CN115448436A - 水处理中应用的多模式智能化除磷剂加药方法及系统 - Google Patents

水处理中应用的多模式智能化除磷剂加药方法及系统 Download PDF

Info

Publication number
CN115448436A
CN115448436A CN202211150911.3A CN202211150911A CN115448436A CN 115448436 A CN115448436 A CN 115448436A CN 202211150911 A CN202211150911 A CN 202211150911A CN 115448436 A CN115448436 A CN 115448436A
Authority
CN
China
Prior art keywords
data
time
pump
medicament
parameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211150911.3A
Other languages
English (en)
Other versions
CN115448436B (zh
Inventor
侯锋
龙卫国
胡晓飞
林健
袁晨
李小波
付能
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SDIC Xinkai Water Environment Investment Co Ltd
Original Assignee
SDIC Xinkai Water Environment Investment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SDIC Xinkai Water Environment Investment Co Ltd filed Critical SDIC Xinkai Water Environment Investment Co Ltd
Priority to CN202211150911.3A priority Critical patent/CN115448436B/zh
Publication of CN115448436A publication Critical patent/CN115448436A/zh
Application granted granted Critical
Publication of CN115448436B publication Critical patent/CN115448436B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/105Phosphorus compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/18PO4-P
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/40Liquid flow rate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/42Liquid level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Control Of Non-Electrical Variables (AREA)

Abstract

本发明提供一种水处理中应用的多模式智能化除磷剂加药方法及系统,包括:对水处理厂的相关数据进行采集、筛选和分析,生成投配浓度参数;间隔一段时间计算一次药剂流量给定数据并驱动泵根据流量情况选择合适模式运行;通过实时读取药剂流量数据得出每台泵的实时泵送能力参数,该参数参与流量控制;实时对参数进行监控,数值异常则自动切换设备并报警;采用电磁阀根据实际工艺需求,均分加药时间,对多个加药点轮流加药,实现平均分配;采集储药罐液位计数据并分析和记录,核算添加药剂量、每天使用药剂量、剩余药剂量并生成记录,系统每分钟对出水流量采集并累加,计算每天的处理水量及准确药剂单耗。本发明能实现水处理中除磷剂的精确投加控制。

Description

水处理中应用的多模式智能化除磷剂加药方法及系统
技术领域
本发明涉及水处理技术领域,具体地,涉及水处理中除磷剂的精确投加控制,尤其涉及一种水处理中应用的多模式智能化除磷剂加药方法及系统。
背景技术
现有除磷剂投加一般采用定药剂流量投加,通过控制计量泵或其他容积泵的频率来调整药剂流量到目标值,存在以下缺陷:
1、在实际生产过程中,随着处理水量、水质的变化,需人工频繁调节加药流量;
2、计量泵或其他容积泵低于一定频率后无法正常工作,通常变频可调区间在15Hz-50Hz,导致加药泵流量可调节范围较小;
3、人工调整药剂流量比较滞后,造成出水波动较大和一定程度的药剂浪费;
4、一个出药口实现多点加药时,容易出现分配不均现象,造成药剂浪费,还可能导致出水总磷异常;
5、需人工实时监控泵的流量、储罐液位、设备工作状况等,根据出水凭经验做出调整,出现异常需人工切换处理,工作量大且控制效果不理想。
发明内容
针对现有技术中的缺陷,本发明提供一种水处理中应用的多模式智能化除磷剂加药方法及系统。
根据本发明提供的一种水处理中应用的多模式智能化除磷剂加药方法及系统,所述方案如下:
第一方面,提供了一种水处理中应用的多模式智能化除磷剂加药方法,所述方法包括:
步骤S1:对水处理厂的出水流量、出水总磷、除磷单元前端磷酸盐、储罐液位、药剂实时流量、历史投配浓度参数在内的相关数据进行采集、筛选和分析;数据采集后,选择前馈+后馈控制模式或后馈控制模式,自动生成投配浓度参数;
步骤S2:根据生成的投配浓度参数、实时出水水量、药剂密度参数、泵送能力参数,间隔一段时间计算一次药剂流量给定数据,并驱动泵根据流量情况选择合适的模式运行;
步骤S3:通过实时读取药剂流量数据,并分析计算得出每台泵的实时泵送能力参数,该参数参与流量控制;实时对该参数进行监控,数值异常则自动切换设备并报警;
步骤S4:采用电磁阀根据实际工艺需求,均分加药时间,对多个加药点轮流加药,实现等平均分配;
步骤S5:采集储药罐液位计数据并进行分析和记录,核算添加药剂量、每天使用药剂量、剩余药剂量并生成记录,系统每分钟对出水流量采集并累加,计算每天处理水量,计算每天的准确药剂单耗。
优选地,所述步骤S1中:数据采集时,系统自动进行数据筛选、对数据进行有效性分析,排除异常大值、异常小值、波动异常值、瞬时波动值、相关性不合理值后,参与后续计算并存储在历史寄存器;
同时,用户自行选择是否接入磷酸盐仪数据;若接入磷酸盐仪数据,在出水总磷在线监测分析时,同步采样出水进行磷酸盐分析,其余时段磷酸盐仪定时分析除磷单元进水水质。
优选地,所述步骤S1还包括:
当选择后馈模式时,总磷发生变化时系统将总磷和目标设置值进行比较,根据计算出的上升斜率参数和下降斜率参数,计算出投配浓度;上升斜率参数和下降斜率参数根据历史两次总磷、投配浓度数据自动计算生成,若没有历史值,则为初始值;该两次历史数据均需满足
Figure BDA0003857129420000021
其计算过程如下:
Figure BDA0003857129420000022
当TP-TP2<0.05时:
Figure BDA0003857129420000023
当TP-TP2≥0.05时:
Figure BDA0003857129420000024
其中S1:计算的上升斜率参数;上升斜率需根据实际情况设置上下限制;
S2:计算的下降斜率参数;下降斜率需根据实际情况设置上下限制;
PPM1:历史投配浓度1;
PPM2:历史投配浓度2;
TP1:历史总磷1;
TP2:历史总磷2;
TP:目标总磷参数;
K1:下降系数,取值小于1,典型值0.5;
当选择前馈+后馈模式时,记录最近8组满足总磷实时值和目标值偏差在±0.05mg/L范围内的投配浓度数据及磷酸盐削减值数据,并进行多项式曲线拟合;生成生产过程中的药剂特性曲线;当曲线生成且曲线回归值R2≥0.95时,投配浓度根据所需磷酸盐削减量代入曲线计算得出;当不满足上述条件时,按后馈模式计算投配浓度。
优选地,所述步骤S2还包括:当计算出的投配浓度小于基础加药量时,将基础加药量数据传送给投配浓度参数参与控制计算;可编程控制器根据药剂流量数据,自动选择泵的工作模式;泵具有三种工作模式:单泵间歇投加模式、单泵调频投加模式和多泵调频投加模式;
所述选择泵的工作模式包括:
1)当药剂流量给定数据小于设定泵送能力的0.4倍时,采用单泵间歇投加模式;
2)当药剂流量给定数据大于等于设定泵送能力的0.4倍且小于0.8倍时,采用单泵调频投加模式;
3)当药剂流量给定数据大于等于设定泵送能力的0.8倍小于1.6倍时,采用双泵调频投加模式;当药剂流量给定大于等于1.6倍,小于2.4倍时采用三泵调频投加模式;依此类推。
优选地,所述步骤S3中计算每台泵的实时泵送能力参数:
Figure BDA0003857129420000031
其中,Q3表示容积泵的泵送能力参数;HZ表示频率;Q4表示当前筛选出的有效流量;
当单个实时泵送能力参数小于设置泵送能力参数0.8倍或者大于1.2倍,系统判定泵流量异常,报警并停止该泵自动运行;间歇模式泵每固定时间的运行时间通过药剂流量及实时泵送能力参数计算得出,固定以20HZ运行;单台或多台连续运行时通过药剂流量给定数据及泵的实时泵送能力参数计算得出泵的运行频率;多台泵同时工作时,实时泵送能力参数根据历史参数比例划分到每台泵;
当两台泵运行时,的泵送能力参数之和小于设定泵送能力的1.6倍或大于2.4倍,当3台泵运行时,泵送能力参数之和小于设定泵送能力的2.4倍或大于3.6倍,以此类推,系统将自动短时依次对泵单独全频运行,找出实时泵送能力不足的泵,自动切换泵送能力异常设备并报警。
优选地,所述步骤S4中为保证单泵间歇投加模式运行时也能平均分配,每个通道打开时长计算公式如下:
Figure BDA0003857129420000041
该平均分配功能在系统中能设置打开或关闭。
优选地,所述步骤S5还包括:根据每天出水水量及消耗药剂量自动生成当天实际药剂单耗记录;系统自动识别储药罐添加药剂的行为,每5分钟记录一次历史液位数据,发现液位增长,将原始液位值进行储存并监控现行液位变化,在两个周期采样对比下液位不再明显增长时,实时液位数据、历史液位数据、药剂密度及期间加药流量数据计算出储药罐增加的药量,并自动生成记录;液位计每秒读数一次,连续5次,误差均不超过0.5cm,认为是有效数据,系统读取到有效液位,将读数平均值作为当前液位输出和记录。
第二方面,提供了一种水处理中应用的多模式智能化除磷剂加药系统,所述系统包括:
模块M1:对水处理厂的出水流量、出水总磷、除磷单元前端磷酸盐、储罐液位、药剂实时流量在内的相关数据进行采集、筛选和分析;数据采集后,选择前馈+后馈控制模式或后馈控制模式,自动生成投配浓度参数、实时出水水量和药剂密度参数;
模块M2:根据生成的投配浓度参数、实时出水水量、药剂密度参数、泵送能力参数,间隔一段时间计算一次药剂流量给定数据,并驱动泵根据流量情况选择合适的模式运行;
模块M3:通过实时读取药剂流量数据,并分析计算得出每台泵的实时泵送能力参数;该参数参与流量控制;实时对该参数进行监控,数值异常则自动切换设备并报警;
模块M4:得出每台泵的实时泵送能力参数后,采用电磁阀根据实际工艺需求,均分加药时间,对多个加药点轮流加药,实现等平均分配;
模块M5:采集储药罐液位计数据并进行分析和记录,核算添加药剂量、每天使用药剂量、剩余药剂量并生成记录,系统每分钟对出水流量采集并累加,计算每天处理水量,计算每天的准确药剂单耗。
优选地,所述模块M1中:数据采集时,系统自动进行数据筛选、对数据进行有效性分析,排除异常大值、异常小值、波动异常值、瞬时波动值、相关性不合理值后,参与后续计算并存储在历史寄存器;
同时,用户自行选择是否接入磷酸盐仪数据;若接入磷酸盐仪数据,在出水总磷在线监测分析时,同步采样出水进行磷酸盐分析,其余时段磷酸盐仪定时分析除磷单元进水水质;
所述模块M1还包括:
当选择后馈模式时,总磷发生变化时系统将总磷和目标设置值进行比较,根据计算出的上升斜率参数和下降斜率参数,计算出投配浓度;上升斜率参数和下降斜率参数根据历史两次总磷、投配浓度数据自动计算生成,若没有历史值,则为初始值;该两次历史数据均需满足
Figure BDA0003857129420000051
其计算过程如下:
Figure BDA0003857129420000052
当TP-TP2<0.05时:
Figure BDA0003857129420000053
当TP-TP2≥0.05时:
Figure BDA0003857129420000054
其中S1:计算的上升斜率参数;上升斜率需根据实际情况设置上下限制;
S2:计算的下降斜率参数;下降斜率需根据实际情况设置上下限制;
PPM1:历史投配浓度1;
PPM2:历史投配浓度2;
TP1:历史总磷1;
TP2:历史总磷2;
TP:目标总磷参数;
K1:下降系数,取值小于1,典型值0.5;
当选择前馈+后馈模式时,记录最近8组满足总磷实时值和目标值偏差在±0.05mg/L范围内的投配浓度数据及磷酸盐削减值数据,并进行多项式曲线拟合;生成生产过程中的药剂特性曲线;当曲线生成且曲线回归值R2≥0.95时,投配浓度根据所需磷酸盐削减量代入曲线计算得出;当不满足上述条件时,按后馈模式计算投配浓度。
优选地,所述模块M2还包括:当计算出的投配浓度小于基础加药量时,将基础加药量数据传送给投配浓度参数参与控制计算;可编程控制器根据药剂流量数据,自动选择泵的工作模式;泵具有三种工作模式:单泵间歇投加模式、单泵调频投加模式和多泵调频投加模式;
所述选择泵的工作模式包括:
1)当药剂流量给定数据小于设定泵送能力的0.4倍时,采用单泵间歇投加模式;
2)当药剂流量给定数据大于等于设定泵送能力的0.4倍且小于0.8倍时,采用单泵调频投加模式;
3)当药剂流量给定数据大于等于设定泵送能力的0.8倍小于1.6倍时,采用双泵调频投加模式;当药剂流量给定大于等于1.6倍,小于2.4倍时采用三泵调频投加模式;依此类推;
所述模块M3中计算每台泵的实时泵送能力参数:
Figure BDA0003857129420000061
其中,Q3表示容积泵的泵送能力参数;HZ表示频率;Q4表示当前筛选出的有效流量;
当单个实时泵送能力参数小于设置泵送能力参数0.8倍或者大于1.2倍,系统判定泵流量异常,报警并停止该泵自动运行;间歇模式泵每固定时间的运行时间通过药剂流量及实时泵送能力参数计算得出,固定以20HZ运行;单台或多台连续运行时通过药剂流量给定数据及泵的实时泵送能力参数计算得出泵的运行频率;多台泵同时工作时,实时泵送能力参数根据历史参数比例划分到每台泵;
当两台泵运行时,的泵送能力参数之和小于设定泵送能力的1.6倍或大于2.4倍,当3台泵运行时,泵送能力参数之和小于设定泵送能力的2.4倍或大于3.6倍,以此类推,系统将自动短时依次对泵单独全频运行,找出实时泵送能力不足的泵,自动切换泵送能力异常设备并报警。
所述模块M4中为保证单泵间歇投加模式运行时也能平均分配,每个通道打开时长计算公式如下:
Figure BDA0003857129420000062
该平均分配功能在系统中能设置打开或关闭;
所述模块M5还包括:根据每天出水水量及消耗药剂量自动生成当天实际药剂单耗记录;系统自动识别储药罐添加药剂的行为,每5分钟记录一次历史液位数据,发现液位增长,将原始液位值进行储存并监控现行液位变化,在两个周期采样对比下液位不再明显增长时,实时液位数据、历史液位数据、药剂密度及期间加药流量数据计算出储药罐增加的药量,并自动生成记录;液位计每秒读数一次,连续5次,误差均不超过0.5cm,认为是有效数据,系统读取到有效液位,将读数平均值作为当前液位输出和记录。
与现有技术相比,本发明具有如下的有益效果:
1、节约药剂:
目前,本发明系统在后馈控制模式下,采用间歇工作方式,同期对比下,药剂使用量约节约50%。若采用前馈+后馈控制模式,通过对除磷单元后端磷酸盐的分析,实现精准控制,将会进一步提升药剂节约空间。在达标的基础上,通过电磁阀对多个加药点精准分配,避免了多余药剂浪费,降低成本。
2、操作简单提高生产稳定性和控制精度:
本发明操作简单,仅通过设置参数给定目标值,实现精准控制。和传统加药系统相比,无需进行频繁操作,由于磷酸盐前馈的引入或总磷在线监测后馈的引入,使其控制稳定性和控制精度也要远远优于传统加药系统。
3、扩宽了计量泵或其他容积泵的流量控制区间:
间歇模式的引入,大大扩宽了计量泵或其他容积泵的流量控制区间。传统加药往往是在额定流量的70%之间控制,在除磷单元前端总磷浓度低的时候,即使低频率运行,仍然造成药剂浪费。在低频率运行下,引入间歇加药,有效节约药剂,使其流量控制区间可增加到90%以上。
4、减小了对流量计的依赖:
本发明可选择断开泵送能力参数在线监控制,只需要手动调节计量泵行程或其他可机械调节容积泵和设置的初始泵送能力参数一致,即可相对准确的进行加药控制。
5、减小人工劳动强度:
无论操作的简单性,还是自动统计功能的引入,还是故障连锁的引入,均大大降低了人的干预程度,减小了人工劳动强度,提高了工作效效率。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1为本发明步骤示意图;
图2本发明流程框图;
图3为本发明系统安装图;
图4为总磷在线监测设备和磷酸盐仪分布图;
图5为数据写入EXCEL;
图6为曲线拟合生成的曲线方程式。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变化和改进。这些都属于本发明的保护范围。
本发明实施例提供了一种水处理中应用的多模式智能化除磷剂加药方法,参照图1和图2所示,该方法包括:
步骤S1:对水处理厂的出水流量、出水总磷、除磷单元前端磷酸盐、储罐液位、药剂实时流量、历史投配浓度参数在内的相关数据进行采集、筛选和分析;数据采集后,选择前馈+后馈控制模式或后馈控制模式,自动生成投配浓度参数。
当选择“后馈”模式时,总磷发生变化时系统将总磷和目标设置值进行比较,根据计算出的上升斜率参数和下降斜率参数,计算出投配浓度;上升斜率参数和下降斜率参数根据历史两次总磷、投配浓度数据自动计算生成,如没有历史值,为初始值。该两次历史数据需满足
Figure BDA0003857129420000081
小于0。
其计算过程如下:
Figure BDA0003857129420000082
当TP-TP2<0.05时:
Figure BDA0003857129420000083
当TP-TP2≥0.05时:
Figure BDA0003857129420000091
其中S1:计算的上升斜率参数;上升斜率需根据实际情况设置上下限制;
S2:计算的下降斜率参数;下降斜率需根据实际情况设置上下限制;
PPM1:历史投配浓度1;
PPM2:历史投配浓度2;
TP1:历史总磷1;
TP2:历史总磷2;
TP:目标总磷参数;
K1:下降系数,取值小于1,典型值0.5。
当选择“前馈+后馈”模式时,记录最近8组满足总磷实时值和目标值偏差在±0.05mg/L范围内的投配浓度数据及磷酸盐削减值数据,并进行多项式曲线拟合。生成生产过程中的药剂特性曲线。当曲线生成且曲线回归值R2≥0.95时,投配浓度根据所需磷酸盐削减量代入曲线计算得出。当不满足上述条件时,按“后馈”模式计算投配浓度。
步骤S2:根据生成的投配浓度参数、实时出水水量、药剂密度参数、泵送能力参数,间隔一段时间计算一次药剂流量给定数据,并驱动泵根据流量情况选择合适的模式运行。
当计算出的投配浓度小于基础加药量时,将基础加药量数据传送给投配浓度参数参与控制计算;可编程控制器根据药剂流量数据,自动选择泵的工作模式;泵具有三种工作模式:单泵间歇投加模式、单泵调频投加模式和多泵调频投加模式。
选择泵的工作模式包括:
1)当药剂流量给定数据小于设定泵送能力的0.4倍时,采用单泵间歇投加模式;
2)当药剂流量给定数据大于等于设定泵送能力的0.4倍且小于0.8倍时,采用单泵调频投加模式;
3)当药剂流量给定数据大于等于设定泵送能力的0.8倍小于1.6倍时,采用双泵调频投加模式;当药剂流量给定大于等于1.6倍,小于2.4倍时采用三泵调频投加模式;依此类推。
步骤S3:通过实时读取药剂流量数据,并分析计算得出每台泵的实时泵送能力参数,该参数参与流量控制;实时对该参数进行监控,数值异常则自动切换设备并报警。
计算每台泵的实时泵送能力参数:
Figure BDA0003857129420000101
其中,Q3表示容积泵的泵送能力参数;HZ表示频率;Q4表示当前筛选出的有效流量;
当单个实时泵送能力参数小于设置泵送能力参数0.8倍或者大于1.2倍,系统判定泵流量异常,报警并停止该泵自动运行;间歇模式泵每固定时间(典型时间为120S)的运行时间通过药剂流量及实时泵送能力参数计算得出,固定以20HZ运行;单台或多台连续运行时通过药剂流量给定数据及泵的实时泵送能力参数计算得出泵的运行频率;多台泵同时工作时,实时泵送能力参数根据历史参数比例划分到每台泵。当2台泵运行时,的泵送能力参数之和小于设定泵送能力的1.6倍或大于2.4倍,当3台泵运行时,的泵送能力参数之和小于设定泵送能力的2.4倍或大于3.6倍,以此类推,系统将自动短时依次对泵单独全频运行,找出实时泵送能力不足的泵,自动切换泵送能力异常设备并报警。
步骤S4:采用电磁阀根据实际工艺需求,均分加药时间,对多个加药点轮流加药,实现等平均分配。为保证单泵间歇投加模式运行时也能平均分配,每个通道打开时长计算公式如下:
Figure BDA0003857129420000102
该平均分配功能在系统中能设置打开或关闭。
步骤S5:采集储药罐液位计数据并进行分析和记录,核算添加药剂量、每天使用药剂量、剩余药剂量并生成记录,系统每分钟对出水流量采集并累加,计算每天处理水量,计算每天的准确药剂单耗。
该步骤具体包括:根据每天出水水量及消耗药剂量自动生成当天实际药剂单耗记录;系统自动识别储药罐添加药剂的行为,每5分钟记录一次历史液位数据,发现液位增长,将原始液位值进行储存并监控现行液位变化,在两个周期采样对比下液位不再明显增长时,实时液位数据、历史液位数据、药剂密度及期间加药流量数据计算出储药罐增加的药量,并自动生成记录;液位计每秒读数一次,连续5次,误差均不超过0.5cm,认为是有效数据,系统读取到有效液位,将读数平均值作为当前液位输出和记录。
具体地,以下对各步骤展开进行详细描述:
一、本申请采用可编程控制器、嵌入式控制器或上位机对水处理厂的出水流量、出水总磷、除磷单元前端磷酸盐(用户自选)、储罐液位、药剂实时流量等数据进行采集、筛选和分析,控制变频器拖动计量泵或其他容积泵工作,从而实现精确加药控制。数据采集时,系统会自动进行数据筛选、对数据进行有效性分析,排除异常大值、异常小值、波动异常值、瞬时波动值、相关性不合理值后,参与后续计算并存储在历史寄存器;同时用户可自行选择是否接入磷酸盐仪数据,若接入磷酸盐仪数据,在出水总磷在线监测分析时,同步采样出水进行磷酸盐分析,其余时段磷酸盐仪定时分析除磷单元进水水质。数据采集后,用户可根据自身实际情况手动选择“前馈+后馈控制”模式、“后馈”控制模式两种模式。其控制方法如下:
1、前馈+后馈控制模式:
当曲线拟合数据组不全,或者曲线回归值R2较小(<0.95),出水总磷有效值数据发生变化时,系统根据上次投配浓度或初始人工设定投配浓度:
Figure BDA0003857129420000111
出水总磷有效值和设定出水总磷目标值偏差大小,按计算公式增加或减小投配浓度参数。让出水总磷逼近设定值。
当曲线拟合有效数据收集完成,生成曲线回归值R2≥0.95时,除磷单元前端磷酸盐发生变化时,系统根据记录的出水组份参数计算得出出水总磷数据;无论计算得出的出水总磷数据还是实时分析的出水总磷数据均存放在同一寄存器中,此寄存器数据变化时,系统自动根据历史数据和最新数据进行曲线拟合,根据曲线拟合出的曲线公式计算得出投配浓度控制加药。
当根据组份的计算出水总磷或出水总磷实时值和目标值偏差在±0.05mg/L范围内,且除磷单元前端前一次磷酸盐值和实时分析值偏差在±0.05范围内时,上一次投配浓度和磷酸盐削减值的有效数据存入曲线拟合数组当中。可编程控制器实时将曲线拟合数组传送至嵌入式控制器或者上位机进行曲线拟合,完成曲线拟合后将回归值及曲线公式系数传可编程控制器,参与运算。其曲线拟合采用一元三次方程进行,其中:
正磷酸盐削减值(mg/L)=除磷单元前端正磷酸盐(mg/L)-除磷单元后端正磷酸盐(mg/L)
上述公式除磷单元后端磷酸盐通过实时分析和组份计算得出。
当出水总磷在线监测和磷酸盐仪分析出水得出的数据生成时,可编程控制器根据比例实时确定组份系数。
2、后馈控制模式:
考虑到成本投入,项目只安装有出水总磷在线监测仪,可选择后馈控制模式。其控制方法为当出水总磷有效值数据发生变化时,系统根据上次投配浓度或初始人工设定投配浓度:
Figure BDA0003857129420000121
出水总磷有效值和设定出水总磷目标值偏差大小,按计算公式增加或减小投配浓度参数。让出水总磷逼近设定值。
二、根据自动生成的投配浓度参数、实时出水水量和药剂密度参数,每5分钟计算一次药剂流量给定数据。系统引入基础加药量的概念,避免过小的投配浓度引起水质SS和色度不稳定。当计算出的投配浓度小于基础加药量时,将基础加药量数据传送给投配浓度参数参与控制计算。可编程控制器根据药剂流量数据,自动选择泵的工作模式。泵具有三种工作模式:单泵间歇投加模式、单泵调频投加模式和多泵调频投加模式。详细如下:
1)当药剂流量给定数据小于设定泵送能力的0.4倍时,采用间歇加药模式(单泵间歇投加模式)。间歇加药模式频率固定为20HZ,根据泵的实时标定参数确定每120秒的运行时间和停止时间,为避免频繁启停,当运行时间小于20秒时,运行20秒,当停止时间小于20秒时,连续运行,不再停止。
2)当药剂流量给定数据大于等于设定泵送能力的0.4倍且小于0.8倍时,采用单泵调频连续加药(单泵调频投加模式);
3)当药剂流量给定数据大于等于设定泵送能力的0.8倍小于1.6倍时,采用双泵调频连续加药;当药剂流量给定大于等于1.6倍,小于2.4倍时采用三泵调频连续加药;依此类推(多泵调频投加模式)。
三、通过实时读取稳定的药剂流量数据并进行分析计算得出每台泵的实时泵送能力参数,代替人为调整,避免药剂浪费。具体计算方式如下:
Figure BDA0003857129420000122
其中,Q3表示泵送能力参数(单位升/h);HZ表示频率(单位HZ);Q4表示当前筛选出的有效流量(单位:升/h)。
上述泵的运行时间(单泵间歇投加模式)以及泵的频率(单泵调频投加模式和多泵调频投加模式)均通过药剂流量给定数据及泵的实时泵送能力参数计算得出。多台泵同时工作时,实时泵送能力参根据历史参数比例划分到每台泵。
注:此项功能可在系统中设置打开或关闭,在关闭时,设定泵送能力参数等于实时泵送能力参数并参与计算。
四、采用电磁阀(如一进二出、一进三出等)根据实际工艺需求,均分加药时间,对多个加药点轮流加药,实现等平均分配。考虑到间歇加药模式周期长度为120秒,为保证间歇运行时也能平均分配,每个通道打开时长计算公式如下:
Figure BDA0003857129420000131
如此,无论是间歇加药还是连续加药,均能进行平均分配。
注:此项功能可在系统中设置打开或关闭。
五、自动采集储药罐液位计数据并进行记录,核算每天用量、剩余药剂量并生成记录方便查看;系统每分钟对出水流量采集并累加,自动计算每天处理水量。根据每天出水水量及消耗药剂量自动生成当天实际药剂单耗记录。系统可自动识别储药罐添加药剂的行为,每5分钟记录一次历史液位数据,发现液位增长,将原始液位值进行储存并监控现行液位变化,在两个周期采样对比下液位不再明显增长时,实时液位数据、历史液位数据、药剂密度及期间加药流量数据计算出储药罐增加的药量,并自动生成记录。系统为避免采样波动,读取到有效液位,液位计每秒读数一次,连续5次,误差均不超过0.5cm,认为是有效数据,将读数平均值作为当前液位输出和记录。
接下来,对本发明进行更为具体的说明。
1、参照图3所示,本发明系统的安装形式如下:
本发明中的系统构成包括:药剂储罐①,超声波液位计②,手动阀门③,机械隔膜泵④,止回阀⑤,防震动阻尼器⑥,背压阀⑦,微小齿轮流量计⑧和分配电磁阀⑨。
本发明总磷在线监测设备和磷酸盐仪分布如图4所示,在除磷处理单元尾端
Figure BDA0003857129420000132
总磷在线监测仪
Figure BDA0003857129420000133
自吸泵
Figure BDA0003857129420000134
采水分析时,电磁阀
Figure BDA0003857129420000135
关闭除磷处理单元前端
Figure BDA0003857129420000136
侧,打开除磷处理单元尾端
Figure BDA0003857129420000137
侧,磷酸盐仪⑩及总磷在线监测仪
Figure BDA0003857129420000138
同时对除磷处理单元尾端
Figure BDA0003857129420000139
水质进行分析。上述步骤完成后其余时间电磁阀
Figure BDA00038571294200001310
打开除磷处理单元前端
Figure BDA00038571294200001311
侧,关闭除磷处理单元尾端
Figure BDA00038571294200001312
侧,对除磷处理单元前端
Figure BDA00038571294200001313
水质进行分析。
2、所有数据有效性筛选:
如磷酸盐数据筛选(附图2):有效性筛选对异常大值,异常小值,异常波动值进行筛选,且保持一定稳定时间(一般超过100ms),若总磷在线监测同步采样,两者需进行对比,磷酸盐数据小于等于总磷的数据才是有效数据,以上条件都满足,才存入相应有效数据的寄存器中,参与运算。在完成所有程序动作后,将当前有效数据值存入历史有效数据备用。
3、在线曲线拟合方式说明:
如图5和图6所示,上位机读取数据后可写入EXCEL等软件,通过EXCEL软件自动进行曲线拟合,生成曲线方程式,再通过OPC读取EXCEL表格中的方程系数,并传输至可编程控制器实现联合控制。当曲线拟合R2≥0.95时,需用投配浓度参数(投加量ppm)根据多项式系数进行计算得出。具体计算方法如下:
y=ax3+bx2+cx+d
其中,y代表药剂投配浓度(单位mg/L);x代表磷酸盐去除量(磷酸盐削减量)(单位mg/L)。
根据历史有效数据进行曲线拟合,系数a、b、c、d为已知,x为除磷处理单元前端
Figure BDA0003857129420000141
和除磷处理单元尾端
Figure BDA0003857129420000142
差值。
现在x已经通过计算得出,a、b、c、d根据曲线拟合已知,可以计算出y值,得到需要的药剂投配浓度。
本发明实施例提供了一种水处理中应用的多模式智能化除磷剂加药方法及系统,在出水水量、水质变化时,无需人工调整,加药系统自动调整;引入间歇加药模式,扩宽计量泵或容积泵的流量控制区间,使其满足实际生产需求;解决药剂调整滞后的问题,实现精确加药,增加出水稳定性,减小药剂浪费;解决一个出药口多点加药时,分配不均的问题,实现精确比例分配;完善加药控制系统功能,实现设备故障报警和自动切换、流量异常报警和自动切换、投加量数据、增补药剂数据自动生成记录,减小人工劳动强度。
本领域技术人员知道,除了以纯计算机可读程序代码方式实现本发明提供的系统及其各个装置、模块、单元以外,完全可以通过将方法步骤进行逻辑编程来使得本发明提供的系统及其各个装置、模块、单元以逻辑门、开关、专用集成电路、可编程逻辑控制器以及嵌入式微控制器等的形式来实现相同功能。所以,本发明提供的系统及其各项装置、模块、单元可以被认为是一种硬件部件,而对其内包括的用于实现各种功能的装置、模块、单元也可以视为硬件部件内的结构;也可以将用于实现各种功能的装置、模块、单元视为既可以是实现方法的软件模块又可以是硬件部件内的结构。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变化或修改,这并不影响本发明的实质内容。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。

Claims (10)

1.一种水处理中应用的多模式智能化除磷剂加药方法,其特征在于,包括:
步骤S1:对水处理厂的出水流量、出水总磷、除磷单元前端磷酸盐、储罐液位、药剂实时流量、历史投配浓度参数在内的相关数据进行采集、筛选和分析;数据采集后,选择前馈+后馈控制模式或后馈控制模式,自动生成投配浓度参数;
步骤S2:根据生成的投配浓度参数、实时出水水量、药剂密度参数、泵送能力参数,间隔一段时间计算一次药剂流量给定数据,并驱动泵根据流量情况选择合适的模式运行;
步骤S3:通过实时读取药剂流量数据,并分析计算得出每台泵的实时泵送能力参数,该参数参与流量控制;实时对该参数进行监控,数值异常则自动切换设备并报警;
步骤S4:采用电磁阀根据实际工艺需求,均分加药时间,对多个加药点轮流加药,实现等平均分配;
步骤S5:采集储药罐液位计数据并进行分析和记录,核算添加药剂量、每天使用药剂量、剩余药剂量并生成记录,系统每分钟对出水流量采集并累加,计算每天处理水量,计算每天的准确药剂单耗。
2.根据权利要求1所述的水处理中应用的多模式智能化除磷剂加药方法,其特征在于,所述步骤S1中:数据采集时,系统自动进行数据筛选、对数据进行有效性分析,排除异常大值、异常小值、波动异常值、瞬时波动值、相关性不合理值后,参与后续计算并存储在历史寄存器;
同时,用户自行选择是否接入磷酸盐仪数据;若接入酸盐仪数据,在出水总磷在线监测分析时,同步采样出水进行磷酸盐分析,其余时段磷酸盐仪定时分析除磷单元进水水质。
3.根据权利要求1所述的水处理中应用的多模式智能化除磷剂加药方法,其特征在于,所述步骤S1还包括:
当选择后馈模式时,总磷发生变化时系统将总磷和目标设置值进行比较,根据计算出的上升斜率参数和下降斜率参数,计算出投配浓度;上升斜率参数和下降斜率参数根据历史两次总磷、投配浓度数据自动计算生成,若没有历史值,则为初始值;该两次历史数据均需满足
Figure FDA0003857129410000011
其计算过程如下:
Figure FDA0003857129410000021
当TP-TP2<0.05时:
Figure FDA0003857129410000022
当TP-TP2≥0.05时:
Figure FDA0003857129410000023
其中:S1:计算的上升斜率参数;上升斜率需根据实际情况设置上下限制;
S2:计算的下降斜率参数;下降斜率需根据实际情况设置上下限制;
PPM1:历史投配浓度1;
PPM2:历史投配浓度2;
TP1:历史总磷1;
TP2:历史总磷2;
TP:目标总磷参数;
K1:下降系数,取值小于1,典型值0.5;
当选择前馈+后馈模式时,记录最近8组满足总磷实时值和目标值偏差在±0.05mg/L范围内的投配浓度数据及磷酸盐削减值数据,并进行多项式曲线拟合;生成生产过程中的药剂特性曲线;当曲线生成且曲线回归值R2≥0.95时,投配浓度根据所需磷酸盐削减量代入曲线计算得出;当不满足上述条件时,按后馈模式计算投配浓度。
4.根据权利要求1所述的水处理中应用的多模式智能化除磷剂加药方法,其特征在于,所述步骤S2还包括:当计算出的投配浓度小于基础加药量时,将基础加药量数据传送给投配浓度参数参与控制计算;可编程控制器根据药剂流量数据,自动选择泵的工作模式;泵具有三种工作模式:单泵间歇投加模式、单泵调频投加模式和多泵调频投加模式;
所述选择泵的工作模式包括:
1)当药剂流量给定数据小于设定泵送能力的0.4倍时,采用单泵间歇投加模式;
2)当药剂流量给定数据大于等于设定泵送能力的0.4倍且小于0.8倍时,采用单泵调频投加模式;
3)当药剂流量给定数据大于等于设定泵送能力的0.8倍小于1.6倍时,采用双泵调频投加模式;当药剂流量给定大于等于1.6倍,小于2.4倍时采用三泵调频投加模式;依此类推。
5.根据权利要求1所述的水处理中应用的多模式智能化除磷剂加药方法,其特征在于,所述步骤S3中计算每台泵的实时泵送能力参数:
Figure FDA0003857129410000031
其中,Q3表示容积泵的泵送能力参数;HZ表示频率;Q4表示当前筛选出的有效流量;
当单个实时泵送能力参数小于设置泵送能力参数0.8倍或者大于1.2倍,系统判定泵流量异常,报警并停止该泵自动运行;间歇模式泵每固定时间的运行时间通过药剂流量及实时泵送能力参数计算得出,固定以20HZ运行;单台或多台连续运行时通过药剂流量给定数据及泵的实时泵送能力参数计算得出泵的运行频率;多台泵同时工作时,实时泵送能力参数根据历史参数比例划分到每台泵;
当两台泵运行时,的泵送能力参数之和小于设定泵送能力的1.6倍或大于2.4倍,当3台泵运行时,泵送能力参数之和小于设定泵送能力的2.4倍或大于3.6倍,以此类推,系统将自动短时依次对泵单独全频运行,找出实时泵送能力不足的泵,自动切换泵送能力异常设备并报警。
6.根据权利要求1所述的水处理中应用的多模式智能化除磷剂加药方法,其特征在于,所述步骤S4中为保证单泵间歇投加模式运行时也能平均分配,每个通道打开时长计算公式如下:
Figure FDA0003857129410000032
该平均分配功能在系统中能设置打开或关闭。
7.根据权利要求1所述的水处理中应用的多模式智能化除磷剂加药方法,其特征在于,所述步骤S5还包括:根据每天出水水量及消耗药剂量自动生成当天实际药剂单耗记录;系统自动识别储药罐添加药剂的行为,每5分钟记录一次历史液位数据,发现液位增长,将原始液位值进行储存并监控现行液位变化,在两个周期采样对比下液位不再明显增长时,实时液位数据、历史液位数据、药剂密度及期间加药流量数据计算出储药罐增加的药量,并自动生成记录;液位计每秒读数一次,连续5次,误差均不超过0.5cm,认为是有效数据,系统读取到有效液位,将读数平均值作为当前液位输出和记录。
8.一种水处理中应用的多模式智能化除磷剂加药系统,其特征在于,包括:
模块M1:对水处理厂的出水流量、出水总磷、除磷单元前端磷酸盐、储罐液位、药剂实时流量在内的相关数据进行采集、筛选和分析;数据采集后,选择前馈+后馈控制模式或后馈控制模式,自动生成投配浓度参数、实时出水水量和药剂密度参数;
模块M2:根据生成的投配浓度参数、实时出水水量、药剂密度参数、泵送能力参数,间隔一段时间计算一次药剂流量给定数据,并驱动泵根据流量情况选择合适的模式运行;
模块M3:通过实时读取药剂流量数据,并分析计算得出每台泵的实时泵送能力参数;该参数参与流量控制;实时对该参数进行监控,数值异常则自动切换设备并报警;
模块M4:得出每台泵的实时泵送能力参数后,采用电磁阀根据实际工艺需求,均分加药时间,对多个加药点轮流加药,实现等平均分配;
模块M5:采集储药罐液位计数据并进行分析和记录,核算添加药剂量、每天使用药剂量、剩余药剂量并生成记录,系统每分钟对出水流量采集并累加,计算每天处理水量,计算每天的准确药剂单耗。
9.根据权利要求8所述的水处理中应用的多模式智能化除磷剂加药系统,其特征在于,所述模块M1中:数据采集时,系统自动进行数据筛选、对数据进行有效性分析,排除异常大值、异常小值、波动异常值、瞬时波动值、相关性不合理值后,参与后续计算并存储在历史寄存器;
同时,用户自行选择是否接入磷酸盐仪数据;若接入磷酸盐仪数据,在出水总磷在线监测分析时,同步采样出水进行磷酸盐分析,其余时段磷酸盐仪定时分析除磷单元进水水质;
所述模块M1还包括:
当选择后馈模式时,总磷发生变化时系统将总磷和目标设置值进行比较,根据计算出的上升斜率参数和下降斜率参数,计算出投配浓度;上升斜率参数和下降斜率参数根据历史两次总磷、投配浓度数据自动计算生成,若没有历史值,则为初始值;该两次历史数据均需满足
Figure FDA0003857129410000041
其计算过程如下:
Figure FDA0003857129410000042
当TP-TP2<0.05时:
Figure FDA0003857129410000051
当TP-TP2≥0.05时:
Figure FDA0003857129410000052
其中S1:计算的上升斜率参数;上升斜率需根据实际情况设置上下限制;
S2:计算的下降斜率参数;下降斜率需根据实际情况设置上下限制;
PPM1:历史投配浓度1;
PPM2:历史投配浓度2;
TP1:历史总磷1;
TP2:历史总磷2;
TP:目标总磷参数;
K1:下降系数,取值小于1,典型值0.5;
当选择前馈+后馈模式时,记录最近8组满足总磷实时值和目标值偏差在±0.05mg/L范围内的投配浓度数据及磷酸盐削减值数据,并进行多项式曲线拟合;生成生产过程中的药剂特性曲线;当曲线生成且曲线回归值R2≥0.95时,投配浓度根据所需磷酸盐削减量代入曲线计算得出;当不满足上述条件时,按后馈模式计算投配浓度。
10.根据权利要求8所述的水处理中应用的多模式智能化除磷剂加药系统,其特征在于,所述模块M2还包括:当计算出的投配浓度小于基础加药量时,将基础加药量数据传送给投配浓度参数参与控制计算;可编程控制器根据药剂流量数据,自动选择泵的工作模式;泵具有三种工作模式:单泵间歇投加模式、单泵调频投加模式和多泵调频投加模式;
所述选择泵的工作模式包括:
1)当药剂流量给定数据小于设定泵送能力的0.4倍时,采用单泵间歇投加模式;
2)当药剂流量给定数据大于等于设定泵送能力的0.4倍且小于0.8倍时,采用单泵调频投加模式;
3)当药剂流量给定数据大于等于设定泵送能力的0.8倍小于1.6倍时,采用双泵调频投加模式;当药剂流量给定大于等于1.6倍,小于2.4倍时采用三泵调频投加模式;依此类推;
所述模块M3中计算每台泵的实时泵送能力参数:
Figure FDA0003857129410000061
其中,Q3表示容积泵的泵送能力参数;HZ表示频率;Q4表示当前筛选出的有效流量;
当单个实时泵送能力参数小于设置泵送能力参数0.8倍或者大于1.2倍,系统判定泵流量异常,报警并停止该泵自动运行;间歇模式泵每固定时间的运行时间通过药剂流量及实时泵送能力参数计算得出,固定以20HZ运行;单台或多台连续运行时通过药剂流量给定数据及泵的实时泵送能力参数计算得出泵的运行频率;多台泵同时工作时,实时泵送能力参数根据历史参数比例划分到每台泵;
当两台泵运行时,的泵送能力参数之和小于设定泵送能力的1.6倍或大于2.4倍,当3台泵运行时,泵送能力参数之和小于设定泵送能力的2.4倍或大于3.6倍,以此类推,系统将自动短时依次对泵单独全频运行,找出实时泵送能力不足的泵,自动切换泵送能力异常设备并报警。
所述模块M4中为保证单泵间歇投加模式运行时也能平均分配,每个通道打开时长计算公式如下:
Figure FDA0003857129410000062
该平均分配功能在系统中能设置打开或关闭;
所述模块M5还包括:根据每天出水水量及消耗药剂量自动生成当天实际药剂单耗记录;系统自动识别储药罐添加药剂的行为,每5分钟记录一次历史液位数据,发现液位增长,将原始液位值进行储存并监控现行液位变化,在两个周期采样对比下液位不再明显增长时,实时液位数据、历史液位数据、药剂密度及期间加药流量数据计算出储药罐增加的药量,并自动生成记录;液位计每秒读数一次,连续5次,误差均不超过0.5cm,认为是有效数据,系统读取到有效液位,将读数平均值作为当前液位输出和记录。
CN202211150911.3A 2022-09-21 2022-09-21 水处理中应用的多模式智能化除磷剂加药方法及系统 Active CN115448436B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211150911.3A CN115448436B (zh) 2022-09-21 2022-09-21 水处理中应用的多模式智能化除磷剂加药方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211150911.3A CN115448436B (zh) 2022-09-21 2022-09-21 水处理中应用的多模式智能化除磷剂加药方法及系统

Publications (2)

Publication Number Publication Date
CN115448436A true CN115448436A (zh) 2022-12-09
CN115448436B CN115448436B (zh) 2024-03-08

Family

ID=84305093

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211150911.3A Active CN115448436B (zh) 2022-09-21 2022-09-21 水处理中应用的多模式智能化除磷剂加药方法及系统

Country Status (1)

Country Link
CN (1) CN115448436B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116908481A (zh) * 2023-09-12 2023-10-20 江苏尤里卡生物科技有限公司 一种用于尿液处理的智能化添加剂自动加料系统
CN118529801A (zh) * 2024-07-26 2024-08-23 神美科技有限公司 一种基于大数据分析的污水处理智慧加药系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110862188A (zh) * 2019-11-01 2020-03-06 光大水务(深圳)有限公司 一种化学除磷精确加药系统及控制方法
CN212837739U (zh) * 2020-05-12 2021-03-30 中国石油天然气股份有限公司 一种自动化聚合物微球加药撬装系统
CN113307342A (zh) * 2021-06-07 2021-08-27 重庆中法环保研发中心有限公司 一种高密池化学除磷剂智能投加系统
CN114230110A (zh) * 2022-02-24 2022-03-25 广东省广业环保产业集团有限公司 用于污水处理的短程智能除磷加药控制方法、设备及系统
CN114738229A (zh) * 2021-08-30 2022-07-12 江苏大学 一种基于人工智能的多泵并联系统的调节系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110862188A (zh) * 2019-11-01 2020-03-06 光大水务(深圳)有限公司 一种化学除磷精确加药系统及控制方法
CN212837739U (zh) * 2020-05-12 2021-03-30 中国石油天然气股份有限公司 一种自动化聚合物微球加药撬装系统
CN113307342A (zh) * 2021-06-07 2021-08-27 重庆中法环保研发中心有限公司 一种高密池化学除磷剂智能投加系统
CN114738229A (zh) * 2021-08-30 2022-07-12 江苏大学 一种基于人工智能的多泵并联系统的调节系统
CN114230110A (zh) * 2022-02-24 2022-03-25 广东省广业环保产业集团有限公司 用于污水处理的短程智能除磷加药控制方法、设备及系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116908481A (zh) * 2023-09-12 2023-10-20 江苏尤里卡生物科技有限公司 一种用于尿液处理的智能化添加剂自动加料系统
CN118529801A (zh) * 2024-07-26 2024-08-23 神美科技有限公司 一种基于大数据分析的污水处理智慧加药系统

Also Published As

Publication number Publication date
CN115448436B (zh) 2024-03-08

Similar Documents

Publication Publication Date Title
CN115448436A (zh) 水处理中应用的多模式智能化除磷剂加药方法及系统
CN114545985B (zh) 一种基于絮体特征监测及过程反馈的加药系统及方法
CN101659462B (zh) 一种混凝剂自动加药控制系统及操作方法
CN105800755A (zh) 一种废水混凝处理单元水质在线监控系统及方法
EP1698360B1 (de) Dialysemaschine mit einer Einrichtung zur Bestimmung der Dialysedosis
CN114230110B (zh) 用于污水处理的短程智能除磷加药控制方法、设备及系统
CN109824100B (zh) 建筑用水管控方法和建筑用水管理平台
CN117153336B (zh) 一种基于血液透析机的血液透析监测系统及其方法
CN102135311A (zh) 一种中央空调系统整体优化控制装置
CN111470628B (zh) 碳源药剂投加设备与投加方法
US4668402A (en) System for treating fluids
CN114380386A (zh) 一种用于污水处理外碳源投加的自动控制方法及装置
CN217127038U (zh) 一种污水处理药剂自动投放系统
CN105548039A (zh) 一种活性污泥反硝化速率在线检测装置及检测方法
CN116088450A (zh) 一种污水处理厂智能终端控制系统、构建方法及控制方法
CN201749385U (zh) 前馈-反馈复合控制的水厂投药控制系统
CN201495122U (zh) 一种混凝剂自动加药控制系统
CN112723444A (zh) 智慧分配滤池水量的控制方法及系统
CN112320972A (zh) 采用云数据管理的碳源智能精准投加系统及方法
CN116693017A (zh) 一种基于模糊pid的投药量控制系统
CN111233120A (zh) 一种除氟剂自动加药系统
CN118388094B (zh) 一种智能化多点复合加氯系统及方法
CN203845850U (zh) 一种配矾系统
CN117831651A (zh) 一种混凝剂投加模型构建方法
CN118545861A (zh) 一种超纯水水质智能控制系统及其控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: 101113 No. 304, third floor, building 5, courtyard a, Guanghua Road, Tongzhou District, Beijing

Applicant after: Xinkai Environmental Investment Co.,Ltd.

Address before: 101113 No. 304, third floor, building 5, courtyard a, Guanghua Road, Tongzhou District, Beijing

Applicant before: Guotou xinkaishui Environmental Investment Co.,Ltd.

CB02 Change of applicant information
GR01 Patent grant
GR01 Patent grant