-21 2022-09-21 一种P-MoO2/P-Fe3O4异质结构纳米带的制备方法及其电催化应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211152688.6A CN115449840A (zh) 2022-09-21 2022-09-21 一种P-MoO2/P-Fe3O4异质结构纳米带的制备方法及其电催化应用

Publications (1)

Publication Number Publication Date
CN115449840A true CN115449840A (zh) 2022-12-09

Family

ID=84305427

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211152688.6A Pending CN115449840A (zh) 2022-09-21 2022-09-21 一种P-MoO2/P-Fe3O4异质结构纳米带的制备方法及其电催化应用

Country Status (1)

Country Link
CN (1) CN115449840A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115608387A (zh) * 2022-09-21 2023-01-17 青岛科技大学 P-MoO3/P-MoO2/P-Fe3O4异质结构纳米带的制备方法及其光催化应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115608387A (zh) * 2022-09-21 2023-01-17 青岛科技大学 P-MoO3/P-MoO2/P-Fe3O4异质结构纳米带的制备方法及其光催化应用
CN115608387B (zh) * 2022-09-21 2024-03-12 青岛科技大学 P-MoO3/P-MoO2/P-Fe3O4异质结构纳米带的制备方法及其光催化应用

Similar Documents

Publication Publication Date Title
Li et al. Fe-doped CoSe2 nanoparticles encapsulated in N-doped bamboo-like carbon nanotubes as an efficient electrocatalyst for oxygen evolution reaction
He et al. Titanium dioxide encapsulated carbon-nitride nanosheets derived from MXene and melamine-cyanuric acid composite as a multifunctional electrocatalyst for hydrogen and oxygen evolution reaction and oxygen reduction reaction
Wang et al. The application of CeO 2-based materials in electrocatalysis
Peng et al. Strategies to improve cobalt-based electrocatalysts for electrochemical water splitting
Zhang et al. Vertically aligned NiS2/CoS2/MoS2 nanosheet array as an efficient and low-cost electrocatalyst for hydrogen evolution reaction in alkaline media
Cheng et al. Recent progress of Sn‐based derivative catalysts for electrochemical reduction of CO2
Liu et al. Preparation of Pd/MnO2-reduced graphene oxide nanocomposite for methanol electro-oxidation in alkaline media
Yao et al. Interfacial electronic modulation of CoP-CoO pp type heterojunction for enhancing oxygen evolution reaction
Wan et al. Inducing the SnO2-based electron transport layer into NiFe LDH/NF as efficient catalyst for OER and methanol oxidation reaction
Wei et al. Fabrication of Co doped MoS2 nanosheets with enlarged interlayer spacing as efficient and pH-Universal bifunctional electrocatalyst for overall water splitting
Shi et al. Nanoflower-like 1T/2H mixed-phase MoSe2 as an efficient electrocatalyst for hydrogen evolution
Li et al. Rare earth-based nanomaterials in electrocatalysis
Ye et al. Metal oxides heterojunction derived Bi-In hybrid electrocatalyst for robust electroreduction of CO2 to formate
CN114042468B (zh) 一种核壳结构Fe2P@C-Fe3C电催化剂及其制备方法和应用
CN111206271B (zh) 一种自支撑金属掺杂氮化铁电极的制备方法、产品及应用
Bao et al. Electronic and structural engineering of NiCo2O4/Ti electrocatalysts for efficient oxygen evolution reaction
CN113755889B (zh) 一种氮杂多孔碳负载的过渡金属NPs/SAs双活性位型电催化剂及其制备方法和应用
CN111036247A (zh) 一种钴铁氧化物-磷酸钴电催化析氧复合材料及其制备方法和应用
Sha et al. Facile synthesis of three-dimensional platinum nanoflowers on reduced graphene oxide–Tin oxide composite: An ultra-high performance catalyst for methanol electro-oxidation
CN111359647B (zh) 超薄碳层包覆的氮掺杂交联多级孔碳化钼材料及其制备
CN115449840A (zh) 一种P-MoO2/P-Fe3O4异质结构纳米带的制备方法及其电催化应用
Tian et al. Rational construction of core-branch Co3O4@ CoNi-layered double hydroxide nanoarrays as efficient electrocatalysts for oxygen evolution reaction
Ding et al. CeO2 nanoparticles-decorated CoP nanocubes for accelerating alkaline electrocatalytic oxygen evolution reaction
Li et al. Fe7Se8@ Fe2O3 heterostructure nanosheets as bifunctional electrocatalyst for urea electrolysis
Chu et al. Introducing Te for boosting electrocatalytic reactions

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination