CN115422821A - Data processing method and device for rock mass parameter prediction - Google Patents
Data processing method and device for rock mass parameter prediction Download PDFInfo
- Publication number
- CN115422821A CN115422821A CN202210871892.7A CN202210871892A CN115422821A CN 115422821 A CN115422821 A CN 115422821A CN 202210871892 A CN202210871892 A CN 202210871892A CN 115422821 A CN115422821 A CN 115422821A
- Authority
- CN
- China
- Prior art keywords
- data
- rock mass
- mass parameter
- prediction
- training
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011435 rock Substances 0.000 title claims abstract description 298
- 238000003672 processing method Methods 0.000 title claims abstract description 23
- 238000000034 method Methods 0.000 claims abstract description 93
- 230000008569 process Effects 0.000 claims abstract description 79
- 238000012545 processing Methods 0.000 claims abstract description 53
- 238000010276 construction Methods 0.000 claims abstract description 46
- 238000007781 pre-processing Methods 0.000 claims abstract description 18
- 238000007405 data analysis Methods 0.000 claims abstract description 17
- 238000012549 training Methods 0.000 claims description 113
- 230000005641 tunneling Effects 0.000 claims description 36
- 238000003062 neural network model Methods 0.000 claims description 22
- 238000000605 extraction Methods 0.000 claims description 10
- 238000004458 analytical method Methods 0.000 claims description 9
- 238000013145 classification model Methods 0.000 claims description 7
- 238000012795 verification Methods 0.000 claims description 6
- 238000001914 filtration Methods 0.000 claims description 5
- 238000004590 computer program Methods 0.000 claims description 4
- 238000009412 basement excavation Methods 0.000 abstract description 117
- 230000000694 effects Effects 0.000 abstract description 6
- 230000006870 function Effects 0.000 description 10
- 230000004913 activation Effects 0.000 description 5
- 230000001133 acceleration Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 238000013528 artificial neural network Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 230000035515 penetration Effects 0.000 description 3
- 238000007637 random forest analysis Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 239000002893 slag Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
- G06F30/27—Design optimisation, verification or simulation using machine learning, e.g. artificial intelligence, neural networks, support vector machines [SVM] or training a model
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/08—Construction
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/30—Computing systems specially adapted for manufacturing
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Software Systems (AREA)
- Evolutionary Computation (AREA)
- General Physics & Mathematics (AREA)
- Medical Informatics (AREA)
- Artificial Intelligence (AREA)
- General Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Marketing (AREA)
- Primary Health Care (AREA)
- General Health & Medical Sciences (AREA)
- Strategic Management (AREA)
- General Business, Economics & Management (AREA)
- Data Mining & Analysis (AREA)
- Economics (AREA)
- Human Resources & Organizations (AREA)
- Health & Medical Sciences (AREA)
- Computing Systems (AREA)
- Tourism & Hospitality (AREA)
- Mathematical Physics (AREA)
- Computer Hardware Design (AREA)
- Geometry (AREA)
- Testing Or Calibration Of Command Recording Devices (AREA)
Abstract
本申请公开了一种用于岩体参数预测的数据处理方法和装置。该方法包括:获取待处理数据;对所述待处理数据进行基于数据分析的预处理,得到掘进特征数据;基于预设的岩体参数预测模型对所述掘进特征数据进行岩体参数预测处理,得到目标岩体参数数据。通过对获取的待处理数据进行基于数据分析的预处理,得到掘进特征数据;基于预设的岩体参数预测模型对所述掘进特征数据进行岩体参数预测处理,得到目标岩体参数数据。通过预设的岩体参数模型对掘进特征数据进行岩体参数预测,解决了现有技术中存在TBM隧道施工过程中对岩体参数判断准确度较低的技术问题,实现了提高岩体参数预测准确性的技术效果。
The application discloses a data processing method and device for rock mass parameter prediction. The method includes: acquiring data to be processed; performing preprocessing based on data analysis on the data to be processed to obtain excavation characteristic data; performing rock mass parameter prediction processing on the excavation characteristic data based on a preset rock mass parameter prediction model, Obtain the parameter data of the target rock mass. The excavation feature data is obtained by preprocessing the obtained data to be processed based on data analysis; and the rock mass parameter prediction processing is performed on the excavation feature data based on a preset rock mass parameter prediction model to obtain target rock mass parameter data. The rock mass parameter prediction of the excavation characteristic data is carried out through the preset rock mass parameter model, which solves the technical problem of low accuracy of rock mass parameter judgment in the process of TBM tunnel construction in the prior art, and realizes the improvement of rock mass parameter prediction The technical effect of accuracy.
Description
技术领域technical field
本申请涉及计算机领域,具体而言,涉及一种用于岩体参数预测的数据处理方法和装置。The present application relates to the field of computers, in particular, to a data processing method and device for rock mass parameter prediction.
背景技术Background technique
全断面硬岩隧道掘进机(Tunnel Boring Machine,以下简称为TBM)安全高效掘进的实现,关键在于TBM掘进过程中对掌子面岩体特征实时准确的感知。现场施工人员对掌子面岩体情况有了精准的判断后,才能采用最为合理的TBM掘进策略,实现安全高效的TBM掘进。然而,TBM刀盘与护盾几乎隔绝了掌子面以及周围洞壁近2m内的所有岩体信息,虽可通过人工换刀仓滚刀支座空隙直接观测到部分掌子面围岩,但掘进过程中换刀仓常有飞溅渣片且渣灰严重降低了换刀仓内部可见度,对岩体参数的判断效率较低,且对岩体参数的判断不准确。The key to the realization of safe and efficient excavation of full-face hard rock tunnel boring machine (Tunnel Boring Machine, TBM for short) lies in the real-time and accurate perception of the rock mass characteristics of the tunnel face during the excavation process of TBM. The most reasonable TBM excavation strategy can be adopted only after the on-site construction personnel have an accurate judgment on the condition of the rock mass at the face, so as to realize safe and efficient TBM excavation. However, the TBM cutterhead and the shield almost cut off all the rock mass information within 2m of the tunnel face and the surrounding cave walls. Although part of the surrounding rock of the tunnel face can be directly observed through the gap of the hob support of the manual tool change chamber, During the excavation process, the tool change chamber often has splashed slag pieces, and the slag ash seriously reduces the visibility inside the tool change chamber, and the judgment efficiency of rock mass parameters is low, and the judgment of rock mass parameters is not accurate.
因此,现有技术中存在TBM隧道施工过程中对岩体参数判断准确度较低的问题。Therefore, in the prior art, there is a problem of low accuracy in judging rock mass parameters during TBM tunnel construction.
发明内容Contents of the invention
本申请的主要目的在于提供一种用于岩体参数预测的数据处理方法和装置,以解决现有技术中存在TBM隧道施工过程中对岩体参数判断准确度较低的技术问题,提高了岩体参数预测的准确性,便于根据岩体参数对TBM隧道施工策略进行调整,进而实现提高TBM隧道施工效率。The main purpose of this application is to provide a data processing method and device for predicting rock mass parameters, so as to solve the technical problem of low accuracy in judging rock mass parameters during the construction of TBM tunnels in the prior art, and improve rock mass parameters. The accuracy of rock mass parameter prediction is convenient for adjusting the TBM tunnel construction strategy according to the rock mass parameters, thereby improving the efficiency of TBM tunnel construction.
为了实现上述目的,本申请的第一方面,提出了一种用于岩体参数预测的数据处理方法,包括:In order to achieve the above object, the first aspect of the present application proposes a data processing method for rock mass parameter prediction, including:
获取待处理数据,其中,所述待处理数据为用于表示掘进设备在待预测岩体掘进施工的相关数据;Obtaining the data to be processed, wherein the data to be processed is relevant data used to represent the excavation construction of the excavation equipment in the rock mass to be predicted;
对所述待处理数据进行基于数据分析的预处理,得到掘进特征数据,其中,所述掘进特征数据为用于表示所述掘进设备掘进特征的数据;以及Preprocessing the data to be processed based on data analysis to obtain excavation characteristic data, wherein the excavation characteristic data is data representing the excavation characteristics of the excavation equipment; and
基于预设的岩体参数预测模型对所述掘进特征数据进行岩体参数预测处理,得到目标岩体参数数据。Based on a preset rock mass parameter prediction model, rock mass parameter prediction processing is performed on the excavation feature data to obtain target rock mass parameter data.
可选地,基于预设的岩体参数预测模型对所述掘进特征数据进行岩体参数预测处理,得到目标岩体参数数据包括:Optionally, performing rock mass parameter prediction processing on the excavation feature data based on a preset rock mass parameter prediction model, to obtain target rock mass parameter data including:
基于预设的第一岩体参数模型对所述掘进特征数据进行第一预测处理,得到第一岩体参数数据,其中,所述第一岩体参数数据用于表示所述待预测岩体的第一过程预测参数的数据;Perform a first prediction process on the excavation feature data based on a preset first rock mass parameter model to obtain first rock mass parameter data, wherein the first rock mass parameter data is used to represent the rock mass to be predicted data of the first process prediction parameter;
对所述掘进特征数据和所述第一岩体参数数据进行特征分析处理,得到过程特征数据;performing characteristic analysis and processing on the excavation characteristic data and the first rock mass parameter data to obtain process characteristic data;
基于预设的第二岩体参数模型对所述过程特征数据进行第二预测处理,得到第二岩体参数数据,其中,所述第二岩体参数数据用于表示所述待预测岩体参数的第二过程预测参数的数据;以及The second prediction process is performed on the process feature data based on the second preset rock mass parameter model to obtain second rock mass parameter data, wherein the second rock mass parameter data is used to represent the rock mass parameter to be predicted the data of the second process prediction parameter; and
对所述第二岩体参数数据进行校验处理,得到所述目标岩体参数数据。Perform verification processing on the second rock mass parameter data to obtain the target rock mass parameter data.
可选地,对所述掘进特征数据和所述第一岩体参数数据进行特征分析处理,得到过程特征数据包括:Optionally, performing feature analysis and processing on the excavation feature data and the first rock mass parameter data to obtain process feature data includes:
对所述第一岩体参数的岩体完整性特征进行识别,得到岩体完整性特征数据,其中,所述岩体完整性特征数据为用于表示待预测岩体完整性特征的数据;Identifying the rock mass integrity feature of the first rock mass parameter to obtain rock mass integrity feature data, wherein the rock mass integrity feature data is data representing the integrity feature of the rock mass to be predicted;
对所述岩体完整性特征数据进行岩体完整性分类预测处理,得到分类特征数据,其中,所述分类特征数据包括岩体完整性类别和与其对应的类别概率;以及Perform rock mass integrity classification and prediction processing on the rock mass integrity feature data to obtain classification feature data, wherein the classification feature data includes rock mass integrity categories and corresponding category probabilities; and
将所述分类特征数据与所述掘进特征数据进行匹配,得到所述过程特征数据。The classification feature data is matched with the excavation feature data to obtain the process feature data.
可选地,对所述待处理数据进行基于数据分析的预处理,得到掘进特征数据包括:Optionally, preprocessing the data to be processed based on data analysis to obtain the excavation characteristic data includes:
获取参考数据,其中,所述参考数据为所述掘进设备空载状态下掘进的相关数据;Obtaining reference data, wherein the reference data is data related to the excavation of the excavation equipment in an unloaded state;
基于所述参考数据对所述待处理数据进行过滤处理,得到过程待处理数据,其中,过程待处理数据为过滤所述参考数据后的待处理数据;以及Filtering the data to be processed based on the reference data to obtain process data to be processed, wherein the process data to be processed is the data to be processed after filtering the reference data; and
基于预设特征提取规则对所述过程待处理数据进行特征提取处理,得到所述掘进特征数据,其中,所述预设特征提取规则与掘进特征相对应,所述掘进特征数据为在所述过程待处理数据中提取得到的掘进特征的数据。Based on preset feature extraction rules, feature extraction processing is performed on the data to be processed in the process to obtain the excavation feature data, wherein the preset feature extraction rules correspond to excavation features, and the excavation feature data are in the process The data of excavation features extracted from the data to be processed.
可选地,在获取待处理数据之前,所述方法还包括:Optionally, before obtaining the data to be processed, the method further includes:
获取训练样本数据,其中,所述训练样本数据为用于训练所述预设的岩体参数预测模型的样本数据;Acquiring training sample data, wherein the training sample data is sample data for training the preset rock mass parameter prediction model;
对所述训练样本数据进行基于数据分析的预处理,得到多个训练特征数据,其中,所述多个训练特征数据为与岩体参数关联的多个特征数据;以及Preprocessing the training sample data based on data analysis to obtain a plurality of training characteristic data, wherein the plurality of training characteristic data are characteristic data associated with rock mass parameters; and
基于所述多个训练特征数据对预设的神经网络模型进行训练处理,得到所述预设的岩体参数预测模型。The preset neural network model is trained based on the plurality of training feature data to obtain the preset rock mass parameter prediction model.
可选地,基于所述多个训练特征数据对预设的神经网络模型进行训练处理,得到所述预设的岩体参数预测模型包括:Optionally, the preset neural network model is trained based on the plurality of training feature data, and the preset rock mass parameter prediction model obtained includes:
对所述多个训练特征数据进行分类处理,得到第一训练特征数据集和第二训练特征数据集,其中,所述第一训练特征数据集包括多个第一训练特征数据,所述第二训练特征数据集包括多个第二训练特征数据;performing classification processing on the plurality of training feature data to obtain a first training feature data set and a second training feature data set, wherein the first training feature data set includes a plurality of first training feature data, and the second The training feature data set includes a plurality of second training feature data;
根据所述第一训练特征数据集对预设的回归分类模型进行训练处理,得到所述岩体第一预测模型,其中,所述岩体分类预测模型为用于对岩体完整性进行分类的模型;According to the first training feature data set, the preset regression classification model is trained to obtain the first rock mass prediction model, wherein the rock mass classification prediction model is used to classify rock mass integrity Model;
基于所述岩体第一预测模型对所述第二训练特征数据集进行岩体完整性特征预测处理,得到过程训练特征数据,其中,所述过程训练特征数据为用于表示岩体完整性的特征数据;以及Perform rock mass integrity feature prediction processing on the second training feature data set based on the first rock mass prediction model to obtain process training feature data, wherein the process training feature data is used to represent rock mass integrity characteristic data; and
根据所述第二训练特征数据集和所述过程训练特征数据对预设的神经网络模型进行训练处理,得到所述的岩体参数预测模型。The preset neural network model is trained according to the second training feature data set and the process training feature data to obtain the rock mass parameter prediction model.
根据本申请的第二方面,提出了一种用于岩体参数预测的数据处理装置,包括:According to the second aspect of the present application, a data processing device for rock mass parameter prediction is proposed, including:
数据获取模块,用于获取待处理数据,其中,所述待处理数据为用于表示掘进设备在待预测岩体掘进施工的相关数据;The data acquisition module is used to acquire data to be processed, wherein the data to be processed is relevant data used to represent the excavation construction of the excavation equipment in the rock mass to be predicted;
预处理模块,用于对所述待处理数据进行基于数据分析的预处理,得到掘进特征数据,其中,所述掘进特征数据为用于表示所述掘进设备掘进特征的数据;以及A preprocessing module, configured to preprocess the data to be processed based on data analysis to obtain excavation characteristic data, wherein the excavation characteristic data is data representing the excavation characteristics of the excavation equipment; and
预测模块,基于预设的岩体参数预测模型对所述掘进特征数据进行岩体参数预测处理,得到目标岩体参数数据。The prediction module performs rock mass parameter prediction processing on the excavation feature data based on a preset rock mass parameter prediction model to obtain target rock mass parameter data.
可选地,预测模块包括:Optionally, the prediction module includes:
第一预测模块,基于预设的第一岩体参数模型对所述掘进特征数据进行第一预测处理,得到第一岩体参数数据,其中,所述第一岩体参数数据用于表示所述待预测岩体的第一过程预测参数的数据;The first prediction module performs a first prediction process on the excavation feature data based on a preset first rock mass parameter model to obtain first rock mass parameter data, wherein the first rock mass parameter data is used to represent the The data of the first process prediction parameter of the rock mass to be predicted;
对所述掘进特征数据和所述第一岩体参数数据进行特征分析处理,得到过程特征数据;performing characteristic analysis and processing on the excavation characteristic data and the first rock mass parameter data to obtain process characteristic data;
第二预测模块,基于预设的第二岩体参数模型对所述过程特征数据进行第二预测处理,得到第二岩体参数数据,其中,所述第二岩体参数数据用于表示所述待预测岩体参数的第二过程预测参数的数据;以及The second prediction module performs a second prediction process on the process feature data based on a preset second rock mass parameter model to obtain second rock mass parameter data, wherein the second rock mass parameter data is used to represent the data of the second process prediction parameter of the rock mass parameter to be predicted; and
结果模块,用于对所述第二岩体参数数据进行校验处理,得到所述目标岩体参数数据。The result module is configured to perform verification processing on the second rock mass parameter data to obtain the target rock mass parameter data.
根据本申请的第三方面,提出了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机指令,所述计算机指令用于使所述计算机执行上述的用于岩体参数预测的数据处理方法。According to the third aspect of the present application, a computer-readable storage medium is proposed, the computer-readable storage medium stores computer instructions, and the computer instructions are used to make the computer execute the above-mentioned method for rock mass parameter prediction data processing method.
根据本申请的第四方面,提出了一种电子设备,包括:至少一个处理器;以及与所述至少一个处理器通信连接的存储器;其中,所述存储器存储有可被所述至少一个处理器执行的计算机程序,所述计算机程序被所述至少一个处理器执行,以使所述至少一个处理器执行上述的用于岩体参数预测的数据处理方法。According to a fourth aspect of the present application, an electronic device is proposed, including: at least one processor; and a memory connected to the at least one processor in communication; wherein, the memory stores information that can be used by the at least one processor Executable computer program, the computer program is executed by the at least one processor, so that the at least one processor executes the above data processing method for rock mass parameter prediction.
本申请的实施例提供的技术方案可以包括以下有益效果:The technical solutions provided by the embodiments of the present application may include the following beneficial effects:
在本申请中,通过对获取的待处理数据进行基于数据分析的预处理,得到掘进特征数据;基于预设的岩体参数预测模型对所述掘进特征数据进行岩体参数预测处理,得到目标岩体参数数据。通过对掘进特征数据进行处理加工过滤,结合岩体参数预测模型预测出准确性更高的岩体参数数据,解决了现有技术中存在TBM隧道施工过程中对岩体参数判断准确度较低的技术问题,实现了提高岩体参数预测的准确性的技术效果。In this application, the excavation characteristic data is obtained by preprocessing the acquired data to be processed based on data analysis; the rock mass parameter prediction processing is performed on the excavation characteristic data based on the preset rock mass parameter prediction model, and the target rock mass is obtained. Body parameter data. Through the processing and filtering of the excavation characteristic data, combined with the rock mass parameter prediction model, the rock mass parameter data with higher accuracy is predicted, which solves the problem of low accuracy of rock mass parameter judgment in the TBM tunnel construction process in the prior art. Technical problems have been solved, and the technical effect of improving the accuracy of rock mass parameter prediction has been achieved.
附图说明Description of drawings
构成本申请的一部分的附图用来提供对本申请的进一步理解,使得本申请的其它特征、目的和优点变得更明显。本申请的示意性实施例附图及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:The accompanying drawings, which constitute a part of this application, are included to provide a further understanding of the application and make other features, objects and advantages of the application apparent. The drawings and descriptions of the schematic embodiments of the application are used to explain the application, and do not constitute an improper limitation to the application. In the attached picture:
图1为本申请提供的一种用于岩体参数预测的数据处理方法的流程示意图;Fig. 1 is a schematic flow chart of a data processing method for rock mass parameter prediction provided by the present application;
图2为本申请提供的一种用于岩体参数预测的数据处理方法的流程示意图;Fig. 2 is a schematic flow chart of a data processing method for rock mass parameter prediction provided by the application;
图3为本申请提供的一种用于岩体参数预测的数据处理方法的流程示意图;Fig. 3 is a schematic flow chart of a data processing method for rock mass parameter prediction provided by the present application;
图4为本申请提供的一种用于岩体参数预测的数据处理方法的流程示意图;Fig. 4 is a schematic flow chart of a data processing method for rock mass parameter prediction provided by the present application;
图5为本申请提供的一种用于岩体参数预测的数据处理装置的结构示意图;Fig. 5 is a schematic structural diagram of a data processing device for rock mass parameter prediction provided by the present application;
图6为本申请提供的另一种用于岩体参数预测的数据处理装置的结构示意图。FIG. 6 is a schematic structural diagram of another data processing device for rock mass parameter prediction provided by the present application.
具体实施方式Detailed ways
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。In order to enable those skilled in the art to better understand the solution of the present application, the technical solution in the embodiment of the application will be clearly and completely described below in conjunction with the accompanying drawings in the embodiment of the application. Obviously, the described embodiment is only It is an embodiment of a part of the application, but not all of the embodiments. Based on the embodiments in this application, all other embodiments obtained by persons of ordinary skill in the art without creative efforts shall fall within the scope of protection of this application.
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。It should be noted that the terms "first" and "second" in the description and claims of the present application and the above drawings are used to distinguish similar objects, but not necessarily used to describe a specific sequence or sequence. It should be understood that the data so used may be interchanged under appropriate circumstances for the embodiments of the application described herein. Furthermore, the terms "comprising" and "having", as well as any variations thereof, are intended to cover a non-exclusive inclusion, for example, a process, method, system, product or device comprising a sequence of steps or elements is not necessarily limited to the expressly listed instead, may include other steps or elements not explicitly listed or inherent to the process, method, product or apparatus.
在本申请中,术语“上”、“下”、“左”、“右”、“前”、“后”、“顶”、“底”、“内”、“外”、“中”、“竖直”、“水平”、“横向”、“纵向”等指示的方位或位置关系为基于附图所示的方位或位置关系。这些术语主要是为了更好地描述本申请及其实施例,并非用于限定所指示的装置、元件或组成部分必须具有特定方位,或以特定方位进行构造和操作。In this application, the terms "upper", "lower", "left", "right", "front", "rear", "top", "bottom", "inner", "outer", "middle", The orientations or positional relationships indicated by "vertical", "horizontal", "horizontal", and "longitudinal" are based on the orientations or positional relationships shown in the drawings. These terms are mainly used to better describe the present application and its embodiments, and are not used to limit that the indicated devices, elements or components must have a specific orientation, or be constructed and operated in a specific orientation.
并且,上述部分术语除了可以用于表示方位或位置关系以外,还可能用于表示其他含义,例如术语“上”在某些情况下也可能用于表示某种依附关系或连接关系。对于本领域普通技术人员而言,可以根据具体情况理解这些术语在本申请中的具体含义。Moreover, some of the above terms may be used to indicate other meanings besides orientation or positional relationship, for example, the term "upper" may also be used to indicate a certain attachment relationship or connection relationship in some cases. Those skilled in the art can understand the specific meanings of these terms in this application according to specific situations.
此外,术语“安装”、“设置”、“设有”、“连接”、“相连”、“套接”应做广义理解。例如,“连接”可以是固定连接,可拆卸连接,或整体式构造;可以是机械连接,或电连接;可以是直接相连,或者是通过中间媒介间接相连,又或者是两个装置、元件或组成部分之间内部的连通。对于本领域普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。Furthermore, the terms "installed", "disposed", "provided", "connected", "connected", "socketed" are to be interpreted broadly. For example, "connection" can be a fixed connection, a detachable connection, or an integral structure; it can be a mechanical connection, or an electrical connection; it can be a direct connection, or an indirect connection through an intermediary, or two devices, components or Internal connectivity between components. Those of ordinary skill in the art can understand the specific meanings of the above terms in this application according to specific situations.
图1为本申请提供的一种用于岩体参数预测的数据处理方法,如图1所示,该方法包括以下步骤:Fig. 1 provides a kind of data processing method for rock mass parameter prediction provided by the application, as shown in Fig. 1, this method comprises the following steps:
S101:获取待处理数据;S101: Obtain data to be processed;
待处理数据为用于表示掘进设备在待预测岩体掘进施工的相关数据,掘进设备在进行岩体掘进施工的过程中,产生多种类型的数据,包括第一施工数据和第二施工数据,待处理评价数据可以按照数据产生的形式分为主动施工数据和被动施工数据,主动施工数据为用于表示控制掘进设备施工的参数数据,被动施工数据为用于表示在施工过程中掘进设备受掘进施工影响产生的数据,如主动施工数据包括刀盘转速、刀盘扭矩、施工功率等预先设置的掘进设备的施工参数,被动施工数据通过为对施工过程中的掘进设备的振动特征采集得到的数据,如采集的刀盘的振动数据。在进行掘进设备的采集时,通过设置在掘进设备上的TBM振动监测系统进行刀盘振动数据的采集,通过设置TBM振动监测系统中的传感器模块进行数据的实时采集存储,并将传感器模块实时采集存储的数据传递至服务器。The data to be processed is relevant data used to indicate that the excavation equipment is excavating the rock mass to be predicted. During the excavation construction of the rock mass, the excavation equipment generates various types of data, including the first construction data and the second construction data. The evaluation data to be processed can be divided into active construction data and passive construction data according to the form of data generation. The active construction data is used to represent the parameter data used to control the construction of the tunneling equipment, and the passive construction data is used to represent the tunneling equipment during the construction process. The data generated by the construction impact, such as active construction data including the preset construction parameters of the tunneling equipment such as cutterhead speed, cutterhead torque, construction power, etc., passive construction data is obtained by collecting the vibration characteristics of the tunneling equipment during the construction process , such as the collected vibration data of the cutter head. When collecting excavation equipment, the vibration data of the cutter head is collected through the TBM vibration monitoring system installed on the excavation equipment, and the sensor module in the TBM vibration monitoring system is used to collect and store the data in real time, and the sensor module collects the data in real time The stored data is passed to the server.
S102:对待处理数据进行基于数据分析的预处理,得到掘进特征数据;S102: Preprocessing the data to be processed based on data analysis to obtain excavation feature data;
掘进特征数据为用表示掘进设备掘进特征的数据,获取的待处理数据为获取的在当前预测岩体内施工预设时间段产生的相关数据,预设时间段内的任意时刻对应的掘进设备掘进施工的数据难以对当前时间段内的掘进特征进行直观的体现,需要对一定时间段内的掘进设备掘进施工产生的数据进行基于数据分析的处理,得到掘进特征数据,便于对当前待预测岩体掘进施工过程的掘进特征进行直接的体现,提高对岩体参数预测过程的数据处理效率,提高岩体参数模型进行岩体参数预测的准确率。The excavation feature data is the data representing the excavation characteristics of the excavation equipment. The obtained data to be processed is the relevant data obtained during the preset time period of the current predicted rock mass construction. The corresponding excavation equipment excavation at any time within the preset time period The construction data is difficult to intuitively reflect the excavation characteristics in the current time period. It is necessary to process the data generated by the excavation equipment excavation construction in a certain period of time based on data analysis to obtain the excavation characteristic data, which is convenient for the current rock mass to be predicted. The tunneling characteristics of the tunneling construction process are directly reflected, the data processing efficiency of the rock mass parameter prediction process is improved, and the accuracy of the rock mass parameter prediction by the rock mass parameter model is improved.
图2为本申请提供的一种用于岩体参数预测的数据处理方法,如图3所示,该方法包括以下步骤:Fig. 2 is a kind of data processing method for rock mass parameter prediction that the present application provides, as shown in Fig. 3, this method comprises the following steps:
S201:获取参考数据;S201: Obtain reference data;
参考数据为掘进设备空载状态下掘进的相关数据,举例说明如,参考数据包括掘进设备的主机频率,掘进设备的主机频率为掘进设备空载状态下刀盘处振动的频率数据,主机频率为非掘进施工过程中产生的振动频率。The reference data is the data related to the excavation of the excavation equipment under no-load condition. For example, the reference data includes the host frequency of the excavation equipment. Vibration frequency generated during non-drilling construction.
S202:基于参考数据对待处理数据进行过滤处理,得到过程待处理数据;S202: Filter the data to be processed based on the reference data to obtain the data to be processed in the process;
将待处理数据中的参考数据进行过滤,待处理数据包括待处理施工参数数据和待处理掘进振动数据,通过参考数据中的主机频率对待处理掘进振动数据进行过滤,得到过滤掉主机频率的掘进施工的刀盘的振动数据,将过滤掉参考数据的待处理数据作为过程待处理数据。Filter the reference data in the data to be processed. The data to be processed includes the construction parameter data to be processed and the excavation vibration data to be processed. The excavation vibration data to be processed is filtered through the main engine frequency in the reference data, and the excavation construction with the main engine frequency filtered out is obtained. The vibration data of the cutter head will filter out the data to be processed from the reference data as the data to be processed in the process.
S203:基于预设特征提取规则对过程待处理数据进行特征提取处理,得到掘进特征数据;S203: Perform feature extraction processing on the data to be processed in the process based on preset feature extraction rules to obtain excavation feature data;
预设特征提取规则与掘进特征相对应,掘进特征数据为在过程待处理数据中提取得到的掘进特征的数据,掘进特征参数包括掘进振动特征参数和掘进施工特征参数,对经过过滤后得到的TBM刀盘振动数据进行数据分析,统计预设时间段内的TBM刀盘振动数据,得到刀盘振动的平均幅值 峰值Xp,Xp=max{|xi|},振动加速度有效值XRMS, 平均极值,为该岩体状态下预设个数的振动极大值和振动极小值计算绝对值平均值,其中,xi为预设时间段内的第i个刀盘振动数据,T为预设时间段内的时长,N为TBM在预设时间段内共采集的振动数据的个数,上述刀盘振动的平均幅值,峰值,振动加速度有效值和平均极值为掘进特征数据中的掘进振动特征;对待处理参数中的施工特征数据进行特征提取,得到刀盘转速、刀盘扭矩、贯入度和切深指数FPI,为掘进特征数据中的掘进施工特征数据。通过对待处理数据进行特征提取的数据预处理,提高了进行岩体参数预测模型的数据数据规范性和准确率,进而实现提高对目标岩体参数数据预测的准确性。The preset feature extraction rules correspond to the excavation features. The excavation feature data is the data of the excavation features extracted from the data to be processed in the process. The excavation feature parameters include the excavation vibration characteristic parameters and the excavation construction characteristic parameters. For the filtered TBM Carry out data analysis on the vibration data of the cutterhead, count the vibration data of the TBM cutterhead within the preset time period, and obtain the average amplitude of the cutterhead vibration Peak value X p , X p =max{| xi |}, effective value of vibration acceleration X RMS , The average extreme value is to calculate the absolute value average value for the preset number of vibration maximum values and vibration minimum values in the state of the rock mass, where x i is the i-th cutterhead vibration data within the preset time period, and T is the length of time in the preset time period, N is the number of vibration data collected by the TBM in the preset time period, the average amplitude, peak value, effective value and average extreme value of the vibration acceleration of the above-mentioned cutterhead are the excavation characteristic data The excavation vibration characteristics in the excavation feature data; the construction characteristic data in the parameters to be processed are extracted to obtain the cutterhead speed, cutterhead torque, penetration and depth of cut index FPI, which are the excavation construction characteristic data in the excavation characteristic data. Through the data preprocessing of the feature extraction of the data to be processed, the data standardization and accuracy of the rock mass parameter prediction model are improved, and the accuracy of the target rock mass parameter data prediction is improved.
S103:基于预设的岩体参数预测模型对掘进特征数据进行岩体参数预测处理,得到目标岩体参数数据;S103: Perform rock mass parameter prediction processing on the excavation feature data based on the preset rock mass parameter prediction model to obtain target rock mass parameter data;
图3为本申请提供的一种用于岩体参数预测的数据处理方法,如图2所示,该方法包括以下步骤:Fig. 3 is a kind of data processing method for rock mass parameter prediction that the present application provides, as shown in Fig. 2, this method comprises the following steps:
S301:基于预设的第一岩体参数模型对掘进特征数据进行第一预测处理,得到第一岩体参数数据;S301: Perform first prediction processing on the excavation characteristic data based on the preset first rock mass parameter model to obtain first rock mass parameter data;
第一岩体参数数据用于表示待预测岩体的第一过程预测参数的数据;The first rock mass parameter data is used to represent the data of the first process prediction parameter of the rock mass to be predicted;
对第一岩体参数的岩体完整性特征进行识别,得到岩体完整性特征数据,岩体完整性特征数据为用于表示待预测岩体完整性特征的数据;对岩体完整性特征数据进行岩体完整性分类预测处理,得到分类特征数据,分类特征数据包括岩体完整性类别和与其对应的类别概率;The rock mass integrity feature of the first rock mass parameter is identified to obtain the rock mass integrity feature data, the rock mass integrity feature data is the data used to represent the integrity feature of the rock mass to be predicted; the rock mass integrity feature data Perform rock mass integrity classification and prediction processing to obtain classification feature data, which includes rock mass integrity categories and corresponding category probabilities;
将分类特征数据与掘进特征数据进行匹配,得到过程特征数据。The classification characteristic data is matched with the excavation characteristic data to obtain the process characteristic data.
对岩体完整性进行分类预测,得到与岩体完整性特征数据对应的岩体完整性标签,如,将岩体完整性分类存在5个岩体完整性标签,根据分类得到的多个岩体完整性标签,通过返回预测函数predict_proba获得样本数据分别在多个岩体完整性标签下的概率值,以最高概率对应的类别为该样本的分类标签结果。predict_proba返回的是一个n行k列的数组,第i行第j列上的数值是模型预测第i个预测样本为某个标签的概率,每一行的概率和为1,选择与岩体完整性标签对应的概率值为最大的岩体完整性标签,得到分类特征数据。Classify and predict rock mass integrity, and obtain rock mass integrity labels corresponding to rock mass integrity feature data, for example, there are five rock mass integrity labels for rock mass integrity classification, and multiple rock mass integrity Integrity label, by returning the prediction function predict_proba to obtain the probability values of the sample data under multiple rock mass integrity labels, and the category corresponding to the highest probability is the classification label result of the sample. predict_proba returns an array of n rows and k columns. The value on the i-th row and j-th column is the probability that the model predicts that the i-th predicted sample is a certain label. The sum of the probabilities of each row is 1. The probability value corresponding to the label is the largest rock mass integrity label, and the classification feature data is obtained.
S302:对掘进特征数据和第一岩体参数数据进行特征分析处理,得到过程特征数据;S302: Perform characteristic analysis and processing on the excavation characteristic data and the first rock mass parameter data to obtain process characteristic data;
经掘进特征数据和经第一岩体参数模型预测得到的岩体完整度分类特征数据构建为过程特征数据,按照掘进特征数据与岩体完整度分类特征的对应关系得到过程特征数据。The process feature data is constructed by the excavation feature data and the rock mass integrity classification feature data predicted by the first rock mass parameter model, and the process feature data is obtained according to the corresponding relationship between the excavation feature data and the rock mass integrity classification feature.
S303:基于预设的第二岩体参数模型对过程特征数据进行第二预测处理,得到第二岩体参数数据;S303: Perform a second prediction process on the process feature data based on the preset second rock mass parameter model to obtain second rock mass parameter data;
通过第二岩体参数模型对掘进特征数据和岩体完整度分类特征数据进行岩体参数预测,掘进特征数据包括掘进施工特征数据和掘进振动特征数据,掘进施工特征数据包括刀盘转速、刀盘扭矩、贯入度和切深指数FPI,掘进振动特征数据包括待预测岩体区间内的振动加速度有效值XRMS,平均幅值峰值Xp,平均极值,岩体完整度分类特征数据为经第一岩体参数模型预测的待预测岩体区间内的岩体完整性程度,用于表示待预测岩体的某个区间内的岩体的完整性程度,岩体完整度分类特征数据与掘进特征数据按照岩体掘进区间对应,如第一岩体掘进区间对应的第一岩体完整度分类特征数据,并对应第一掘进特征数据,第二岩体掘进区间对应第二岩体完整度分类特征数据,并对应第二掘进特征数据。The second rock mass parameter model is used to predict the rock mass parameters of the excavation feature data and rock mass integrity classification feature data. The excavation feature data includes excavation construction feature data and excavation vibration feature data. Torque, penetration and depth of cut index FPI, excavation vibration characteristic data include the effective value X RMS of vibration acceleration in the rock mass interval to be predicted, and the average amplitude The peak value X p , the average extreme value, and the rock mass integrity classification characteristic data are the rock mass integrity degree predicted by the first rock mass parameter model in the interval of the rock mass to be predicted, and are used to represent the rock mass integrity in a certain interval of the rock mass to be predicted The integrity degree of the rock mass, the rock mass integrity classification feature data and the excavation feature data correspond to the rock mass excavation interval, for example, the first rock mass integrity classification feature data corresponding to the first rock mass excavation interval corresponds to the first excavation interval The feature data, the second rock mass excavation interval corresponds to the second rock mass integrity classification feature data, and corresponds to the second excavation feature data.
S304:对第二岩体参数数据进行校验处理,得到目标岩体参数数据;S304: Perform verification processing on the second rock mass parameter data to obtain target rock mass parameter data;
岩体参数数据对应有预设的岩体参数范围,通过将得到的第二岩体参数与预设的岩体参数范围进行比较,若第二岩体参数在预设的岩体参数范围内,判断第二岩体参数数据预测合理,将第二岩体参数作为目标岩体参数输出;若第二岩体参数不在预设的岩体参数范围内,判断第二岩体参数数据预测不合理,输出预测错误的提示信息,便于提示岩体参数预测存在错误,以便用户对岩体参数预测的过程进行校验,排除存在影响校验结果的问题,提高了对岩体参数预测的准确性。The rock mass parameter data corresponds to a preset rock mass parameter range. By comparing the obtained second rock mass parameter with the preset rock mass parameter range, if the second rock mass parameter is within the preset rock mass parameter range, Judging that the prediction of the second rock mass parameter data is reasonable, the second rock mass parameter is output as the target rock mass parameter; if the second rock mass parameter is not within the preset rock mass parameter range, it is judged that the second rock mass parameter data prediction is unreasonable, The output prompt information of prediction error is convenient to prompt that there is an error in rock mass parameter prediction, so that users can verify the process of rock mass parameter prediction, eliminate problems that affect the verification result, and improve the accuracy of rock mass parameter prediction.
图4为本申请提供的一种用于岩体参数预测的数据处理方法,如图4所示,该方法包括以下步骤:Fig. 4 is a kind of data processing method for rock mass parameter prediction that the present application provides, as shown in Fig. 4, this method comprises the following steps:
S401:获取训练样本数据;S401: Obtain training sample data;
训练样本数据为用于训练预设的岩体参数预测模型的样本数据,训练样本数据包括训练掘进参数数据和训练岩体参数数据。The training sample data is sample data for training a preset rock mass parameter prediction model, and the training sample data includes training tunneling parameter data and training rock mass parameter data.
S402:对训练样本数据进行基于数据分析的预处理,得到多个训练特征数据;S402: Preprocessing the training sample data based on data analysis to obtain multiple training feature data;
多个训练特征数据为与岩体参数关联的多个特征数据,将训练样本数据中按照TBM掘进施工设备的一次掘进施工划分为一个区间,在该区间中,样本岩体的样本岩体参数数据与样本掘进参数数据对应,样本掘进参数数据包括样本掘进振动特征数据和样本掘进施工特征数据,样本掘进振动特征数据包括样本区间中的平均幅值,峰值,振动加速度有效值和平均极值,样本掘进施工特征数据包括样本区间中的刀盘转速、刀盘扭矩、贯入度和切深指数FPI;基于样本区间构建多个样本区间数据集,其中,多个样本区间数据集为多个包括有样本掘进施工特征数据、样本掘进振动特征数据和对应的样本岩体参数数据的训练数据集。A plurality of training feature data is a plurality of feature data associated with rock mass parameters, and the training sample data is divided into an interval according to one excavation construction of TBM excavation construction equipment. In this interval, the sample rock mass parameter data of the sample rock mass Corresponding to the sample excavation parameter data, the sample excavation parameter data includes the sample excavation vibration characteristic data and the sample excavation construction characteristic data, the sample excavation vibration characteristic data includes the average amplitude, peak value, vibration acceleration effective value and average extreme value in the sample interval, the sample The characteristic data of tunneling construction include cutterhead speed, cutterhead torque, penetration and depth of cut index FPI in the sample interval; multiple sample interval data sets are constructed based on the sample interval, wherein the multiple sample interval data sets are multiple A training data set of sample excavation construction characteristic data, sample excavation vibration characteristic data and corresponding sample rock mass parameter data.
S403:基于多个训练特征数据对预设的神经网络模型进行训练处理,得到预设的岩体参数预测模型;S403: Perform training on the preset neural network model based on multiple training feature data to obtain a preset rock mass parameter prediction model;
对多个训练特征数据进行分类处理,得到第一训练特征数据集和第二训练特征数据集;第一训练特征数据集包括多个第一训练特征数据,第二训练特征数据集包括多个第二训练特征数据;根据第一训练特征数据集对预设的回归分类模型进行训练处理,得到岩体第一预测模型;岩体分类预测模型为用于对岩体完整性进行分类的模型;基于岩体第一预测模型对第二训练特征数据集进行岩体完整性特征预测处理,得到过程训练特征数据;过程训练特征数据为用于表示岩体完整性的特征数据;以及根据第二训练特征数据集和过程训练特征数据对预设的神经网络模型进行训练处理,得到岩体参数预测模型。Perform classification processing on a plurality of training feature data to obtain a first training feature data set and a second training feature data set; the first training feature data set includes a plurality of first training feature data, and the second training feature data set includes a plurality of first training feature data sets. Two training feature data; according to the first training feature data set, the preset regression classification model is trained to obtain the first prediction model of rock mass; the rock mass classification prediction model is a model for classifying the integrity of rock mass; based on The first rock mass prediction model performs rock mass integrity feature prediction processing on the second training feature data set to obtain process training feature data; the process training feature data is feature data used to represent rock mass integrity; and according to the second training feature The data set and process training feature data are used to train and process the preset neural network model to obtain a rock mass parameter prediction model.
在本申请的一个可选实施例中,通过第一训练特征数据集进行对岩体完整性分类模型的训练,在训练过程中,第一训练特征数据集包括样本掘进振动特征数据、样本掘进施工特征数据和样本岩体完整度分类特征数据,基于第一训练特征数据集对预设的神经网络模型进行训练处理,将样本掘进振动特征数据和样本掘进施工特征数据作为模型输入,将样本岩体完整度分类特征数据作为模型输出,进行模型参数的训练。在训练过程中,分别建立随机森林树颗数、最大深度、最大特征的学习曲线,导入训练集,进行第一次训练,学习曲线开始波动时,模型进入平稳期;取第一个波动范围进行第二次训练,根据学习曲线,再次进行训练迭代处理,直到选出具有较高的准确性的模型参数,得到目标随机森林树颗数,目标最大深度和目标最大特征。将目标随机森林树颗数,目标最大深度和目标最大特征带入模型,对得到超参数的模型进行模型评价,获取第一测试样本数据,根据训练岩体完整性分类模型对第一测试样本数据进行岩体完整性分类预测,通过准确率P与Kappa系数k对岩体完整性分类模型进行评价,准确率P为训练岩体完整性分类模型预测正确的样本占第一测试样本的比例,Kappa系数计算公式如下: 其中,p0为准确率,N表示总样本数,Ni表示实际第i类总样本数,表示预测第i类总样本数。In an optional embodiment of the present application, the rock mass integrity classification model is trained through the first training feature data set. During the training process, the first training feature data set includes sample excavation vibration feature data, sample excavation construction The feature data and the sample rock mass integrity classification feature data, based on the first training feature data set, the preset neural network model is trained and processed, the sample excavation vibration feature data and the sample excavation construction feature data are used as model input, and the sample rock mass The completeness classification feature data is used as the output of the model, and the training of the model parameters is carried out. During the training process, the learning curves of the number of random forest trees, the maximum depth, and the maximum feature are respectively established, the training set is imported, and the first training is carried out. When the learning curve starts to fluctuate, the model enters a stable period; take the first fluctuation range to carry out In the second training, according to the learning curve, the training iteration process is carried out again until the model parameters with higher accuracy are selected, and the target number of random forest trees, the maximum depth of the target and the maximum feature of the target are obtained. Bring the number of target random forest trees, the maximum depth of the target and the maximum feature of the target into the model, perform model evaluation on the model with hyperparameters, obtain the first test sample data, and classify the first test sample data according to the training rock mass integrity classification model Carry out the rock mass integrity classification prediction, evaluate the rock mass integrity classification model through the accuracy rate P and Kappa coefficient k, the accuracy rate P is the proportion of the correct samples predicted by the training rock mass integrity classification model to the first test sample, Kappa The coefficient calculation formula is as follows: Among them, p 0 is the accuracy rate, N represents the total number of samples, N i represents the actual total number of samples of the i-th class, Indicates the total number of samples predicted for class i.
基于岩体第一预测模型对第二训练特征数据集进行岩体完整性特征预测处理,得到过程训练特征数据;Performing rock mass integrity feature prediction processing on the second training feature data set based on the first rock mass prediction model to obtain process training feature data;
将第一预测模型对第二训练样本进行岩体完整度特征数据预测,得到第二训练样本的岩体完整度特征数据,将预测得到的第二训练样本中的岩体完整度特征数据与第二训练样本中的训练掘进施工特征数据和训练掘进振动特征数据以及第二训练样本的样本训练岩体参数作为过程训练特征数据,为用于训练岩体参数预测模型的特征数据。The first prediction model is used to predict the rock mass integrity feature data of the second training sample to obtain the rock mass integrity feature data of the second training sample, and the predicted rock mass integrity feature data in the second training sample is compared with the first The training excavation construction feature data and training excavation vibration feature data in the second training sample and the sample training rock mass parameters in the second training sample are used as process training feature data, which are feature data for training the rock mass parameter prediction model.
根据第二训练特征数据集和过程训练特征数据对预设的神经网络模型进行训练处理,得到岩体参数预测模型。The preset neural network model is trained and processed according to the second training feature data set and the process training feature data to obtain a rock mass parameter prediction model.
预设的神经网络模型可以为BP神经网络模型,在模型训练过程中,训练得到神经网络中的超参数,通过采用网格搜索(Grid Search)的方式,在设定的参数范围内依次调整参数,利用调整的参数训练模型,从设定参数中找到在测试集上精度最高的参数;通过引入了RMSE(Root Mean Squard Error),平均绝对误差MAE(Mean Absolute Error)以及R2(RSquared)三个评价指标来对模型的预测效果进行评价, The preset neural network model can be a BP neural network model. During the model training process, the hyperparameters in the neural network are trained, and the parameters are sequentially adjusted within the set parameter range by using the grid search method. , use the adjusted parameters to train the model, and find the parameters with the highest accuracy on the test set from the set parameters; by introducing RMSE (Root Mean Squard Error), MAE (Mean Absolute Error) and R 2 (RSquared) three An evaluation index is used to evaluate the prediction effect of the model.
其中,式中,yi表示岩体参数实际值,表示岩体参数预测值,表示岩体参数实际值平均值。举例说明,通过采用网格搜索的方式,得到多个超参数对应的多个训练神经网络模型,通过模型评价指标对多个超参数对应的多个训练神经网络模型进行模型评价,确定目标的训练神经网络模型的超参数数据,得到岩体参数预测模型,通过网格搜索后的模型R2值分析比较,针对本数据集学习率为0.3、神经网络的隐藏层层数为1、每隐藏层神经元的个数为3时,神经网络网络效果最佳,根据得到的超参数确定目标训练神经网络模型。Among them, in the formula, y i represents the actual value of rock mass parameters, Indicates the predicted value of rock mass parameters, Indicates the average value of the actual value of the rock mass parameter. For example, by using the grid search method, multiple training neural network models corresponding to multiple hyperparameters are obtained, and the model evaluation index is used to evaluate the multiple training neural network models corresponding to multiple hyperparameters to determine the target training The hyperparameter data of the neural network model is used to obtain the rock mass parameter prediction model. Through the analysis and comparison of the model R 2 value after the grid search, the learning rate for this data set is 0.3, the number of hidden layers of the neural network is 1, and each hidden layer When the number of neurons is 3, the effect of the neural network network is the best, and the target training neural network model is determined according to the obtained hyperparameters.
在本申请的另一可选实施例中,训练神经网络模型中,存在对神经网络模型中的激活函数的确定,如激活函数有Sigmoid(S型生成曲线)、Tanh(双曲线函数)、ReLU(线性整流函数)、Randomized Leaky ReLU(随机带泄露修正的线性整流函数)等,对基于不同激活函数的训练神经网络模型进行筛选,举例说明,如,经模型评价处理后得到,以RandomizedLeaky ReLU函数为激活函数的神经网络模型效果最优,选取Randomized Leaky ReLU函数为神经网络模型的激活函数。In another optional embodiment of the present application, in training the neural network model, there is determination of the activation function in the neural network model, such as the activation function has Sigmoid (S-type generating curve), Tanh (hyperbolic function), ReLU (linear rectification function), Randomized Leaky ReLU (randomized linear rectification function with leakage correction), etc., to screen training neural network models based on different activation functions. The neural network model with the activation function has the best effect, and the Randomized Leaky ReLU function is selected as the activation function of the neural network model.
在本申请可选实施例中,通过第二训练特征数据集和过程训练特征数据对预设的神经网络模型进行训练处理,得到岩体参数预测模型,通过训练第一岩体预测模型,并通过第一岩体预测模型对岩体进行完整性分类的预测,并将预测后得到的岩体完整度特征数据作为训练岩体参数预测模型的训练数据,通过增加训练岩体参数预测模型的训练数据的特征维度,提高了训练得到的岩体参数模型的准确率,实现了对岩体参数预测的准确率。In an optional embodiment of the present application, the preset neural network model is trained and processed through the second training feature data set and the process training feature data to obtain a rock mass parameter prediction model, by training the first rock mass prediction model, and by The first rock mass prediction model predicts the integrity classification of the rock mass, and uses the predicted rock mass integrity feature data as the training data for training the rock mass parameter prediction model, by increasing the training data for training the rock mass parameter prediction model The feature dimension improves the accuracy of the trained rock mass parameter model and realizes the accuracy of rock mass parameter prediction.
图5为本申请提供的一种用于岩体参数预测的数据处理装置的结构示意图,如图5所示,该装置包括:Fig. 5 is a schematic structural diagram of a data processing device for rock mass parameter prediction provided by the present application. As shown in Fig. 5, the device includes:
数据获取模块51,用于获取待处理数据,其中,待处理数据为用于表示掘进设备在待预测岩体掘进施工的相关数据;The
预处理模块52,用于对待处理数据进行基于数据分析的预处理,得到掘进特征数据,其中,掘进特征数据为用于表示掘进设备掘进特征的数据;以及A
预测模块53,基于预设的岩体参数预测模型对掘进特征数据进行岩体参数预测处理,得到目标岩体参数数据。The
图6为本申请提供的一种用于岩体参数预测的数据处理装置的结构示意图,如图6所示,该装置包括:Fig. 6 is a schematic structural diagram of a data processing device for rock mass parameter prediction provided by the present application. As shown in Fig. 6, the device includes:
第一预测模块61,基于预设的第一岩体参数模型对掘进特征数据进行第一预测处理,得到第一岩体参数数据,其中,第一岩体参数数据用于表示待预测岩体的第一过程预测参数的数据;The
对掘进特征数据和第一岩体参数数据进行特征分析处理,得到过程特征数据;Perform characteristic analysis and processing on the excavation characteristic data and the first rock mass parameter data to obtain process characteristic data;
第二预测模块62,基于预设的第二岩体参数模型对过程特征数据进行第二预测处理,得到第二岩体参数数据,其中,第二岩体参数数据用于表示待预测岩体参数的第二过程预测参数的数据;以及The
结果模块63,用于对第二岩体参数数据进行校验处理,得到目标岩体参数数据。The
关于上述实施例中各单元的执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。The specific manner of performing operations of each unit in the above embodiment has been described in detail in the embodiment of the method, and will not be described in detail here.
综上所述,在本申请中,通过对获取的待处理数据进行基于数据分析的预处理,得到掘进特征数据;基于预设的岩体参数预测模型对所述掘进特征数据进行岩体参数预测处理,得到目标岩体参数数据。通过对掘进特征数据进行处理加工过滤,通过岩体参数预测模型对岩体参数进行预测,得到目标岩体参数数据,解决了现有技术中存在TBM隧道施工过程中对岩体参数判断准确度较低的技术问题,实现了提高岩体参数预测的准确性的技术效果。To sum up, in this application, the excavation characteristic data is obtained by preprocessing the acquired data to be processed based on data analysis; the rock mass parameter prediction is performed on the excavation characteristic data based on the preset rock mass parameter prediction model processing to obtain the parameter data of the target rock mass. By processing and filtering the excavation characteristic data, the rock mass parameters are predicted by the rock mass parameter prediction model, and the target rock mass parameter data is obtained, which solves the problem that the accuracy of rock mass parameter judgment in the TBM tunnel construction process in the prior art is relatively low. Low technical problems, and achieve the technical effect of improving the accuracy of rock mass parameter prediction.
需要说明的是,在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行,并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。It should be noted that the steps shown in the flowcharts of the accompanying drawings may be performed in a computer system, such as a set of computer-executable instructions, and that although a logical order is shown in the flowcharts, in some cases, The steps shown or described may be performed in an order different than here.
显然,本领域的技术人员应该明白,上述的本申请的各单元或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本申请不限制于任何特定的硬件和软件结合。Obviously, those skilled in the art should understand that each unit or each step of the above-mentioned application can be realized by a general-purpose computing device, and they can be concentrated on a single computing device, or distributed in a network composed of multiple computing devices Optionally, they can be implemented with program codes executable by a computing device, so that they can be stored in a storage device and executed by a computing device, or they can be made into individual integrated circuit modules, or they can be integrated into Multiple modules or steps are fabricated into a single integrated circuit module to realize. As such, the present application is not limited to any specific combination of hardware and software.
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。The above descriptions are only preferred embodiments of the present application, and are not intended to limit the present application. For those skilled in the art, there may be various modifications and changes in the present application. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of this application shall be included within the protection scope of this application.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210871892.7A CN115422821B (en) | 2022-07-22 | 2022-07-22 | Data processing method and device for rock mass parameter prediction |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210871892.7A CN115422821B (en) | 2022-07-22 | 2022-07-22 | Data processing method and device for rock mass parameter prediction |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115422821A true CN115422821A (en) | 2022-12-02 |
CN115422821B CN115422821B (en) | 2024-09-10 |
Family
ID=84197097
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210871892.7A Active CN115422821B (en) | 2022-07-22 | 2022-07-22 | Data processing method and device for rock mass parameter prediction |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115422821B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116644799A (en) * | 2023-07-27 | 2023-08-25 | 青岛理工大学 | Method for Predicting Ground Vibration Acceleration and Related Devices Based on Tunneling Parameters |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019042483A2 (en) * | 2017-08-30 | 2019-03-07 | 中铁工程装备集团有限公司 | Tbm boring rock state real-time sensing system and method |
WO2019063024A1 (en) * | 2017-09-30 | 2019-04-04 | 中铁工程装备集团有限公司 | Smart decision making method and system for boring control parameters of hard rock tbm |
CN110244344A (en) * | 2019-06-05 | 2019-09-17 | 中南大学 | A TBM advanced geological prediction method based on deep learning |
KR102211421B1 (en) * | 2020-06-17 | 2021-02-02 | 에스케이건설 주식회사 | Method and system for determining tbm control parameters based on prediction geological condition ahead of tunnel face |
CN112926267A (en) * | 2021-03-10 | 2021-06-08 | 山东大学 | TBM tunnel rock burst grade prediction method and system based on tunneling parameter inversion |
CN113657515A (en) * | 2021-08-20 | 2021-11-16 | 盾构及掘进技术国家重点实验室 | Classification method for judging and improving tunnel surrounding rock grade of FMC model based on rock sensitivity parameters |
-
2022
- 2022-07-22 CN CN202210871892.7A patent/CN115422821B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019042483A2 (en) * | 2017-08-30 | 2019-03-07 | 中铁工程装备集团有限公司 | Tbm boring rock state real-time sensing system and method |
WO2019063024A1 (en) * | 2017-09-30 | 2019-04-04 | 中铁工程装备集团有限公司 | Smart decision making method and system for boring control parameters of hard rock tbm |
CN110244344A (en) * | 2019-06-05 | 2019-09-17 | 中南大学 | A TBM advanced geological prediction method based on deep learning |
KR102211421B1 (en) * | 2020-06-17 | 2021-02-02 | 에스케이건설 주식회사 | Method and system for determining tbm control parameters based on prediction geological condition ahead of tunnel face |
CN112926267A (en) * | 2021-03-10 | 2021-06-08 | 山东大学 | TBM tunnel rock burst grade prediction method and system based on tunneling parameter inversion |
CN113657515A (en) * | 2021-08-20 | 2021-11-16 | 盾构及掘进技术国家重点实验室 | Classification method for judging and improving tunnel surrounding rock grade of FMC model based on rock sensitivity parameters |
Non-Patent Citations (4)
Title |
---|
B. LIU ET AL.: "Prediction of rock mass parameters in the TBM tunnel based on BP neural network integrated simulated annealing algorithm", 《TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY》, vol. 95, 11 October 2019 (2019-10-11), pages 1 - 12, XP085911189, DOI: 10.1016/j.tust.2019.103103 * |
ZHIJUN WU ET AL.: "Real-time rock mass condition prediction with TBM tunneling big data using a novel rock–machine mutual feedback perception method", 《JOURNAL OF ROCK MECHANICS AND GEOTECHNICAL ENGINEERING》, vol. 13, no. 6, 31 December 2021 (2021-12-31), pages 1311 - 1325 * |
张娜等: "TBM掘进参数智能控制系统的研究与应用", 《隧道建设(中英文)》, vol. 38, no. 10, 31 December 2018 (2018-12-31), pages 1734 - 1740 * |
张娜等: "基于隧道掘进机掘进过程的岩体状态感知方法", 《浙江大学学报(工学版)》, vol. 53, no. 10, 31 December 2019 (2019-12-31), pages 1977 - 1985 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116644799A (en) * | 2023-07-27 | 2023-08-25 | 青岛理工大学 | Method for Predicting Ground Vibration Acceleration and Related Devices Based on Tunneling Parameters |
CN116644799B (en) * | 2023-07-27 | 2023-10-17 | 青岛理工大学 | Ground vibration acceleration prediction method and related devices based on tunnel excavation parameters |
Also Published As
Publication number | Publication date |
---|---|
CN115422821B (en) | 2024-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106844194B (en) | A kind of construction method of multi-level software fault diagnosis expert system | |
WO2024067387A1 (en) | User portrait generation method based on characteristic variable scoring, device, vehicle, and storage medium | |
CN110336838B (en) | Account abnormity detection method, device, terminal and storage medium | |
CN113792754B (en) | Converter transformer DGA online monitoring data processing method for firstly removing abnormal state and then repairing | |
CN115408925B (en) | Rock mass parameter prediction method and device for tunnel construction | |
CN114448657B (en) | Distribution communication network security situation awareness and abnormal intrusion detection method | |
CN118247108B (en) | Regional earthquake security assessment method and system based on database technology | |
CN112367273A (en) | Knowledge distillation-based flow classification method and device for deep neural network model | |
CN103268406A (en) | A data mining system and method based on coal mine safety training game | |
CN115408927A (en) | Data processing method and device for predicting rock mass parameters | |
CN112906764A (en) | Communication safety equipment intelligent diagnosis method and system based on improved BP neural network | |
CN103413054A (en) | Internet addiction detection device and method based on user-computer interactive events | |
WO2023174431A1 (en) | Kpi curve data processing method | |
CN115408926B (en) | Data processing method and device for tunneling rock parameter prediction | |
CN115422821A (en) | Data processing method and device for rock mass parameter prediction | |
CN115277151B (en) | Network intrusion detection method based on whale lifting algorithm | |
CN115033591B (en) | Intelligent detection method, system, storage medium and computer equipment for electric charge data abnormality | |
CN116522594A (en) | Time self-adaptive transient stability prediction method and device based on convolutional neural network | |
CN112131587B (en) | Intelligent contract pseudo-random number security inspection method, system, medium and device | |
CN113627065A (en) | Sub-site scene norton equivalent harmonic source model identification method considering distributed new energy | |
US20240187446A1 (en) | Method and system for detecting complex multi-step attack in electric power system | |
CN114818493B (en) | A method for quantitative evaluation of tunnel rock mass integrity | |
CN118250186A (en) | A method and system for industrial control equipment identification based on improved convolutional neural network | |
CN113435494B (en) | Abnormal power consumption identification method and simulation system for low-voltage residential users | |
CN116545679A (en) | Industrial situation security basic framework and network attack behavior feature analysis method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |