CN115438851A - 一种考虑极端情况的源网荷储协调运行方法 - Google Patents

一种考虑极端情况的源网荷储协调运行方法 Download PDF

Info

Publication number
CN115438851A
CN115438851A CN202211055700.1A CN202211055700A CN115438851A CN 115438851 A CN115438851 A CN 115438851A CN 202211055700 A CN202211055700 A CN 202211055700A CN 115438851 A CN115438851 A CN 115438851A
Authority
CN
China
Prior art keywords
load
storage
representing
power
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211055700.1A
Other languages
English (en)
Inventor
王璐玥
张俊芳
郑健
朱凯文
钟晓敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN202211055700.1A priority Critical patent/CN115438851A/zh
Publication of CN115438851A publication Critical patent/CN115438851A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/004Artificial life, i.e. computing arrangements simulating life
    • G06N3/006Artificial life, i.e. computing arrangements simulating life based on simulated virtual individual or collective life forms, e.g. social simulations or particle swarm optimisation [PSO]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06312Adjustment or analysis of established resource schedule, e.g. resource or task levelling, or dynamic rescheduling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06313Resource planning in a project environment
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06315Needs-based resource requirements planning or analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • H02J3/144Demand-response operation of the power transmission or distribution network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • General Physics & Mathematics (AREA)
  • Marketing (AREA)
  • General Business, Economics & Management (AREA)
  • Tourism & Hospitality (AREA)
  • Operations Research (AREA)
  • Development Economics (AREA)
  • Quality & Reliability (AREA)
  • Game Theory and Decision Science (AREA)
  • Health & Medical Sciences (AREA)
  • Power Engineering (AREA)
  • Educational Administration (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Water Supply & Treatment (AREA)
  • Public Health (AREA)
  • Artificial Intelligence (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明提供了一种考虑极端情况的源网荷储协调运行方法,建立源网荷储协调运行系统的基础设备模型,所述源网荷储协调运行系统包含风、光、储、燃气轮机、地源热泵以及多种负荷侧资源;从源网荷储智能互动角度出发,以负荷预期方差值最小为目标函数,建立极端情况下负荷侧资源参与电网平衡的优化调度模型;基于负荷侧资源参与调度,以日综合运行成本最低为目标,建立极端情况下源网荷储协调调度模型;综合考虑电网平衡和经济性,求解最优源网荷储协调运行方案。本发明能够实现综合能源系统在极端情况下的经济运行,促进新能源消纳,实现电网平衡。

Description

一种考虑极端情况的源网荷储协调运行方法
技术领域
本发明涉及电力系统优化调度领域,具体涉及一种考虑极端情况的源网荷储协调运行方法
背景技术
在传统电力系统运行时,负荷侧具有较强的随机性,通常是依靠稳定可控的传统发电方式(火电、水电等)满足负荷侧需求。但是双碳目标下,随着大规模新能源发电并网接入,如今的电力系统无论是电源侧还是负荷侧都具有较强的随机性和不确定性,这给系统的稳定运行带来了新的挑战,此时需要调动所有可控资源,依靠电源侧、电网侧、负荷侧以及储能侧协同运行,即“源-网-荷-储”一体化运行,以保证系统的安全稳定。同时,由于新能源出力的随机性与波动性,容易出现电源侧出力大于负荷侧需求,导致无法消纳多余的电能,造成电能浪费,象等外界因素对电网稳定性影响越来越大,弃风弃光现象频发,极端情况增加,因此研究极端情况下的源网荷储协调运行方法具有重要意义。
“源网荷储互动”是指电源侧、电网侧与负荷侧、储能侧协调互补。其具体含义是指通过不同手段引导用户进行需求响应,充分发挥负荷侧潜力,同时利用储能装置的充放电特性,达到“削峰填谷”的作用。也可以通过与用户签订协议或采取激励手段,将负荷侧需求作为一种可调节资源,在新能源大发时期或负荷侧高峰时期,引导用户有序用电,并利用储能侧进行灵活调节,以实现电能供需关系时间与空间的平衡。
因此,研究极端情况下的“源-网-荷-储”一体化运行方式,可以有效提高系统对光伏、风电等可再生能源的消纳能力,提高能源的利用率,减少弃风弃光现象;减少化石能源的使用,降低CO2的排放量,有效缓解能源危机和环境危机;提高电源侧与负荷侧供需关系的平衡能力,增强系统的稳定性。
发明内容
本发明的目的在于提供一种考虑极端情况的源网荷储协调运行方法,以充分发挥负荷侧的调节潜力,能够实现源网荷储综合能源系统在极端情况下的经济运行,促进新能源消纳,实现电网平衡。
实现本发明目的的技术解决方案为:一种考虑极端情况的源网荷储协调运行方法,包括以下步骤:
步骤1、建立源网荷储协调运行系统中源、储、网部分的基础设备模型;
步骤2、从源网荷储智能互动角度出发,以负荷预期方差值最小为目标函数,建立极端情况下负荷侧资源参与电网平衡的优化调度模型;
步骤3、基于负荷侧资源参与调度,以日综合运行成本最低为目标,建立极端情况下源网荷储协调调度模型;
步骤4、综合考虑电网平衡和经济性,求解最优源网荷储协调运行方案。
进一步的,步骤1中,建立源网荷储协调运行系统中源、储、网部分设备模型,具体方法为:
(1)光伏发电模型:
Figure BDA0003825407320000021
其中,PPV为光伏发电功率;fPV为光伏阵列的功率降额因数,取0.9;PPV,cap为标准测试条件下光伏阵列的峰功率;GT为实际光照强度;GT,STC为标准测试条件下的光照强度;αP为功率温度系数;Tc为光伏面板的实际温度;Tc,STC为标准测试条件下的光伏面板温度;
(2)风力发电模型:
风力机组的发电功率和风速的关系:
Figure BDA0003825407320000022
其中,PWT为风力机组发电功率;ρ为空气密度;R为风机轮毂叶片的半径;v为实际风速;Cp为风能转换效率;
(3)蓄电池模型:
Figure BDA0003825407320000023
其中,Sbat,t为t时刻的荷电状态;S0为初始时的荷电状态;Pc,t为t时刻的充电功率;Pd,t为t时刻的放电功率;Xt为蓄电池的充电状态;Yt为蓄电池的充电状态;Wbat.N为蓄电池的额定容量;Δt为充放电时间段;
(4)燃气轮机模型:
Pgt=ηgt,e·Fgt·LNG
上式中,Pgt表示燃气轮机的发电功率;ηgt,e表示发电效率;Fgt表示天然气燃烧量;LNG表示天然气的热值;
(5)地源热泵模型
Figure BDA0003825407320000031
Figure BDA0003825407320000032
式中,Qc'表示地源热泵的最大吸热量;Qc表示冷负荷总量;γCOPC表示地源热泵制冷总量系数;Qh'表示最大放热量;Qh表示热负荷总量;γCOPH表示地源热泵制热总量系数;
地源热泵是通过少量高品质的电能来驱动压缩机,进而产生高质量冷能和热能,其能量转换关系如下式所示:
Qhp,c(t)=Php(t)·λCOPC·Zhp
Qhp,h(t)=Php(t)·λCOPH·(1-Zhp)
上式中,Qhp,c(t)表示地源热泵在t时刻释放的冷能;Php(t)表示地源热泵在t 时刻输入的电能;λCOPC表示制冷系数;Zhp表示地源热泵工作状态,当Zhp=1时表示工作在制冷状态,当Zhp=0时表示工作在制热状态;Qhp,h(t)表示在t时刻释放的热能;λCOPH表示制热系数。
进一步的,步骤2中,以负荷预期方差值最小为目标,建立极端情况下负荷侧资源参与电网平衡的优化调度模型,具体方法为:
选择电动私家车、电动公交车、空调、电采暖、工业负荷、储能六类柔性负荷作为控制对象,通过电价及激励控制手段,分别调用各类负荷向上、向下调节潜力,以负荷预期方差值最小为目标,建立负荷侧资源参与电网平衡的优化调度模型;
目标函数为:
其中:
Figure BDA0003825407320000041
其中,Pi(t)为单个负荷出力,ΔPi(t)为单个负荷调节量,P0(t)为调节前总负荷,P1(t)为调节后负荷,T表示削峰和填谷的时间段,i表示负荷种类,Pcar,sj为电动私家车用电功率,Pcar,gj为电动公交车用电功率,Ptem,kt为空调用电功率,Ptem,dcn为电采暖用电功率,Pstorage为储能充放电功率,Pindustry为工业负荷用电功率;
约束条件如下:
(1)调节潜力约束:
Pk,min≤Pk≤Pk,max
其中,Pk,max、Pk,min为调节潜力上、下限,Pk为调节量;
(2)电动汽车运行约束:
De,soc,down≤De,soc≤De,soc,top
其中,De,soc表示电动汽车荷电状态;De,soc,down表示设定的电动汽车荷电状态下阈值;De,soc,top表示设定的电动汽车荷电状态上阈值,电动私家车和电动公交车均需满足上述约束;
(3)温控负荷适应温度约束:
Ta,min≤Ta t≤Ta,max
其中,Ta t表示温控负荷在某时刻的温度Ta,min和Ta,max分别为温控负荷一定时间范围内允许的最低和最高温度,电采暖与空调均需满足上述约束;
(4)储能运行约束:
-Psoc,t,in≤Psoc,t≤Psoc,t,out
QSOC,down≤QSOC,t≤QSOC,up
其中,Psoc,t表示蓄电池充放电速率;Psoc,t,in表示表示蓄电池充电速率上限;Psoc,t,out表示其放电速率上限;QSOC,t表示蓄电池的荷电状态;QSOC,up表示其荷电状态上限;QSOC,down表示其荷电状态下限。
进一步的,步骤3中,基于负荷侧资源参与调度,以日综合运行成本最低为目标,建立极端情况下的源网荷储协调调度模型,具体方法为:
步骤4.1,通过碳排放权交易原理,将碳排放指标转化为经济性指标:
碳排放权交易是指将CO2的排放权作为一种商品,其中无偿的份额是根据企业电能、热能的产值对企业进行无偿份额的分配,企业若有多余的碳排放权,则通过交易市场售卖出去;有偿的份额则需要企业通过竞价的方式购买,或通过交易平台从其他企业手中购买,其中无偿的碳排放份额De'mi,c用下式表示:
Figure BDA0003825407320000051
Qload,t=Qcar,t+Qtem,t+Qstorage,t+Qindustry,t
Pload,t=Pcar,t+Ptem,t+Pstorage,t+Pindustry,t
式中,D′emi,c表示无偿的碳排放份额;Pload,t表示电能的产值;Qload,t表示热能的产能;εe表示电能份额系数;εh表示热能份额系数,εe取0.65,εh取0.35;Pcar,t、 Ptem,t、Pstorage,t、Pindustry,t分别表示在t时刻电动汽车、温控负荷、工业负荷、储能消耗的电能;Qcar,t、Qtem,t、Qstorage,t、Qindustry,t分别表示在t时刻电动汽车、温控负荷、工业负荷、储能消耗的热能;
有偿的碳排放量Demi,c表示为:
Demi,c=Csum-D′emi,c
其中碳排放量Csum表示为:
Csum=Cgt+Cgt,b+Cgt,w
其中,Cgt,b表示从大电网购电的碳排放量,Cgt,w表示工业生产的碳排放量, Cgt为系统燃气轮机工作产生的碳排放量;
最终得到碳排放成本为:
Figure BDA0003825407320000052
式中,CC表示碳排放成本;
Figure BDA0003825407320000053
表示碳交易价格;
步骤4.2,综合考虑碳排放成本、弃光弃风成本、系统运行成本作为经济指标:
基于极端情况下的源网荷储协调调度模型通过碳排放权交易原理将碳排放指标转化为经济性指标,通过弃风弃光惩罚成本将可再生能源消纳能力转化为经济性指标,即用系统运行成本最小作为目标函数,取成本为正,收益为负,其表达式如下:
minFsum=CR+CC+Cpm
式中,Fsum表示总成本;CR表示负荷参与调节后系统运行成本,包括电动汽车、温控负荷等负荷的运行成本;CC表示碳交易成本;Cpm表示弃风弃光惩罚成本;
弃风弃光惩罚成本Cpm的表达式如下:
Figure BDA0003825407320000061
式中,cpv表示弃光惩罚系数;
Figure BDA0003825407320000062
表示弃光量;cwt表示弃风惩罚系数;
Figure BDA0003825407320000063
表示弃风量;
系统的运行成本CR包括电源侧、电网侧、负荷侧的运行成本,具体表达式如下:
CR=CR,source+CR,grid+CR,load
式中,CR,source表示电源侧的运行成本;CR,grid表示电网侧的运行成本;CR,load表示负荷侧的运行成本;
电源侧的系统运行成本CR,source的具体表达式如下:
CR,source=Cgas=λngPbuy,gas
Pbuy,gas=Pgt
式中,Cgas表示购买天然气的成本;λng表示天然气价格;Pbuy,gas,t表示天然气购买量;Pgt表示燃气轮机的发电功率;
电网侧的系统运行成本CR,grid包括购电成本以及售电收益,其具体表达式如下:
CR,grid=λe,bPbuy,ee,sPsell,e
Pbuy,e=PPV+PWT
式中,λe,b表示购电价格;Pbuy,e表示购电量;λe,s表示售电价格;Psell,e表示售电量;PPV为光伏发电量;PWT为风力发电量;
负荷侧的系统运行成本CR,load包括电动汽车和温控负荷的电价成本以及储能系统、工业负荷的运行成本,其具体表达式如下:
CR,load=Ccar+Ctem+Cstorage+Cindustry
式中,Ccar表示电动汽车的电价成本,Ctem表示温控类负荷的补偿成本, Cstorage表示系统运行成本,Cindustry表示工业负荷的运行成本;
极端情况下,存在如下关系:
Figure BDA0003825407320000071
Figure BDA0003825407320000072
Cstorage=λsocPstorage,t
Cindustry=λindPindustry,t
步骤4.3,构建约束条件:
(1)电能平衡
电能平衡指的是园区内的光伏、风力、燃气轮机、储能设备与大电网共同供给电能以满足电动汽车、温控负荷以及其他负荷的电能需求,其具体表达式如下:
PPV,t+PWT,t+Pgt,t+Psoc,t+Pb,t=Php,t+Pcar,t+Ptem,t+Pelse,t
式中,PPV,t表示在t时刻屋顶光伏的出力;PWT,t表示在t时刻园区风电的出力; Pgt,t表示在t时刻燃气轮机的出力;Psoc,t表示在t时刻储能装置的出力,当储能装置处于放电状态时Psoc,t>0,当储能装置处于充电状态时Psoc,t<0;Pb,t表示在t时刻与大电网的电能交易,当Pb,t>0时表示从大电网购电,当Pb,t<0时表示向大电网售电;Php,t表示在t时刻地源热泵消耗的电能;Pcar,t表示在t时刻电动汽车消耗的电能;Ptem,t表示在t时刻温控负荷消耗的电能;Pelse,t表示在t时刻其余电负荷需求;
(2)热能平衡约束
热能平衡主要是指通过燃气轮机提供的热能、地源热泵提供的热能以及电采暖提供的热能,以满足负荷侧的热能需求,其具体表达式如下:
Rgt,h,t+Rhp,h,t+Rhs,h,t=Lh,t
式中,Rgt,h,t表示在t时刻燃气轮机提供的热能;Rhp,h,t表示在t时刻地源热泵提供的热能;Rhs,h,t表示在t时刻电采暖提供的热能;Lh,t表示t时刻热负荷需求;
(3)冷能平衡
冷能平衡主要是指空调提供的冷能以及地源热泵提供的冷能满足负荷侧的冷能需求,其具体表达式如下:
Rhp,c,t+Rac,c,t=Lc,t
式中,Rhp,c,t表示在t时刻地源热泵提供的冷能;Rac,c,t表示在t时刻空调提供的冷能;Lc,t表示t时刻冷负荷需求。
进一步的,步骤4中,综合考虑电网平衡和经济性,求解最优源网荷储协调运行方案,具体方法为:
源网荷储协调运行系统是一个包含风、光、储、燃气轮机、地源热泵以及多种负荷侧资源的的综合能源系统,在负荷峰谷差过大的极端情况,为实现削峰填谷及经济性最优的综合调度,建立两组模型:
针对负荷侧资源,为实现极端情况下负荷峰谷差最小,采用粒子群算法求解极端情况下负荷侧资源参与电网平衡的优化调度模型,该模型的决策变量为不同负荷不同时刻的调节量即ΔPi(t),以负荷预期偏差最小为调度目标,根据不同负荷的运行条件的约束,分别计算各类负荷达到最优目标时的ΔPi(t),将其相加即为调节后不同时刻总负荷的运行结果,该结果即为模型的输出:
Figure BDA0003825407320000081
其中,Pcar,sj(t)、Pcar,gj(t)、Ptem,kt(t)、Ptem,dcn(t)、Pstorage(t)、Pindustry(t)分别为调节前电动私家车、电动公交车、空调、电采暖、储能以及工业负荷的出力功率,ΔPcar,sj(t)、ΔPcar,gj(t)、ΔPtem,kt(t)、ΔPtem,dcn(t)、ΔPstorage(t)、ΔPindustry(t)分别为电动私家车、电动公交车、空调、电采暖、储能以及工业负荷的调节量,其总和即为模型的输出。
针对整个源网荷储系统,综合考虑源、网、荷、储四部分的成本,在满足负荷侧资源峰谷差最小的情况下,考虑碳排放交易原理,采用粒子群算法求解极端情况下的源网荷储协调调度模型,根据负荷侧资源运行条件的约束,以系统运行成本、碳排放成本以及弃光、弃风成本的总成本最低为目标函数,求解变量为源、网、荷、储四部分出力的变化量,最终模型的输出为以经济性最优进行调节后的光伏、风力出力,燃气轮机出力,储能出力、大电网用电功率以及负荷侧出力。
一种考虑极端情况的源网荷储协调控制系统,基于所述的考虑极端情况的源网荷储协调运行方法,实现极端情况的源网荷储协调运行。
一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时,基于所述的考虑极端情况的源网荷储协调运行方法,实现极端情况的源网荷储协调运行。
一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时,基于所述的考虑极端情况的源网荷储协调运行方法,实现极端情况的源网荷储协调运行。
本发明与现有技术相比,其显著优点:1)研究了碳排放权交易的基本理论,建立了考虑园区经济性、环保性以及新能源消纳能力的优化调度模型,有效降低运行成本,促进新能源消纳;2)建立负荷侧资源参与电网平衡的优化调度模型,能够有效实现削峰填谷。
附图说明
图1是本发明一种考虑极端情况的源网荷储协调运行方法的流程图。
图2是直接负荷控制补偿成本图。
图3是能量流动图。
图4是极端情况源网荷储协调运行调度结果。
图5是极端情况下负荷侧资源参与调度结果。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
如图1所示,一种考虑极端情况的源网荷储协调运行方法,包括以下步骤:
步骤1、建立源网荷储协调运行系统中源、储、网部分的基础设备模型:
源网荷储协调运行系统是一个包含风、光、储、燃气轮机、地源热泵以及多种负荷侧资源的综合能源系统,能量流动图如附图3所示。源、储、网部分的基础设备模型包括:
步骤1.1:建立光伏发电模型:
Figure BDA0003825407320000101
其中,PPV为光伏发电功率;fPV为光伏阵列的功率降额因数,取0.9;PPV,cap为标准测试条件下光伏阵列的峰功率;GT为实际光照强度;GT,STC为标准测试条件下的光照强度;αP为功率温度系数;Tc为光伏面板的实际温度;Tc,STC为标准测试条件下的光伏面板温度;
步骤1.2:建立风力发电模型:
风力机组的发电功率和风速的关系:
Figure BDA0003825407320000102
其中,PWT为风力机组发电功率;ρ为空气密度;R为风机轮毂叶片的半径;v为实际风速;Cp为风能转换效率;
步骤1.3:建立蓄电池模型:
Figure BDA0003825407320000103
其中,Sbat,t为t时刻的荷电状态;S0为初始时的荷电状态;Pc,t为t时刻的充电功率;Pd,t为t时刻的放电功率;Xt为蓄电池的充电状态;Yt为蓄电池的充电状态;Wbat.N为蓄电池的额定容量;Δt为充放电时间段;
步骤1.4:建立燃气轮机模型:
燃气轮机的发电功率模型如下式:
Pgt=ηgt,e·Fgt·LNG
上式中,Pgt表示燃气轮机的发电功率;ηgt,e表示发电效率;Fgt表示天然气燃烧量;LNG表示天然气的热值;
步骤1.5:建立地源热泵模型
Figure BDA0003825407320000104
Figure BDA0003825407320000111
式中,Q′c表示地源热泵的最大吸热量;Qc表示冷负荷总量;γCOPC表示地源热泵制冷总量系数;Q′h表示最大放热量;Qh表示热负荷总量;γCOPH表示地源热泵制热总量系数。
地源热泵是通过少量高品质的电能来驱动压缩机,进而产生高质量冷能和热能,其能量转换关系如下式所示:
Qhp,c(t)=Php(t)·λCOPC·Zhp
Qhp,h(t)=Php(t)·λCOPH·(1-Zhp)
上式中,Qhp,c(t)表示地源热泵在t时刻释放的冷能;Php(t)表示地源热泵在t 时刻输入的电能;λCOPC表示制冷系数;Zhp表示地源热泵工作状态,当Zhp=1时表示工作在制冷状态,当Zhp=0时表示工作在制热状态;Qhp,h(t)表示在t时刻释放的热能;λCOPH表示制热系数。
步骤2、从源网荷储智能互动角度出发,建立极端情况下负荷侧资源参与电网平衡的优化调度模型:
在负荷用电高峰和低谷的极端情况下,对柔性负荷通过电价及激励进行调节,从而达到削峰填谷的目标。选择电动私家车汽车、电动公交车、空调、电采暖、工业负荷、储能六类具有良好调节潜力的柔性负荷作为控制对象,通过电价及激励等控制手段,分别调用各类负荷向上、向下调节潜力,以负荷预期方差值最小为目标函数,建立负荷侧资源参与电网平衡的优化调度模型。
目标函数为:
其中:
Figure BDA0003825407320000112
Figure BDA0003825407320000113
Figure BDA0003825407320000114
其中,Pi(t)为单个负荷出力,ΔPi(t)为单个负荷调节量,P0(t)为调节前总负荷,P1(t)为调节后负荷,T表示削峰和填谷的时间段,i表示负荷种类,Pcar,sj为电动私家车用电功率,Pcar,gj为电动公交车用电功率,Ptem,kt为空调用电功率,Ptem,dcn为电采暖用电功率,Pstorage为储能充放电功率,Pindustry为工业负荷用电功率;
约束条件如下:
(1)调节潜力约束:
Pk,min≤Pk≤Pk,max
其中,Pk,max、Pk,min为调节潜力上、下限,Pk为调节量。
(2)电动汽车运行约束:
De,soc,down≤De,soc≤De,soc,top
上式中,DSOC,t表示电动汽车荷电状态;De,soc,down表示设定的电动汽车荷电状态下阈值;De,soc,top表示设定的电动汽车荷电状态上阈值。
(3)温控负荷适应温度约束:
Ta,min≤Ta t≤Ta,max
上式中,Ta t表示温控负荷在某时刻的温度Ta,min和Ta,max分别为温控负荷一定时间范围内允许的最低和最高温度。
(4)储能运行约束:
-Psoc,t,in≤Psoc,t≤Psoc,t,out
QSOC,down≤QSOC,t≤QSOC,up
上式中,Psoc,t表示蓄电池充放电速率;Psoc,t,in表示表示蓄电池充电速率上限;Psoc,t,out表示其放电速率上限;QSOC,t表示蓄电池的荷电状态;QSOC,up表示其荷电状态上限;QSOC,down表示其荷电状态下限。
步骤3、基于负荷侧资源参与调度,以源网荷储系统极端情况下的日综合运行成本最低为目标建立目标函数:
步骤3.1:通过碳排放权交易原理将碳排放指标转化为经济性指标:
碳排放权交易是指将CO2的排放权作为一种商品,其中无偿的份额是根据企业电能、热能的产值对企业进行无偿份额的分配,企业若有多余的碳排放权,则可以通过交易市场售卖出去;有偿的份额则需要企业通过竞价的方式购买,或通过交易平台从其他企业手中购买。
其中无偿的碳排放份额D′emi,c可以用下式表示:
Figure BDA0003825407320000121
Pload,t=Pcar,t+Ptem,t+Pstorage,t+Pindustr Qload,t=Qcar,t+Qtem,t+Qstorage,t+Qindustry,t
上式中,D′emi,c表示无偿的碳排放份额;Pload,t表示电能的产值;Qload,t表示热能的产能;εe表示电能份额系数;εh表示热能份额系数,通常εe取0.65,εh取0.35。 Pcar,t、Ptem,t、Pstorage,t、Pindustry,t分别表示在t时刻电动汽车、温控负荷、工业负荷、储能消耗的电能;Qcar,t、Qtem,t、Qstorage,t、Qindustry,t分别表示在t时刻电动汽车、温控负荷、工业负荷、储能消耗的热能。
有偿的碳排放量Demi,c即可表示为:
Demi,c=Csum-D′emi,c
其中碳排放量Csum可以表示为:
Csum=Cgt+Cgt,b+Cgt,w
其中,Cgt,b表示从大电网购电的碳排放量,Cgt,w表示工业生产的碳排放量, Cgt为系统燃气轮机工作产生的碳排放量。
最终可得碳排放成本为:
Figure BDA0003825407320000131
上式中,CC表示碳排放成本;
Figure BDA0003825407320000132
表示碳交易价格。
步骤3.2:综合考虑碳排放成本、弃光弃风成本、系统运行成本作为经济指标:
基于极端情况下的源网荷储协调调度模型通过碳排放权交易原理将碳排放指标转化为经济性指标,通过弃风弃光惩罚成本将可再生能源消纳能力转化为经济性指标,即可以用系统运行成本最小作为目标函数,取成本为正,收益为负,其表达式如下:
minFsum=CR+CC+Cpm
上式中,Fsum表示总成本;CR表示负荷参与调节后系统运行成本,包括电动汽车、温控负荷等负荷的运行成本;CC表示碳交易成本;Cpm表示弃风弃光惩罚成本。
弃风弃光惩罚成本Cpm的表达式如下:
Figure BDA0003825407320000133
上式中,cpv表示弃光惩罚系数;
Figure BDA0003825407320000134
表示弃光量;cwt表示弃风惩罚系数;
Figure BDA0003825407320000135
表示弃风量。
系统的运行成本CR包括电源侧、电网侧、负荷侧的运行成本,具体表达式如下:
CR=CR,source+CR,grid+CR,load
上式中,CR,source表示电源侧的运行成本;CR,grid表示电网侧的运行成本; CR,load表示负荷侧的运行成本。
电源侧的系统运行成本CR,source的具体表达式如下:
CR,source=Cgas=λngPbuy,gas
Pbuy,gas=Pgt
上式中,Cgas表示购买天然气的成本;λng表示天然气价格;Pbuy,gas,t表示天然气购买量,,Pgt表示燃气轮机的发电功率。
电网侧的系统运行成本CR,grid包括购电成本以及售电收益,其具体表达式如下:
CR,grid=λe,bPbuy,ee,sPsell,e
Pbuy,e=PPV+PWT
上式中,λe,b表示购电价格;Pbuy,e表示购电量;λe,s表示售电价格;Psell,e表示售电量;PPV为光伏发电量;PWT为风力发电量。
负荷侧的系统运行成本CR,load包括电动汽车和温控负荷的电价成本以及储能系统、工业负荷的运行成本,其具体表达式如下:
CR,load=Ccar+Ctem+Cstorage+Cindustry
上式中,Ccar表示电动汽车的电价成本,Ctem表示温控类负荷的补偿成本, Cstorage表示系统运行成本,Cindustry表示工业负荷的运行成本。
极端情况下,存在如下关系:
Figure BDA0003825407320000141
Figure BDA0003825407320000151
Cstorage=λsocPstorage,t
Cindustry=λindPindustry,t
上式中,λsoc表示储能装置运行成本系数;Pstorage,t表示蓄电池运行功率,Pcar,t表示电动汽车运行功率;Ptem,t表示温控负荷运行功率;λind表示工业负荷运行成本系数;Pindustry,t表示工业负荷运行功率。
存在如下约束条件:
(1)电能平衡
电能平衡指的是园区内的光伏、风力、燃气轮机、储能设备与大电网共同供给电能以满足电动汽车、温控负荷以及其他负荷的电能需求,其具体表达式如下:
PPV,t+PWT,t+Pgt,t+Psoc,t+Pb,t=Php,t+Pcar,t+Ptem,t+Pelse,t
上式中,PPV,t表示在t时刻屋顶光伏的出力;PWT,t表示在t时刻园区风电的出力;Pgt,t表示在t时刻燃气轮机的出力;Psoc,t表示在t时刻储能装置的出力,当储能装置处于放电状态时Psoc,t>0,当储能装置处于充电状态时Psoc,t<0;Pb,t表示在t时刻与大电网的电能交易,当Pb,t>0时表示从大电网购电,当Pb,t<0时表示向大电网售电;Php,t表示在t时刻地源热泵消耗的电能;Pcar,t表示在t时刻电动汽车消耗的电能;Ptem,t表示在t时刻温控负荷消耗的电能;Pelse,t表示在t时刻其余电负荷需求。
(2)热能平衡约束
热能平衡主要是指通过燃气轮机提供的热能、地源热泵提供的热能以及电采暖提供的热能,以满足负荷侧的热能需求,其具体表达式如下:
Rgt,h,t+Rhp,h,t+Rhs,h,t=Lh,t
上式中,Rgt,h,t表示在t时刻燃气轮机提供的热能;Rhp,h,t表示在t时刻地源热泵提供的热能;Rhs,h,t表示在t时刻电采暖提供的热能;Lh,t表示t时刻热负荷需求。
(3)冷能平衡
冷能平衡主要是指空调提供的冷能以及地源热泵提供的冷能满足负荷侧的冷能需求,其具体表达式如下:
Rhp,c,t+Rac,c,t=Lc,t
上式中,Rhp,c,t表示在t时刻地源热泵提供的冷能;Rac,c,t表示在t时刻空调提供的冷能;Lc,t表示t时刻冷负荷需求。
步骤4、采用粒子群算法对综合考虑电网平衡和经济性的目标函数进行优化求解:
本发明考虑极端情况的源网荷储协调调度模型是复杂的多主体、多约束优化问题,而粒子群优化算法作为基于生物活动的启发式优化算法,能较好解决复杂变量空间的优化问题。本发明的源网荷储协调运行系统是一个包含风、光、储、燃气轮机、地源热泵以及多种负荷侧资源的综合能源系统,在负荷峰谷差过大的极端情况,为实现削峰填谷及经济性最优的综合调度,建立两组模型:
针对负荷侧资源,为实现极端情况下负荷峰谷差最小,采用粒子群算法求解极端情况下负荷侧资源参与电网平衡的优化调度模型,该模型的决策变量为不同负荷不同时刻的调节量即ΔPi(t),以负荷预期偏差最小为调度目标,根据不同负荷的运行条件的约束,分别计算各类负荷达到最优目标时的ΔPi(t),将其相加即为调节后不同时刻总负荷的运行结果,该结果即为模型的输出:
Figure BDA0003825407320000161
其中,Pcar,sj(t)、Pcar,gj(t)、Ptem,kt(t)、Ptem,dcn(t)、Pstorage(t)、Pindustry(t)分别为调节前电动私家车、电动公交车、空调、电采暖、储能以及工业负荷的出力功率,ΔPcar,sj(t)、ΔPcar,gj(t)、ΔPtem,kt(t)、ΔPtem,dcn(t)、ΔPstorage(t)、ΔPindustry(t)分别为电动私家车、电动公交车、空调、电采暖、储能以及工业负荷的调节量,其总和即为模型的输出。
针对整个源网荷储系统,综合考虑源、网、荷、储四部分的成本,在满足负荷侧资源峰谷差最小的情况下,考虑碳排放交易原理,采用粒子群算法求解极端情况下的源网荷储协调调度模型,根据负荷侧资源运行条件的约束,以系统运行成本、碳排放成本以及弃光、弃风成本的总成本最低为目标函数,求解变量为源、网、荷、储四部分出力的变化量,最终模型的输出为以经济性最优进行调节后的光伏、风力出力,燃气轮机出力,储能出力、大电网用电功率以及负荷侧出力。
实施例
为了验证本发明方案的有效性,以北方某工业园区为例,根据实际情况确定设备具体参数、风光负荷预测、能源价格信息、负荷需求响应参数等,对园区综合能源系统在极端的优化调度进行仿真及分析。
某日光伏大发,在此极端情况下,中午12:00-16:00期间电能供给量极大地超出负荷需求量,此时大电网不接受园区售卖多余的电能,即Ssell,max=0,其余时刻售电额度与典型日相同,弃风弃光惩罚系数为0.2,此时与电网交易的价格如表1所示:
表1极端情况分时电价交易表
Figure BDA0003825407320000171
当园区采用源网荷储协调运行方式时,可以对园区内的电动汽车采用分时电价策略,引导用户在中午时刻一同消纳光伏发电设备的出力。通过直接负荷控制,降低室内温度的上阈值对空调进行调节,此时园区内对电动汽车用户采用的分时电价如下表2所示:
表2极端情况电动汽车分时电价
Figure BDA0003825407320000172
从附图4可以看出,经过电动汽车与空调负荷的响应,园区的实际负荷曲线在负荷高峰期与电源侧出力高峰期基本吻合,虽然在12:00-16:00期间无法完全消纳掉多余的光伏出力,但已经大大减少了电能的浪费。
此时通过仿真计算,极端情况下,并网、源网荷储协调运行两种运行方式费用如下:
表3极端情况下两种模式运行费用
Figure BDA0003825407320000173
Figure BDA0003825407320000181
从上表可以看出,在源网荷储协调运行方式下,弃风弃光惩罚成本最低,此时因为电动汽车、空调、电采暖等可调负荷参与需求响应,增加负荷需求量,进而可以消纳更多的可再生能源出力;两种运行模式均不需要燃气轮机进行供电,即不需要燃烧天然气,因此降低天然气消耗成本;源网荷储运行模式下因为负荷侧需求的改变,减少了从大电网购电的成本,增加了买卖电能的收益。
从经济效益上来看,在极端情况下,源网荷储协调运行方式的收益高于并网情况;从碳排放量上来看,源网荷储协调运行方式下,因其不使用燃气轮机以及几乎不从大电网买电,有效减少碳排放量。
并从图5中可以看出,在极端情况下,通过建立负荷侧资源参与的电网平衡优化调度模型,能够充分利用负荷侧资源的调度潜力,实现削峰填谷,最大削峰 26.5%,最大填谷33.1%,有效促进电网平衡。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请的保护范围应以所附权利要求为准。

Claims (8)

1.一种考虑极端情况的源网荷储协调运行方法,其特征在于,包括以下步骤:
步骤1、建立源网荷储协调运行系统的基础设备模型,所述源网荷储协调运行系统包含风、光、储、燃气轮机、地源热泵以及多种负荷侧资源;
步骤2、从源网荷储智能互动角度出发,以负荷预期方差值最小为目标函数,建立极端情况下负荷侧资源参与电网平衡的优化调度模型;
步骤3、基于负荷侧资源参与调度,以日综合运行成本最低为目标,建立极端情况下源网荷储协调调度模型;
步骤4、综合考虑电网平衡和经济性,求解最优源网荷储协调运行方案。
2.如权利要求1所述一种考虑极端情况的源网荷储协调运行方法,其特征在于,步骤1中,建立源网荷储协调运行系统的基础设备模型,具体方法为:
(1)光伏发电模型:
Figure FDA0003825407310000011
其中,PPV为光伏发电功率;fPV为光伏阵列的功率降额因数,取0.9;PPV,cap为标准测试条件下光伏阵列的峰功率;GT为实际光照强度;GT,STC为标准测试条件下的光照强度;αP为功率温度系数;Tc为光伏面板的实际温度;Tc,STC为标准测试条件下的光伏面板温度;
(2)风力发电模型:
风力机组的发电功率和风速的关系:
Figure FDA0003825407310000012
其中,PWT为风力机组发电功率;ρ为空气密度;R为风机轮毂叶片的半径;v为实际风速;Cp为风能转换效率;
(3)蓄电池模型:
Figure FDA0003825407310000013
其中,Sbat,t为t时刻的荷电状态;S0为初始时的荷电状态;Pc,t为t时刻的充电功率;Pd,t为t时刻的放电功率;Xt为蓄电池的充电状态;Yt为蓄电池的充电状态;Wbat.N为蓄电池的额定容量;Δt为充放电时间段;
(4)燃气轮机模型:
Pgt=ηgt,e·Fgt·LNG
上式中,Pgt表示燃气轮机的发电功率;ηgt,e表示发电效率;Fgt表示天然气燃烧量;LNG表示天然气的热值;
(5)地源热泵模型
Figure FDA0003825407310000021
Figure FDA0003825407310000022
式中,Qc'表示地源热泵的最大吸热量;Qc表示冷负荷总量;γCOPC表示地源热泵制冷总量系数;Qh'表示最大放热量;Qh表示热负荷总量;γCOPH表示地源热泵制热总量系数;
地源热泵是通过少量高品质的电能来驱动压缩机,进而产生高质量冷能和热能,其能量转换关系如下式所示:
Qhp,c(t)=Php(t)·λCOPC·Zhp
Qhp,h(t)=Php(t)·λCOPH·(1-Zhp)
上式中,Qhp,c(t)表示地源热泵在t时刻释放的冷能;Php(t)表示地源热泵在t时刻输入的电能;λCOPC表示制冷系数;Zhp表示地源热泵工作状态,当Zhp=1时表示工作在制冷状态,当Zhp=0时表示工作在制热状态;Qhp,h(t)表示在t时刻释放的热能;λCOPH表示制热系数。
3.如权利要求2所述一种考虑极端情况的源网荷储协调运行方法,其特征在于,步骤2中,以负荷预期方差值最小为目标,建立极端情况下负荷侧资源参与电网平衡的优化调度模型,具体方法为:
选择电动私家车、电动公交车、空调、电采暖、工业负荷、储能六类柔性负荷作为控制对象,通过电价及激励控制手段,分别调用各类负荷向上、向下调节潜力,以负荷预期方差值最小为目标,建立负荷侧资源参与电网平衡的优化调度模型;
目标函数为:
Figure FDA0003825407310000031
其中:
Figure FDA0003825407310000032
Figure FDA0003825407310000033
其中,Pi(t)为单个负荷出力,ΔPi(t)为单个负荷调节量,P0(t)为调节前总负荷,P1(t)为调节后负荷,T表示削峰和填谷的时间段,i表示负荷种类,Pcar,sj为电动私家车用电功率,Pcar,gj为电动公交车用电功率,Ptem,kt为空调用电功率,Ptem,dcn为电采暖用电功率,Pstorage为储能充放电功率,Pindustry为工业负荷用电功率;
约束条件如下:
(1)调节潜力约束:
Pk,min≤Pk≤Pk,max
其中,Pk,max、Pk,min为调节潜力上、下限,Pk为调节量;
(2)电动汽车运行约束:
De,soc,down≤De,soc≤De,soc,top
其中,De,soc表示电动汽车荷电状态;De,soc,down表示设定的电动汽车荷电状态下阈值;De,soc,top表示设定的电动汽车荷电状态上阈值,电动私家车和电动公交车均需满足上述约束;
(3)温控负荷适应温度约束:
Ta,min≤Ta t≤Ta,max
其中,Ta t表示温控负荷在某时刻的温度Ta,min和Ta,max分别为温控负荷一定时间范围内允许的最低和最高温度,电采暖与空调均需满足上述约束;
(4)储能运行约束:
-Psoc,t,in≤Psoc,t≤Psoc,t,out
QSOC,down≤QSOC,t≤QSOC,up
其中,Psoc,t表示蓄电池充放电速率;Psoc,t,in表示表示蓄电池充电速率上限;Psoc,t,out表示其放电速率上限;QSOC,t表示蓄电池的荷电状态;QSOC,up表示其荷电状态上限;QSOC,down表示其荷电状态下限。
4.如权利要求3所述一种考虑极端情况的源网荷储协调运行方法,其特征在于,步骤3中,基于负荷侧资源参与调度,以日综合运行成本最低为目标,建立极端情况下的源网荷储协调调度模型,具体方法为:
步骤3.1,通过碳排放权交易原理,将碳排放指标转化为经济性指标:
碳排放权交易是指将CO2的排放权作为一种商品,其中无偿的份额是根据企业电能、热能的产值对企业进行无偿份额的分配,企业若有多余的碳排放权,则通过交易市场售卖出去;有偿的份额则需要企业通过竞价的方式购买,或通过交易平台从其他企业手中购买,其中无偿的碳排放份额De'mi,c用下式表示:
Figure FDA0003825407310000041
Qload,t=Qcar,t+Qtem,t+Qstorage,t+Qindustry,t
Pload,t=Pcar,t+Ptem,t+Pstorage,t+Pindustry,t
式中,D′emi,c表示无偿的碳排放份额;Pload,t表示电能的产值;Qload,t表示热能的产能;εe表示电能份额系数;εh表示热能份额系数,εe取0.65,εh取0.35;Pcar,t、Ptem,t、Pstorage,t、Pindustry,t分别表示在t时刻电动汽车、温控负荷、工业负荷、储能消耗的电能;Qcar,t、Qtem,t、Qstorage,t、Qindustry,t分别表示在t时刻电动汽车、温控负荷、工业负荷、储能消耗的热能;
有偿的碳排放量Demi,c表示为:
Demi,c=Csum-D′emi,c
其中碳排放量Csum表示为:
Csum=Cgt+Cgt,b+Cgt,w
其中,Cgt,b表示从大电网购电的碳排放量,Cgt,w表示工业生产的碳排放量,Cgt为系统燃气轮机工作产生的碳排放量;
最终得到碳排放成本为:
Figure FDA0003825407310000042
式中,CC表示碳排放成本;
Figure FDA0003825407310000054
表示碳交易价格;
步骤3.2,综合考虑碳排放成本、弃光弃风成本、系统运行成本作为经济指标:
基于极端情况下的源网荷储协调调度模型通过碳排放权交易原理将碳排放指标转化为经济性指标,通过弃风弃光惩罚成本将可再生能源消纳能力转化为经济性指标,即用系统运行成本最小作为目标函数,取成本为正,收益为负,其表达式如下:
min Fsum=CR+CC+Cpm
式中,Fsum表示总成本;CR表示负荷参与调节后系统运行成本,包括电动汽车、温控负荷等负荷的运行成本;CC表示碳交易成本;Cpm表示弃风弃光惩罚成本;
弃风弃光惩罚成本Cpm的表达式如下:
Figure FDA0003825407310000051
式中,cpv表示弃光惩罚系数;
Figure FDA0003825407310000052
表示弃光量;cwt表示弃风惩罚系数;
Figure FDA0003825407310000053
表示弃风量;
系统的运行成本CR包括电源侧、电网侧、负荷侧的运行成本,具体表达式如下:
CR=CR,source+CR,grid+CR,load
式中,CR,source表示电源侧的运行成本;CR,grid表示电网侧的运行成本;CR,load表示负荷侧的运行成本;
电源侧的系统运行成本CR,source的具体表达式如下:
CR,source=Cgas=λngPbuy,gas
Pbuy,gas=Pgt
式中,Cgas表示购买天然气的成本;λng表示天然气价格;Pbuy,gas,t表示天然气购买量;Pgt表示燃气轮机的发电功率;
电网侧的系统运行成本CR,grid包括购电成本以及售电收益,其具体表达式如下:
CR,grid=λe,bPbuy,ee,sPsell,e
Pbuy,e=PPV+PWT
式中,λe,b表示购电价格;Pbuy,e表示购电量;λe,s表示售电价格;Psell,e表示售电量;PPV为光伏发电量;PWT为风力发电量;
负荷侧的系统运行成本CR,load包括电动汽车和温控负荷的电价成本以及储能系统、工业负荷的运行成本,其具体表达式如下:
CR,load=Ccar+Ctem+Cstorage+Cindustry
式中,Ccar表示电动汽车的电价成本,Ctem表示温控类负荷的补偿成本,Cstorage表示系统运行成本,Cindustry表示工业负荷的运行成本;
极端情况下,存在如下关系:
Figure FDA0003825407310000061
Figure FDA0003825407310000062
Cstorage=λsocPstorage,t
Cindustry=λindPindustry,t
步骤4.3,构建约束条件:
(1)电能平衡
电能平衡指的是园区内的光伏、风力、燃气轮机、储能设备与大电网共同供给电能以满足电动汽车、温控负荷以及其他负荷的电能需求,其具体表达式如下:
PPV,t+PWT,t+Pgt,t+Psoc,t+Pb,t=Php,t+Pcar,t+Ptem,t+Pelse,t
式中,PPV,t表示在t时刻屋顶光伏的出力;PWT,t表示在t时刻园区风电的出力;Pgt,t表示在t时刻燃气轮机的出力;Psoc,t表示在t时刻储能装置的出力,当储能装置处于放电状态时Psoc,t>0,当储能装置处于充电状态时Psoc,t<0;Pb,t表示在t时刻与大电网的电能交易,当Pb,t>0时表示从大电网购电,当Pb,t<0时表示向大电网售电;Php,t表示在t时刻地源热泵消耗的电能;Pcar,t表示在t时刻电动汽车消耗的电能;Ptem,t表示在t时刻温控负荷消耗的电能;Pelse,t表示在t时刻其余电负荷需求;
(2)热能平衡约束
热能平衡主要是指通过燃气轮机提供的热能、地源热泵提供的热能以及电采暖提供的热能,以满足负荷侧的热能需求,其具体表达式如下:
Rgt,h,t+Rhp,h,t+Rhs,h,t=Lh,t
式中,Rgt,h,t表示在t时刻燃气轮机提供的热能;Rhp,h,t表示在t时刻地源热泵提供的热能;Rhs,h,t表示在t时刻电采暖提供的热能;Lh,t表示t时刻热负荷需求;
(3)冷能平衡
冷能平衡主要是指空调提供的冷能以及地源热泵提供的冷能满足负荷侧的冷能需求,其具体表达式如下:
Rhp,c,t+Rac,c,t=Lc,t
式中,Rhp,c,t表示在t时刻地源热泵提供的冷能;Rac,c,t表示在t时刻空调提供的冷能;Lc,t表示t时刻冷负荷需求。
5.如权利要求4所述一种考虑极端情况的源网荷储协调运行方法,其特征在于,步骤4中,综合考虑电网平衡和经济性,求解最优源网荷储协调运行方案,具体方法为:
针对负荷侧资源,为实现极端情况下负荷峰谷差最小,采用粒子群算法求解极端情况下负荷侧资源参与电网平衡的优化调度模型,该模型的决策变量为不同负荷不同时刻的调节量即ΔPi(t),以负荷预期偏差最小为调度目标,根据不同负荷的运行条件的约束,分别计算各类负荷达到最优目标时的ΔPi(t),将其相加即为调节后不同时刻总负荷的运行结果;
针对整个源网荷储系统,综合考虑源、网、荷、储四部分的成本,在满足负荷侧资源峰谷差最小的情况下,考虑碳排放交易原理,采用粒子群算法求解极端情况下的源网荷储协调调度模型,根据负荷侧资源运行条件的约束,以系统运行成本、碳排放成本以及弃光、弃风成本的总成本最低为目标函数,求解变量为源、网、荷、储四部分出力的变化量。
6.一种考虑极端情况的源网荷储协调控制系统,其特征在于,基于权利要求1-5任一项所述的考虑极端情况的源网荷储协调运行方法,实现极端情况的源网荷储协调运行。
7.一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时,基于权利要求1-5任一项所述的考虑极端情况的源网荷储协调运行方法,实现极端情况的源网荷储协调运行。
8.一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时,基于权利要求1-5任一项所述的考虑极端情况的源网荷储协调运行方法,实现极端情况的源网荷储协调运行。
CN202211055700.1A 2022-08-31 2022-08-31 一种考虑极端情况的源网荷储协调运行方法 Pending CN115438851A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211055700.1A CN115438851A (zh) 2022-08-31 2022-08-31 一种考虑极端情况的源网荷储协调运行方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211055700.1A CN115438851A (zh) 2022-08-31 2022-08-31 一种考虑极端情况的源网荷储协调运行方法

Publications (1)

Publication Number Publication Date
CN115438851A true CN115438851A (zh) 2022-12-06

Family

ID=84243699

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211055700.1A Pending CN115438851A (zh) 2022-08-31 2022-08-31 一种考虑极端情况的源网荷储协调运行方法

Country Status (1)

Country Link
CN (1) CN115438851A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115663849B (zh) * 2022-12-29 2023-03-10 天津大学 一种水电厂与工业温控负荷协同快速调控的方法及控制器
CN116109216A (zh) * 2023-04-13 2023-05-12 国网湖北省电力有限公司营销服务中心(计量中心) 一种源网储荷系统的可调性评估方法
CN116663823A (zh) * 2023-05-25 2023-08-29 国网江苏省电力有限公司连云港供电分公司 融合精准碳数据的配电能源网格碳排放最优规划方法及系统
CN117436672A (zh) * 2023-12-20 2024-01-23 国网湖北省电力有限公司经济技术研究院 考虑等效循环寿命和温控负荷的综合能源运行方法及系统
CN117852927A (zh) * 2024-03-06 2024-04-09 中能智新科技产业发展有限公司 一种源网荷储一体化规划生产模拟方法、系统及存储介质

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115663849B (zh) * 2022-12-29 2023-03-10 天津大学 一种水电厂与工业温控负荷协同快速调控的方法及控制器
CN116109216A (zh) * 2023-04-13 2023-05-12 国网湖北省电力有限公司营销服务中心(计量中心) 一种源网储荷系统的可调性评估方法
CN116109216B (zh) * 2023-04-13 2023-06-23 国网湖北省电力有限公司营销服务中心(计量中心) 一种源网储荷系统的可调性评估方法
CN116663823A (zh) * 2023-05-25 2023-08-29 国网江苏省电力有限公司连云港供电分公司 融合精准碳数据的配电能源网格碳排放最优规划方法及系统
CN117436672A (zh) * 2023-12-20 2024-01-23 国网湖北省电力有限公司经济技术研究院 考虑等效循环寿命和温控负荷的综合能源运行方法及系统
CN117436672B (zh) * 2023-12-20 2024-03-12 国网湖北省电力有限公司经济技术研究院 考虑等效循环寿命和温控负荷的综合能源运行方法及系统
CN117852927A (zh) * 2024-03-06 2024-04-09 中能智新科技产业发展有限公司 一种源网荷储一体化规划生产模拟方法、系统及存储介质
CN117852927B (zh) * 2024-03-06 2024-06-04 中能智新科技产业发展有限公司 一种源网荷储一体化规划生产模拟方法、系统及存储介质

Similar Documents

Publication Publication Date Title
CN115438851A (zh) 一种考虑极端情况的源网荷储协调运行方法
CN109523052B (zh) 一种考虑需求响应和碳交易的虚拟电厂优化调度方法
CN110188950B (zh) 基于多代理技术的虚拟电厂供电侧和需求侧优化调度建模方法
Yu et al. A real time energy management for EV charging station integrated with local generations and energy storage system
Yin et al. Cooperative optimization strategy for large-scale electric vehicle charging and discharging
Liu et al. Co-optimization of a novel distributed energy system integrated with hybrid energy storage in different nearly zero energy community scenarios
Wang et al. Scenario analysis, management, and optimization of a new Vehicle-to-Micro-Grid (V2μG) network based on off-grid renewable building energy systems
Bonthu et al. Minimization of building energy cost by optimally managing PV and battery energy storage systems
CN112234617A (zh) 一种考虑出力外特性的虚拟电厂多目标优化调度方法
Yang et al. Research on the contribution of regional Energy Internet emission reduction considering time-of-use tariff
CN112668791A (zh) 热电联供系统的优化方法
CN111668878A (zh) 一种可再生微能源网的优化配置方法和系统
CN111293718A (zh) 基于场景分析的交直流混合微网分区二层优化运行方法
CN115310749A (zh) 含大规模电动汽车的区域综合能源供需调度方法和系统
CN111832807B (zh) 计及负荷特性和需求响应的多微电网协调优化调度方法
Zhou et al. Optimal scheduling of integrated energy system for low carbon considering combined weights
CN110991881B (zh) 一种电动汽车换电站与电力公司协同调度方法及系统
CN117477557A (zh) 一种虚拟电厂调峰优化调度方法、系统、电子设备及介质
Jintao et al. Optimized operation of multi-energy system in the industrial park based on integrated demand response strategy
CN116167573A (zh) 一种高铁站综合能源需求响应优化调度方法及相关装置
CN117439080B (zh) 一种虚拟电厂的调度方法、系统、存储介质及设备
CN112260274A (zh) 一种基于全景理论的虚拟电厂组建方法
Wu et al. Optimal operation of residential microgrids in the Harbin area
CN113036751A (zh) 一种考虑虚拟储能的可再生能源微电网优化调度方法
Yutong et al. Economic dispatching model of virtual power plant and carbon emission under carbon trading mechanism

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination