CN115417751A - Method for hydroxylation of benzene ring C-H phenol - Google Patents
Method for hydroxylation of benzene ring C-H phenol Download PDFInfo
- Publication number
- CN115417751A CN115417751A CN202210666993.0A CN202210666993A CN115417751A CN 115417751 A CN115417751 A CN 115417751A CN 202210666993 A CN202210666993 A CN 202210666993A CN 115417751 A CN115417751 A CN 115417751A
- Authority
- CN
- China
- Prior art keywords
- benzene ring
- group
- compound
- phenol
- hydroxylation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 37
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 title claims abstract description 22
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 title claims abstract description 16
- 230000033444 hydroxylation Effects 0.000 title claims abstract description 12
- 238000005805 hydroxylation reaction Methods 0.000 title claims abstract description 12
- -1 nitrogen-containing heterocyclic compound Chemical class 0.000 claims abstract description 20
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims abstract description 9
- 150000001875 compounds Chemical class 0.000 claims abstract description 8
- 239000002994 raw material Substances 0.000 claims abstract description 7
- 150000001639 boron compounds Chemical class 0.000 claims abstract description 5
- 230000002140 halogenating effect Effects 0.000 claims abstract description 5
- 239000007800 oxidant agent Substances 0.000 claims abstract description 5
- 239000002904 solvent Substances 0.000 claims abstract description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 4
- 238000005286 illumination Methods 0.000 claims abstract description 4
- 230000001590 oxidative effect Effects 0.000 claims abstract description 4
- 239000001301 oxygen Substances 0.000 claims abstract description 4
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 4
- 238000003756 stirring Methods 0.000 claims abstract description 4
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 3
- 238000002156 mixing Methods 0.000 claims abstract description 3
- 125000001072 heteroaryl group Chemical group 0.000 claims description 12
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 claims description 9
- 125000003118 aryl group Chemical group 0.000 claims description 9
- 230000008569 process Effects 0.000 claims description 8
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 claims description 6
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 claims description 6
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 6
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 claims description 6
- 125000003342 alkenyl group Chemical group 0.000 claims description 6
- 125000003545 alkoxy group Chemical group 0.000 claims description 6
- 125000000217 alkyl group Chemical group 0.000 claims description 6
- 125000000304 alkynyl group Chemical group 0.000 claims description 6
- 125000004104 aryloxy group Chemical group 0.000 claims description 6
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 6
- 125000004093 cyano group Chemical group *C#N 0.000 claims description 6
- 125000000392 cycloalkenyl group Chemical group 0.000 claims description 6
- 125000000753 cycloalkyl group Chemical group 0.000 claims description 6
- UAOMVDZJSHZZME-UHFFFAOYSA-N diisopropylamine Chemical compound CC(C)NC(C)C UAOMVDZJSHZZME-UHFFFAOYSA-N 0.000 claims description 6
- 229910052736 halogen Inorganic materials 0.000 claims description 6
- 150000002367 halogens Chemical class 0.000 claims description 6
- 125000004404 heteroalkyl group Chemical group 0.000 claims description 6
- 125000004366 heterocycloalkenyl group Chemical group 0.000 claims description 6
- 125000000592 heterocycloalkyl group Chemical group 0.000 claims description 6
- 239000001257 hydrogen Substances 0.000 claims description 6
- 229910052739 hydrogen Inorganic materials 0.000 claims description 6
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 claims description 6
- 125000000018 nitroso group Chemical group N(=O)* 0.000 claims description 6
- 125000003107 substituted aryl group Chemical group 0.000 claims description 6
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 claims description 5
- 239000002253 acid Substances 0.000 claims description 5
- 150000001408 amides Chemical class 0.000 claims description 5
- 150000002148 esters Chemical class 0.000 claims description 5
- 150000004820 halides Chemical class 0.000 claims description 5
- 125000005553 heteroaryloxy group Chemical group 0.000 claims description 5
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 5
- 230000000640 hydroxylating effect Effects 0.000 claims description 4
- IVDFJHOHABJVEH-UHFFFAOYSA-N pinacol Chemical compound CC(C)(O)C(C)(C)O IVDFJHOHABJVEH-UHFFFAOYSA-N 0.000 claims description 4
- PXQLVRUNWNTZOS-UHFFFAOYSA-N sulfanyl Chemical class [SH] PXQLVRUNWNTZOS-UHFFFAOYSA-N 0.000 claims description 4
- FQBRXXBMYKCMBZ-UHFFFAOYSA-N B(O)(O)O.CC(C)(CC(C)(O)C)O.CC(C)(CC(C)(O)C)O Chemical compound B(O)(O)O.CC(C)(CC(C)(O)C)O.CC(C)(CC(C)(O)C)O FQBRXXBMYKCMBZ-UHFFFAOYSA-N 0.000 claims description 2
- BDEIASRRCFZGBR-UHFFFAOYSA-N B(O)(O)O.CC(C)(CC(C)O)O.CC(C)(CC(C)O)O Chemical compound B(O)(O)O.CC(C)(CC(C)O)O.CC(C)(CC(C)O)O BDEIASRRCFZGBR-UHFFFAOYSA-N 0.000 claims description 2
- SMTJVGKZVGURTO-UHFFFAOYSA-N B(O)(O)OB(O)O.OCC(C)(CO)C Chemical compound B(O)(O)OB(O)O.OCC(C)(CO)C SMTJVGKZVGURTO-UHFFFAOYSA-N 0.000 claims description 2
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 claims description 2
- 229940043279 diisopropylamine Drugs 0.000 claims description 2
- SKOWZLGOFVSKLB-UHFFFAOYSA-N hypodiboric acid Chemical compound OB(O)B(O)O SKOWZLGOFVSKLB-UHFFFAOYSA-N 0.000 claims description 2
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 claims description 2
- XUXNAKZDHHEHPC-UHFFFAOYSA-M sodium bromate Chemical compound [Na+].[O-]Br(=O)=O XUXNAKZDHHEHPC-UHFFFAOYSA-M 0.000 claims description 2
- 239000007858 starting material Substances 0.000 claims description 2
- 125000002485 formyl group Chemical class [H]C(*)=O 0.000 claims 2
- 125000000777 acyl halide group Chemical group 0.000 claims 1
- 125000003172 aldehyde group Chemical group 0.000 claims 1
- 125000003368 amide group Chemical group 0.000 claims 1
- 125000003277 amino group Chemical group 0.000 claims 1
- 125000004185 ester group Chemical group 0.000 claims 1
- 125000001841 imino group Chemical group [H]N=* 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 abstract description 14
- 239000000126 substance Substances 0.000 abstract description 3
- 238000006555 catalytic reaction Methods 0.000 abstract 1
- 238000001212 derivatisation Methods 0.000 abstract 1
- 239000002547 new drug Substances 0.000 abstract 1
- 150000003254 radicals Chemical class 0.000 abstract 1
- 239000000047 product Substances 0.000 description 52
- 238000002360 preparation method Methods 0.000 description 43
- RDOXTESZEPMUJZ-UHFFFAOYSA-N anisole Chemical compound COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 description 36
- 238000012512 characterization method Methods 0.000 description 18
- 238000004440 column chromatography Methods 0.000 description 18
- 239000000706 filtrate Substances 0.000 description 18
- UZKWTJUDCOPSNM-UHFFFAOYSA-N methoxybenzene Substances CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 18
- NWVVVBRKAWDGAB-UHFFFAOYSA-N p-methoxyphenol Chemical compound COC1=CC=C(O)C=C1 NWVVVBRKAWDGAB-UHFFFAOYSA-N 0.000 description 18
- 238000000926 separation method Methods 0.000 description 18
- 238000009987 spinning Methods 0.000 description 18
- 238000007405 data analysis Methods 0.000 description 17
- 239000007787 solid Substances 0.000 description 10
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 6
- KYFBKHRLIHDKPB-UHFFFAOYSA-N 2,5-Dimethoxyphenol Chemical compound COC1=CC=C(OC)C(O)=C1 KYFBKHRLIHDKPB-UHFFFAOYSA-N 0.000 description 4
- GRFNBEZIAWKNCO-UHFFFAOYSA-N 3-pyridinol Chemical compound OC1=CC=CN=C1 GRFNBEZIAWKNCO-UHFFFAOYSA-N 0.000 description 4
- PLIKAWJENQZMHA-UHFFFAOYSA-N 4-aminophenol Chemical compound NC1=CC=C(O)C=C1 PLIKAWJENQZMHA-UHFFFAOYSA-N 0.000 description 4
- ZSBDGXGICLIJGD-UHFFFAOYSA-N 4-phenoxyphenol Chemical compound C1=CC(O)=CC=C1OC1=CC=CC=C1 ZSBDGXGICLIJGD-UHFFFAOYSA-N 0.000 description 4
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 4
- DFNBGZODMHWKKK-UHFFFAOYSA-N methyl 2-hydroxy-5-methoxybenzoate Chemical compound COC(=O)C1=CC(OC)=CC=C1O DFNBGZODMHWKKK-UHFFFAOYSA-N 0.000 description 4
- 239000005927 Pyriproxyfen Substances 0.000 description 3
- 150000001299 aldehydes Chemical class 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 150000002989 phenols Chemical class 0.000 description 3
- ORECFXMTZQZHSP-UHFFFAOYSA-N 3-fluoro-4-methoxyphenol Chemical compound COC1=CC=C(O)C=C1F ORECFXMTZQZHSP-UHFFFAOYSA-N 0.000 description 2
- KIVFDFJTCRMULF-UHFFFAOYSA-N 4-(4-fluorophenoxy)phenol Chemical compound C1=CC(O)=CC=C1OC1=CC=C(F)C=C1 KIVFDFJTCRMULF-UHFFFAOYSA-N 0.000 description 2
- QASBCTGZKABPKX-UHFFFAOYSA-N 4-(methylsulfanyl)phenol Chemical compound CSC1=CC=C(O)C=C1 QASBCTGZKABPKX-UHFFFAOYSA-N 0.000 description 2
- PKDVWOVKDPEBQF-UHFFFAOYSA-N 4-methoxy-2-methylphenol Chemical compound COC1=CC=C(O)C(C)=C1 PKDVWOVKDPEBQF-UHFFFAOYSA-N 0.000 description 2
- SSPYTHVQEXWESL-UHFFFAOYSA-N 4-methoxy-3-(trifluoromethyl)phenol Chemical compound COC1=CC=C(O)C=C1C(F)(F)F SSPYTHVQEXWESL-UHFFFAOYSA-N 0.000 description 2
- UUIJPHGPERPMIF-UHFFFAOYSA-N 4-pyrrolidin-1-ylphenol Chemical compound C1=CC(O)=CC=C1N1CCCC1 UUIJPHGPERPMIF-UHFFFAOYSA-N 0.000 description 2
- LMIQERWZRIFWNZ-UHFFFAOYSA-N 5-hydroxyindole Chemical compound OC1=CC=C2NC=CC2=C1 LMIQERWZRIFWNZ-UHFFFAOYSA-N 0.000 description 2
- WWPKRXOOVICNJY-UHFFFAOYSA-N 6-methoxynaphthalen-2-ol Chemical compound C1=C(O)C=CC2=CC(OC)=CC=C21 WWPKRXOOVICNJY-UHFFFAOYSA-N 0.000 description 2
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
- UIOFUWFRIANQPC-JKIFEVAISA-N Floxacillin Chemical compound N([C@@H]1C(N2[C@H](C(C)(C)S[C@@H]21)C(O)=O)=O)C(=O)C1=C(C)ON=C1C1=C(F)C=CC=C1Cl UIOFUWFRIANQPC-JKIFEVAISA-N 0.000 description 2
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical compound C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 description 2
- PFYHAAAQPNMZHO-UHFFFAOYSA-N Methyl 2-methoxybenzoate Chemical compound COC(=O)C1=CC=CC=C1OC PFYHAAAQPNMZHO-UHFFFAOYSA-N 0.000 description 2
- PCLIMKBDDGJMGD-UHFFFAOYSA-N N-bromosuccinimide Chemical compound BrN1C(=O)CCC1=O PCLIMKBDDGJMGD-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- LUSZGTFNYDARNI-UHFFFAOYSA-N Sesamol Natural products OC1=CC=C2OCOC2=C1 LUSZGTFNYDARNI-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 2
- 150000001502 aryl halides Chemical class 0.000 description 2
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical compound C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 229960004337 hydroquinone Drugs 0.000 description 2
- AWJUIBRHMBBTKR-UHFFFAOYSA-N isoquinoline Chemical compound C1=NC=CC2=CC=CC=C21 AWJUIBRHMBBTKR-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- HNKJADCVZUBCPG-UHFFFAOYSA-N thioanisole Chemical compound CSC1=CC=CC=C1 HNKJADCVZUBCPG-UHFFFAOYSA-N 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- FTNJQNQLEGKTGD-UHFFFAOYSA-N 1,3-benzodioxole Chemical compound C1=CC=C2OCOC2=C1 FTNJQNQLEGKTGD-UHFFFAOYSA-N 0.000 description 1
- JCICIFOYVSPMHG-UHFFFAOYSA-N 1-(2,6-dichlorophenyl)-3h-indol-2-one Chemical compound ClC1=CC=CC(Cl)=C1N1C2=CC=CC=C2CC1=O JCICIFOYVSPMHG-UHFFFAOYSA-N 0.000 description 1
- OSIGJGFTADMDOB-UHFFFAOYSA-N 1-Methoxy-3-methylbenzene Chemical compound COC1=CC=CC(C)=C1 OSIGJGFTADMDOB-UHFFFAOYSA-N 0.000 description 1
- JIXDOBAQOWOUPA-UHFFFAOYSA-N 1-fluoro-2-methoxybenzene Chemical compound COC1=CC=CC=C1F JIXDOBAQOWOUPA-UHFFFAOYSA-N 0.000 description 1
- AODSTUBSNYVSSL-UHFFFAOYSA-N 1-fluoro-4-phenoxybenzene Chemical compound C1=CC(F)=CC=C1OC1=CC=CC=C1 AODSTUBSNYVSSL-UHFFFAOYSA-N 0.000 description 1
- BHPJMWUXVOTGQU-UHFFFAOYSA-N 1-methoxy-2-(trifluoromethyl)benzene Chemical compound COC1=CC=CC=C1C(F)(F)F BHPJMWUXVOTGQU-UHFFFAOYSA-N 0.000 description 1
- VDQQJMHXZCMNMU-UHFFFAOYSA-N 1-phenylpyrrolidine Chemical compound C1CCCN1C1=CC=CC=C1 VDQQJMHXZCMNMU-UHFFFAOYSA-N 0.000 description 1
- LUZDYPLAQQGJEA-UHFFFAOYSA-N 2-Methoxynaphthalene Chemical compound C1=CC=CC2=CC(OC)=CC=C21 LUZDYPLAQQGJEA-UHFFFAOYSA-N 0.000 description 1
- FRIBMENBGGCKPD-UHFFFAOYSA-N 3-(2,3-dimethoxyphenyl)prop-2-enal Chemical group COC1=CC=CC(C=CC=O)=C1OC FRIBMENBGGCKPD-UHFFFAOYSA-N 0.000 description 1
- RGVBYOCNGAHKMT-UHFFFAOYSA-N 3-oxabicyclo[3.2.2]nona-1(7),5,8-triene Chemical compound C1OCC2=CC=C1C=C2 RGVBYOCNGAHKMT-UHFFFAOYSA-N 0.000 description 1
- XWNSFEAWWGGSKJ-UHFFFAOYSA-N 4-acetyl-4-methylheptanedinitrile Chemical compound N#CCCC(C)(C(=O)C)CCC#N XWNSFEAWWGGSKJ-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000004153 Potassium bromate Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000010543 cumene process Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 239000012954 diazonium Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- PZOUSPYUWWUPPK-UHFFFAOYSA-N indole Natural products CC1=CC=CC2=C1C=CN2 PZOUSPYUWWUPPK-UHFFFAOYSA-N 0.000 description 1
- RKJUIXBNRJVNHR-UHFFFAOYSA-N indolenine Natural products C1=CC=C2CC=NC2=C1 RKJUIXBNRJVNHR-UHFFFAOYSA-N 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 230000000269 nucleophilic effect Effects 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000000575 pesticide Substances 0.000 description 1
- 229940094037 potassium bromate Drugs 0.000 description 1
- 235000019396 potassium bromate Nutrition 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- NHDHVHZZCFYRSB-UHFFFAOYSA-N pyriproxyfen Chemical compound C=1C=CC=NC=1OC(C)COC(C=C1)=CC=C1OC1=CC=CC=C1 NHDHVHZZCFYRSB-UHFFFAOYSA-N 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 229940077386 sodium benzenesulfonate Drugs 0.000 description 1
- MZSDGDXXBZSFTG-UHFFFAOYSA-M sodium;benzenesulfonate Chemical compound [Na+].[O-]S(=O)(=O)C1=CC=CC=C1 MZSDGDXXBZSFTG-UHFFFAOYSA-M 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C41/00—Preparation of ethers; Preparation of compounds having groups, groups or groups
- C07C41/01—Preparation of ethers
- C07C41/18—Preparation of ethers by reactions not forming ether-oxygen bonds
- C07C41/26—Preparation of ethers by reactions not forming ether-oxygen bonds by introduction of hydroxy or O-metal groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C213/00—Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C319/00—Preparation of thiols, sulfides, hydropolysulfides or polysulfides
- C07C319/14—Preparation of thiols, sulfides, hydropolysulfides or polysulfides of sulfides
- C07C319/20—Preparation of thiols, sulfides, hydropolysulfides or polysulfides of sulfides by reactions not involving the formation of sulfide groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C37/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
- C07C37/58—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by oxidation reactions introducing directly hydroxy groups on a =CH-group belonging to a six-membered aromatic ring with the aid of molecular oxygen
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C67/00—Preparation of carboxylic acid esters
- C07C67/30—Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
- C07C67/31—Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by introduction of functional groups containing oxygen only in singly bound form
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D209/00—Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
- C07D209/02—Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
- C07D209/04—Indoles; Hydrogenated indoles
- C07D209/30—Indoles; Hydrogenated indoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to carbon atoms of the hetero ring
- C07D209/32—Oxygen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D209/00—Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
- C07D209/02—Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
- C07D209/04—Indoles; Hydrogenated indoles
- C07D209/30—Indoles; Hydrogenated indoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to carbon atoms of the hetero ring
- C07D209/32—Oxygen atoms
- C07D209/34—Oxygen atoms in position 2
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D213/00—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
- C07D213/02—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
- C07D213/04—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D213/60—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D213/62—Oxygen or sulfur atoms
- C07D213/63—One oxygen atom
- C07D213/64—One oxygen atom attached in position 2 or 6
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D213/00—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
- C07D213/02—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
- C07D213/04—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D213/60—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D213/62—Oxygen or sulfur atoms
- C07D213/63—One oxygen atom
- C07D213/65—One oxygen atom attached in position 3 or 5
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D295/00—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
- C07D295/04—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms
- C07D295/08—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by singly bound oxygen or sulfur atoms
- C07D295/096—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by singly bound oxygen or sulfur atoms with the ring nitrogen atoms and the oxygen or sulfur atoms separated by carbocyclic rings or by carbon chains interrupted by carbocyclic rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D317/00—Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms
- C07D317/08—Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3
- C07D317/44—Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 ortho- or peri-condensed with carbocyclic rings or ring systems
- C07D317/46—Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 ortho- or peri-condensed with carbocyclic rings or ring systems condensed with one six-membered ring
- C07D317/48—Methylenedioxybenzenes or hydrogenated methylenedioxybenzenes, unsubstituted on the hetero ring
- C07D317/62—Methylenedioxybenzenes or hydrogenated methylenedioxybenzenes, unsubstituted on the hetero ring with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to atoms of the carbocyclic ring
- C07D317/64—Oxygen atoms
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
The invention relates to the technical field of organic chemistry, in particular to a method for hydroxylation of benzene ring C-H phenol, which comprises the following steps: mixing raw materials, a solvent, a boron compound, a halogenating agent, a nitrogen-containing heterocyclic compound, an oxidant and an amide compound, and stirring and reacting for 12-72 hours at the temperature of 20-50 ℃ under the illumination of 380-456 nm under the sealed condition; the raw material is a compound containing a benzene ring, and the benzene ring structure of the compound containing the benzene ring is at least one hydrogen atom. The invention uses near ultraviolet visible light as reaction energy, is green and environment-friendly, has high energy utilization rate, and can efficiently realize the conversion from light energy to chemical energy; the reaction attacks free radical cation species generated under visible light catalysis by using cheap and easily available oxygen, and a wide range of target products are efficiently and greenly prepared. The method can be widely applied to fully-synthesized synthetic building blocks and new drug derivatization.
Description
Technical Field
The invention relates to the technical field of organic chemistry, in particular to a method for hydroxylation of benzene ring C-H phenol.
Technical Field
Phenols are very important intermediates in the chemical, pharmaceutical and materials industries. The classical process for the preparation of phenols is based on the decomposition of cumene hydroperoxide (Hock process) or the pyrolysis of sodium benzenesulfonate (Dow process) with sulfuric acid. However, both protocols suffer from low yield and inefficient use of energy. Several alternative methods of synthesizing functionalized phenols have been developed, such as nucleophilic aryl substitution of active aryl halides, phenylalkyne transformations, and copper-mediated transformation of aryl diazonium salts and aryl borates. However, the practical application of these methods is limited due to the harsh reaction conditions, narrow substrate ranges and difficulties in substrate access. Recently, several groups have reported iridium or palladium based catalytic systems for the production of phenol from aryl halides, providing a milder, more useful access to phenol. However, the high price and scarcity of sources of precious metals has limited the widespread use of these catalysts.
Disclosure of Invention
The invention aims to overcome the problems in the prior art and provide a method for hydroxylating benzene ring C-H phenol.
The purpose of the invention is realized by the following technical scheme:
a method for hydroxylation of a benzene ring C-H phenol, comprising the steps of: mixing raw materials, a solvent, a boron compound, a halogenating agent, a nitrogen-containing heterocyclic compound, an oxidant and an amide compound, and stirring and reacting for 12-72 hours at the temperature of 20-50 ℃ under the action of 380-456 nm light under a sealed condition; the raw material is a compound containing a benzene ring, and the benzene ring structure of the compound containing the benzene ring is at least one hydrogen atom.
Preferably, the starting material is a compound of formula (I):
wherein R is 1 、R 2 、R 3 、R 4 、R 5 The same or different from each other and each is independently selected from the group consisting of hydrogen, alkyl, alkoxy, heteroalkyl, cycloalkyl, heterocycloalkyl, alkenyl, heteroalkenyl, cycloalkenyl, heterocycloalkenyl, alkynyl, heteroalkynyl, cycloalkynyl, heterocycloalkynyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, aryloxy, heteroaryloxy, halogen, hydroxyl, mercapto, aldehyde, sulfonic acid, carboxyl, acid halide, ester, amide, amino, imino, nitro, cyano, nitroso.
Preferably, the solvent is one of N, N-dimethylformamide, ethyl acetate and acetonitrile.
Preferably, the boron compound is one of pinacol diborate, neopentyl glycol diborate, bis (2-methyl-2, 4-pentanediol) borate, bis (2, 4-dimethyl-2, 4-pentanediol) borate and tetrahydroxy diboron.
Preferably, the halogenating machine has the general formula:
wherein R is 6 、R 7 The same or different, and each is independently selected from the group consisting of hydrogen, alkyl, alkoxy, heteroalkyl, cycloalkyl, heterocycloalkyl, alkenyl, heteroalkenyl, cycloalkenyl, heterocycloalkenyl, alkynyl, heteroalkynyl, cycloalkynyl, heterocycloalkynyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, aryloxy, heteroaryloxy, halogen, hydroxy, mercapto, aldehyde, sulfonic acid, carboxy, acid halide, ester, amide, amino, imino, nitro, cyano, nitroso.
Preferably, the nitrogen-containing heterocycle is of the general formula:
wherein R is 8 、R 9 、R 10 、R 11 、R 12 、R 13 、R 14 The same or different from each other and each is independently selected from the group consisting of hydrogen, alkyl, alkoxy, heteroalkyl, cycloalkyl, heterocycloalkyl, alkenyl, heteroalkenyl, cycloalkenyl, heterocycloalkenyl, alkynyl, heteroalkynyl, cycloalkynyl, heterocycloalkynyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, aryloxy, heteroaryloxy, halogen, hydroxyl, mercapto, aldehyde, sulfonic acid, carboxyl, acid halide, ester, amide, amino, imino, nitro, cyano, nitroso.
Preferably, the amine compound is one of triethylamine, diisopropylethylamine, N' -tetramethylethylenediamine, and diisopropylamine.
Preferably, the oxidant is one of oxygen, ozone, sodium bromate, potassium bromate and potassium persulfate.
Preferably, the light source used for illumination is a Kessil lamp.
Compared with the prior art, the invention has the following technical effects:
the method for hydroxylation of benzene ring C-H phenol disclosed by the invention has the advantages that the reaction system is simple, the strict non-metallization of the whole reaction system can be realized, the C-H bond on the aromatic ring is converted into the C-O bond in one step, the reaction process is safe and controllable, and the operation in the preparation production process is simplified; the reaction has high site selectivity and few byproducts, and solves the problem of high difficulty in separating the structural isomers. The near ultraviolet visible light is used as reaction energy, the reaction condition is mild, the environment is protected, the energy utilization rate is high, and the conversion from light energy to chemical energy can be efficiently realized; the reactants are simple and commercially available raw materials, are low in price and very easy to obtain, do not need to be subjected to additional modification protection before reaction, can be directly used for preparation and production, simplify the operation steps and shorten the reaction route; the aryl C-O functional group has the advantages of progressive property and environmental friendliness, can be widely applied to the fields of medicines, pesticides, synthetic industry and the like, and can effectively reduce the economic cost.
Detailed Description
In order to make the objects, technical solutions and advantages of the present invention more apparent, the technical solutions of the present invention will be described in detail below with reference to specific examples and comparative examples. It is to be understood that the described embodiments are merely exemplary of the invention, and not restrictive of the full scope of the invention. All other embodiments, which can be derived by a person skilled in the art from the examples given herein without any inventive step, are within the scope of the present invention.
Unless otherwise specified, the devices used in this example are all conventional experimental devices, the materials and reagents used are commercially available, and the experimental methods without specific reference are also conventional experimental methods.
Example 1
This example provides a p-hydroxyanisole of the formula (a):
the preparation method comprises the following steps:
anisole (0.2mmol, 1.0eq), pinacol diboron ester (0.8 mmol, 4.0eq), diisopropylethylamine (1.0mmol, 5.0eq), N-bromosuccinimide (0.22 mmol, 1.1 eq), isoquinoline (0.04mmol, 0.2eq) and acetonitrile (0.5 mL) are added into a dried 2mL sample bottle, the sample bottle is sealed, an oxygen balloon is introduced, the mixture is stirred uniformly at room temperature, and then the mixture is irradiated by a 390nm LED under stirring, and the reaction time is 12 to 72 hours. After the reaction is finished, the filtrate is dried by spinning, and the target product, white solid and 89.70% of yield are obtained by column chromatography separation.
The result of the correlation characterization analysis is as follows: 1 H NMR(CDCl 3 ,600MHz)δ6.77–6.72(m,4H), 3.72(s,J=2.0Hz,3H); 13 C NMR(CDCl 3 100 MHz) delta 153.7,149.6,116.1,114.9, 55.9 the results further confirm the molecular structure of the product as in molecular structure a above.
Example 2
This example provides a process for the preparation of 2-methyl-4-methoxyphenol. The structural formula of the 2-methyl-4-methoxyphenol is shown as the following molecular structural formula b:
the preparation method refers to the preparation method of p-hydroxyanisole in example 1, and is characterized in that m-methylanisole (0.2 mmol) is adopted to replace anisole, filtrate is dried in a spinning mode, column chromatography separation is carried out, and a target product is obtained, wherein the yield is 66.86%.
And (3) performing characterization data analysis on the prepared product b, wherein the result is as follows: 1 H NMR(CDCl 3 ,400MHz)δ 6.76-6.66(m,2H),6.62(dd,J=8.7,2.9Hz,1H),4.86(s,1H),3.75(s,3H),2.23(s,3H); 13 C NMR(CDCl 3 100 MHz) delta 153.5,147.9,125.1,116.7,115.6,111.9,55.8,16.1 the results further confirm the molecular structure of the product as in molecular structure b above.
Example 3
This example provides a process for the preparation of 4-phenoxyphenol. The structural formula of the 4-phenoxyphenol is shown as the following molecular structural formula c:
the preparation method refers to the preparation method of p-hydroxyanisole in example 1, and is characterized in that diphenyl ether (0.2 mmol) is adopted to replace anisole, filtrate is dried in a spinning mode, column chromatography separation is carried out, and the target product is obtained, wherein the yield is 75.34%.
The prepared product c is subjected to characterization data analysis, and the result is as follows: 1 H NMR(400MHz, Chloroform-d)δ7.31(dd,J=8.5,7.5Hz,2H),7.06(t,J=7.4Hz,1H),6.96(t,J=8.9 Hz,4H),6.83(d,J=8.9Hz,2H),4.80(s,1H); 13 c NMR (101MHz, chloroform-d) delta 158.5,151.6,150.2,129.5,122.3,121.1,117.6,117.1 this further confirms the molecular structure of the product as described above for molecular structure C.
Example 4
This example provides a method for preparing methyl 5-methoxysalicylate. The structural formula of the methyl 5-methoxysalicylate is shown as the following molecular structural formula d:
the preparation method refers to the preparation method of p-hydroxyanisole in example 1, and is characterized in that methyl 2-methoxybenzoate (0.2 mmol) is used for replacing anisole, filtrate is dried in a spinning mode, column chromatography separation is conducted, and a target product is obtained, and the yield is 70.92%.
The prepared product d is subjected to characterization data analysis, and the result is as follows: 1 H NMR(400MHz,CDCl 3 )δ 7.30(d,J=3.2Hz,1H),6.97(dd,J=8.9,3.2Hz,1H),6.85(d,J=8.9Hz,1H),5.19(brs, 1H,OH),3.87(s,3H),3.82(s,3H).; 13 C NMR(100MHz,CDCl 3 ) Delta 166.8,153.7,149.3, 120.8,120.6,118.4,114.2,57.0,52.5, which further confirms the molecular structure of the product as described above for molecular structure d.
Example 5
This example provides a method for preparing 2, 5-dimethoxyphenol. The structural formula of the 2, 5-dimethoxyphenol is shown as the following molecular structural formula e:
the preparation method refers to the preparation method of p-hydroxyanisole in example 1, and is different in that p-xylylene ether (0.2 mmol) is adopted to replace anisole, filtrate is dried in a spinning mode, column chromatography separation is carried out, and a target product is obtained, and the yield is 59.13%.
And (3) performing characterization data analysis on the prepared product e, wherein the result is as follows: 1 H NMR(400MHz,CDCl 3 ) δ6.74(d,J=8.8Hz,1H),6.54(d,J=2.9Hz,1H),6.35(dd,J=8.8,2.9Hz,1H),5.74(s, 1H),3.80(s,3H),3.71(s,3H).; 13 C NMR(100MHz,CDCl 3 ) Delta 154.5,146.4,140.9,111.5, 104.2,101.7,56.5,55.5 the results further confirm that the product molecular structure is just like structure e above.
Example 6
This example provides a method for preparing 3-fluoro-4-methoxyphenol. The structural formula of the 3-fluoro-4-methoxyphenol is shown as the following molecular structural formula f:
the preparation method refers to the preparation method of p-hydroxyanisole in example 1, and is characterized in that 2-fluoroanisole (0.2 mmol) is adopted to replace anisole, filtrate is dried in a spinning mode, column chromatography separation is carried out, and a target product, a white solid and the yield are 46.73%.
The prepared product f is subjected to characterization data analysis, and the result is as follows: 1 H NMR(600MHz,CDCl 3 ):δ 6.82(t,J=9.0Hz,1H),6.63(dd,J=12.6,3.0Hz,1H),6.576.49m,1H),5.67(br s,1H), 3.82(s,3H). 13 C NMR(150MHz,CDCl 3 ) Delta 152.9,145.0,141.4,115.1,110.3,104.6, 57.2 the results further confirm the molecular structure of the product as described above.
Example 7
This example provides a method for preparing 4-aminophenol. The structural formula of the 4-aminophenol is shown as the following molecular structural formula g:
the preparation method refers to the preparation method of p-hydroxyanisole in example 1, and is different in that aniline (0.2 mmol) is adopted to replace anisole, filtrate is dried in a spinning mode, column chromatography separation is carried out, and the target product, white solid and yield are 85.91%.
The prepared product g is subjected to characterization data analysis, and the result is as follows: 1 H NMR(600MHz,CDCl 3 ) Delta 8.35 (s, 1H), 6.52-6.44 (m, 4H), 4.38 (s, 2H). The results further confirm that the molecular structure of the product is as in the above molecular structure g.
Example 8
This example provides a method for preparing 4-methoxy-3- (trifluoromethyl) phenol. The structural formula of the 4-methoxy-3- (trifluoromethyl) phenol is shown as the following molecular structural formula h:
the preparation method refers to the preparation method of p-hydroxyanisole in example 1, and is characterized in that 2- (trifluoromethyl) anisole (0.2 mmol) is adopted to replace anisole, filtrate is dried in a spinning mode, column chromatography separation is carried out, and the target product, white solid and yield are 45.32%.
And (3) performing characterization data analysis on the prepared product h, wherein the result is as follows: 1 H NMR(600MHz,CDCl 3 ):δ 7.07(d,J=3.0Hz,1H),6.97(dd,J=9.0,3.0Hz,1H),6.90(d,J=8.4Hz,1H),3.85(s, 3H); 13 C NMR(150MHz,CDCl 3 ) Delta 151.7,148.8,123.3,119.7,119.6,114.4,114.0 and 56.7, the results further confirm that the molecular structure of the product is just as that of the above molecular structure h.
Example 9
This example provides a method for preparing sesamol. The structural formula of the sesamol is shown as the following molecular structural formula i:
the preparation method refers to the preparation method of p-hydroxyanisole in example 1, except that 1, 3-benzodioxole (0.2 mmol) is used to replace anisole, filtrate is dried by spinning, and column chromatography separation is carried out to obtain the target product, the yield is 64.24%
And (3) performing characterization data analysis on the prepared product i, wherein the result is as follows: 1 H NMR(400MHz,CDCl 3 )δ 6.66(d,J=8.4Hz,1H),6.44(d,J=2.8Hz,1H),6.27(dd,J=8.0,2.8Hz,1H),5.91(s, 2H),5.57(br s,1H); 13 C NMR(100MHz,CDCl 3 ) Delta 150.5,148.2,141.6,108.3,106.8, 101.2,98.4 the results further confirm the molecular structure of the product as in i above.
Example 10
This example provides a method for preparing 4- (4-fluorophenoxy) phenol. The structural formula of the 4- (4-fluorophenoxy) phenol is shown as the following molecular structural formula j:
the preparation method refers to the preparation method of p-hydroxyanisole in example 1, and is characterized in that 4-fluorodiphenyl ether (0.2 mmol) is adopted to replace anisole, filtrate is dried in a spinning mode, column chromatography separation is carried out, a target product is obtained, and the yield is 67.60%.
And (3) performing characterization data analysis on the prepared product j, wherein the result is as follows: 1 H NMR(400MHz,CDCl 3 )δ 7.15(t,J=8.4Hz,1H),7.07-6.93(m,4H),6.55(dd,J=8.4,2.4Hz,1H),6.52(dd,J= 8.4,2.4Hz,1H),6.45(t,J=2.4Hz,1H),5.18(br s,1H); 13 C NMR(100MHz,CDCl 3 ) Delta 159.3,158.1,156.8,15234,130.3,120.8,116.2,110.2,110.0,105.3 this result further confirms the molecular structure of the product as described above for molecular structure j.
Example 11
This example provides a process for the preparation of 4- (methylthio) phenol. The structural formula of the 4- (methylthio) phenol is shown as the following molecular structural formula k:
the preparation method refers to the preparation method of p-hydroxyanisole in example 1, and is characterized in that methyl phenyl sulfide (0.2 mmol) is adopted to replace anisole, filtrate is dried in a spinning mode, column chromatography separation is carried out, and a target product, a white solid and the yield of 50.72% are obtained.
The prepared product k is subjected to characterization data analysis, and the result is as follows: 1 H NMR(400MHz,CDCl 3 )δ 7.22(d,J=8.8Hz,2H),6.79(d,J=8.8Hz,2H),5.43(s,1H),2.45(s,3H); 13 C NMR(100MHz,CDCl 3 ) Delta 154.0,130.4,128.8,116.2,18.0. This result further confirms the molecular structure of the product as in molecular structure k above.
Example 12
This example provides a method for preparing 4-pyrrolidinophenol. The structural formula of the 4-pyrrolidinylphenol is shown as the following molecular structural formula I:
the preparation method refers to the preparation method of p-hydroxyanisole in example 1, and is different in that 1-phenylpyrrolidine (0.2 mmol) is adopted to replace anisole, the filtrate is dried by spinning, and column chromatography separation is carried out to obtain the target product, wherein the yield is 47.68%.
The prepared product l is subjected to characterization data analysis, and the result is as follows: 1 H NMR(400MHz,CDCl 3 )δ 7.40(s,1H),6.72(d,J=6.6Hz,2H),6.45(d,J=8.4Hz,2H),3.40-3.10(m,4H), 2.01-1.85(m,4H); 13 C NMR(100MHz,CDCl 3 ) Delta 148.0,142.5,115.7,112.7,44.9,24.9 this result further confirms the molecular structure of the product as described above for molecular structure l.
Example 13
The embodiment provides a preparation method of 6-methoxy-2-naphthol. The structural formula of the 6-methoxy-2-naphthol is shown as the following molecular structural formula I:
the preparation method refers to the preparation method of p-hydroxyanisole in example 1, and is different in that 2-naphthylmethyl ether (0.2 mmol) is adopted to replace anisole, filtrate is dried in a spinning mode, column chromatography separation is carried out, the target product is obtained, and the yield is 58.85%.
The prepared product l is subjected to characterization data analysis, and the result is as follows: 1 H NMR(500MHz,CDCl 3 )δ 7.67(d,J=8.6Hz,1H,H),7.61(d,J=8.6Hz,1H,H),7.17-7.08(m,4H,H),4.95(s,1H, OH)3.92(s,3H,CH3)ppm.; 13 C NMR(100MHz,CDCl 3 ) Delta 155.8,151.5,129.6,129.5, 128.2,127.6,119.1,117.8,109.5,105.7,55.1 the results further confirm the molecular structure of the product as described above for molecular structure l.
Example 14
This example provides a process for the preparation of 1, 4-benzenediol. The structural formula of the 1, 4-benzenediol is shown as the following molecular structural formula m:
the preparation method refers to the preparation method of p-hydroxyanisole in example 1, and is different in that phenol (0.2 mmol) is adopted to replace anisole, filtrate is dried in a spinning mode, column chromatography separation is carried out, and the target product is obtained and is a white solid, and the yield is 73.88%.
And (3) performing characterization data analysis on the prepared product m, wherein the result is as follows: 1 H NMR(300MHz,CDCl 3 )δ 8.61(s,2H),6.55(s,4H); 13 C NMR(75MHz,CDCl 3 ) Delta 150.1,116.0. This result further confirms the molecular structure of the product as described above for molecular structure m.
Example 15
This example provides a method for preparing 3-hydroxypyridine. The structural formula of the 3-hydroxypyridine is shown as the following molecular structural formula n:
the preparation method refers to the preparation method of p-hydroxyanisole in example 1, and is different in that pyridine (0.2 mmol) is used for replacing anisole, the filtrate is dried in a spinning mode, column chromatography separation is carried out, and the target product, brown solid and yield are 65.18%.
And (3) performing characterization data analysis on the prepared product n, wherein the result is as follows: 1 H NMR(400MHz,CDCl 3 ):δ 9.90(br s,1H),8.16(s,1H),8.04(d,J=3.5Hz,1H),7.24-7.12(m,1H); 13 C NMR(100 MHz,CDCl 3 ) Delta 154.0,140.4,138.2,124.4,122.3 the results further confirm that the molecular structure of the product is as described above for molecular structure n.
Example 16
This example provides a method for preparing 5-hydroxyindole. The structural formula of the 5-hydroxyindole is shown as the following molecular structural formula o:
the preparation method refers to the preparation method of p-hydroxyanisole in example 1, and is characterized in that indole (0.2 mmol) is adopted to replace anisole, filtrate is dried in a spinning mode, column chromatography separation is carried out, and the target product, light brown solid and 54.08% yield are obtained.
The prepared product o was subjected to characterization data analysis, and the result was: 1 H NMR(400MHz,DMSO):δ6.15–6.26(1H,m),6.58(1H,d,J=8.5Hz),6.80–6.85(1H,m),7.15(1H,d,J=8.5 Hz),7.18–7.21(1H,m),8.57(1H,br s),10.73(1H,br s); 13 c NMR (100MHz, DMSO): 100.2,103.9,111.3,111.6,125.5,128.4,130.5,150.5. This result further confirms the molecular structure of the product as described above for molecular structure o.
Example 17
The embodiment provides a method for preparing Hydroxy-pyriproxyfen. The structural formula of the Hydroxy-pyriproxyfen is shown as the following molecular structural formula p:
the preparation method refers to the preparation method of p-hydroxyanisole in example 1, and is characterized in that pyriproxyfen (0.2 mmol) is adopted to replace anisole, the filtrate is dried in a spinning mode, and column chromatography separation is carried out to obtain a target product, namely a light yellow solid, and the yield is 44.19%.
The prepared product p is subjected to characterization data analysis, and the result is as follows: 1 H NMR(400MHz,CD 3 CN):δ 8.11(ddd,J=5.0,2.0,0.9Hz,1H),7.62(ddd,J=8.4,7.1,2.0Hz,1H),7.02–6.57(m, 10H),5.64–5.48(m,1H),4.21–4.00(m,2H),1.37(d,J=6.4Hz,3H); 13 C NMRδ 163.3,154.8,152.2,151.8,151.7,146.5,139.9,120.1,119.7,117.2,116.6,116.1,112.2, 71.5,70.6,17.3.HRMS calculated for C 20 H 20 NO 2 :338.1387[M+](ii) a 338.1387 for found; devision: -0.2ppm the results further confirm the molecular structure of the product as described above for molecular structure p.
Example 18
This example provides a method for preparing Hydroxy-diclofenac amide. The structural formula of the Hydroxy-diclofenac amide is shown as the following molecular structural formula q:
the preparation method refers to the preparation method of p-hydroxyanisole in example 1, and is characterized in that diclofenac amide (0.2 mmol) is adopted to replace anisole, filtrate is dried in a spinning mode, column chromatography separation is carried out, and a target product, a black solid and a yield of 37.74% are obtained.
The prepared product q was subjected to characterization data analysis, and the result was: 1 H NMR(400MHz,CD 3 CN):δ 7.60(d,J=8.1Hz,2H),7.48(dd,J=8.7,7.6Hz,1H),6.89(d,J=2.4Hz,1H),6.76(brs, 1H,OH),6.62(dd,J=8.4,2.5Hz,1H),6.23(d,J=8.4Hz,1H),3.68(s,2H).; 13 C NMR δ(100MHz,CDCl 3 ):δ174.1,154.1,137.0,136.0,132.2,131.6,130.1,126.9,114.6, 113.8,110.1,36.5.HRMS calculated for C 15 H 16 NO 2 Cl 2 :294.0083[M+](ii) a found: 294.0082visualization.
Finally, it should be noted that the above embodiments are only used for illustrating the technical solutions of the present invention, and not for limiting the protection scope of the present invention, although the present invention is described in detail with reference to the preferred embodiments, it should be understood by those skilled in the art that modifications or equivalent substitutions can be made to the technical solutions of the present invention without departing from the spirit and scope of the technical solutions of the present invention.
Claims (9)
1. A method for hydroxylation of benzene ring C-H phenol is characterized by comprising the following steps: mixing raw materials, a solvent, a boron compound, a halogenating agent, a nitrogen-containing heterocyclic compound, an oxidant and an amide compound, and stirring and reacting for 12-72 hours at the temperature of 20-50 ℃ under the illumination of 380-456 nm under the sealed condition; the raw material is a compound containing a benzene ring, and the benzene ring structure of the compound containing the benzene ring is at least one hydrogen atom.
2. A process for the C-H phenolic hydroxylation of benzene rings according to claim 1, characterized in that said starting material is a compound of formula (I):
wherein R is 1 、R 2 、R 3 、R 4 、R 5 Are the same or different from each other and are each independently selected from the group consisting of hydrogen, alkyl, alkoxy, heteroalkyl, cycloalkyl, heterocycloalkyl, alkenyl, heteroalkenyl, cycloalkenyl, heterocycloalkenyl, alkynyl, heteroalkynyl, cycloalkynyl, heterocycloalkynyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, aryloxy, heteroarylOxy, halogen, hydroxyl, sulfydryl, aldehyde group, sulfonic group, carboxyl, acyl halide group, ester group, amide group, amino group, imino group, nitro group, cyano group and nitroso group.
3. The method for hydroxylation of benzene ring C-H phenols according to claim 1, characterized in that said solvent is one of N, N-dimethylformamide, ethyl acetate, acetonitrile.
4. The method of hydroxylating a phenyl ring C-H phenol according to claim 1, wherein said boron compound is one of pinacol diborate, neopentyl glycol diborate, bis (2-methyl-2, 4-pentanediol) borate, bis (2, 4-dimethyl-2, 4-pentanediol) borate, tetrahydroxydiboron.
5. The process for the hydroxylation of benzene ring C-H phenols according to claim 1, wherein said halogenating machine has the general formula:
wherein R is 6 、R 7 The same or different, and each is independently selected from the group consisting of hydrogen, alkyl, alkoxy, heteroalkyl, cycloalkyl, heterocycloalkyl, alkenyl, heteroalkenyl, cycloalkenyl, heterocycloalkenyl, alkynyl, heteroalkynyl, cycloalkynyl, heterocycloalkynyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, aryloxy, heteroaryloxy, halogen, hydroxyl, mercapto, aldehyde, sulfonic acid, carboxyl, acid halide, ester, amide, amino, imino, nitro, cyano, nitroso.
6. The method of hydroxylating a phenol having a benzene ring C-H according to claim 1, wherein said nitrogen-containing heterocycle has the general formula:
wherein R is 8 、R 9 、R 10 、R 11 、R 12 、R 13 、R 14 The same or different from each other and each is independently selected from the group consisting of hydrogen, alkyl, alkoxy, heteroalkyl, cycloalkyl, heterocycloalkyl, alkenyl, heteroalkenyl, cycloalkenyl, heterocycloalkenyl, alkynyl, heteroalkynyl, cycloalkynyl, heterocycloalkynyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, aryloxy, heteroaryloxy, halogen, hydroxyl, mercapto, aldehyde, sulfonic acid, carboxyl, acid halide, ester, amide, amino, imino, nitro, cyano, nitroso.
7. The method of C-H phenol hydroxylation of a benzene ring according to claim 1, wherein said amine compound is one of triethylamine, diisopropylethylamine, N' -tetramethylethylenediamine, diisopropylamine.
8. The method of hydroxylating a benzene ring C-H phenol according to claim 1, wherein said oxidizing agent is one of oxygen, ozone, sodium bromate, potassium persulfate.
9. The method for hydroxylation of benzene ring C-H phenol according to claim 1, wherein the light source used for illumination is Kessil lamp.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210666993.0A CN115417751A (en) | 2022-06-13 | 2022-06-13 | Method for hydroxylation of benzene ring C-H phenol |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210666993.0A CN115417751A (en) | 2022-06-13 | 2022-06-13 | Method for hydroxylation of benzene ring C-H phenol |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115417751A true CN115417751A (en) | 2022-12-02 |
Family
ID=84196989
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210666993.0A Pending CN115417751A (en) | 2022-06-13 | 2022-06-13 | Method for hydroxylation of benzene ring C-H phenol |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115417751A (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1991006539A1 (en) * | 1989-10-27 | 1991-05-16 | American Home Products Corporation | 2-anilino phenylacetic acid derivatives as inhibitors of pla2 and lipoxygenase |
CN108191612A (en) * | 2017-12-29 | 2018-06-22 | 深圳蓝新科技有限公司 | The preparation method and application of compound aryl trifluoromethyl |
CN113443972A (en) * | 2021-06-29 | 2021-09-28 | 中山大学 | Aryl C-F bond functionalization preparation method |
CN113443950A (en) * | 2021-06-29 | 2021-09-28 | 中山大学 | Method for reducing carbonyl into methylene under illumination |
-
2022
- 2022-06-13 CN CN202210666993.0A patent/CN115417751A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1991006539A1 (en) * | 1989-10-27 | 1991-05-16 | American Home Products Corporation | 2-anilino phenylacetic acid derivatives as inhibitors of pla2 and lipoxygenase |
CN108191612A (en) * | 2017-12-29 | 2018-06-22 | 深圳蓝新科技有限公司 | The preparation method and application of compound aryl trifluoromethyl |
CN113443972A (en) * | 2021-06-29 | 2021-09-28 | 中山大学 | Aryl C-F bond functionalization preparation method |
CN113443950A (en) * | 2021-06-29 | 2021-09-28 | 中山大学 | Method for reducing carbonyl into methylene under illumination |
Non-Patent Citations (2)
Title |
---|
PIETER VANCAMP ET AL.: "The pyriproxyfen metabolite, 4′–OH–PPF, disrupts thyroid hormone signaling in neural stem cells, modifying neurodevelopmental genes affected by ZIKA virus infection", 《ENVIRONMENTAL POLLUTION》, vol. 285, pages 117654 * |
RUOCHENG SANG ET AL.: "Site-Selective C-H Oxygenation via Aryl Sulfonium Salts", 《ANGEWANDTE CHEMIE, INTERNATIONAL EDITION》, vol. 58, no. 45, pages 16161 - 16166 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Gohain et al. | Preparation of phenolic compounds through catalyst-free ipso-hydroxylation of arylboronic acids | |
CN109970755B (en) | Synthesis of substituted salicylaldehyde derivatives | |
CN112723982B (en) | Preparation method of benzyl iodide and derivatives thereof | |
Bigdeli et al. | Wet 2, 4, 6-trichloro [1, 3, 5] triazine (TCT) an efficient catalyst for synthesis of α, α′-bis (substituted-benzylidene) cycloalkanones under solvent-free conditions | |
CN107840819B (en) | Synthesis method of polysubstituted isoindolinone derivative | |
CN111978139B (en) | Method for synthesizing phenol or derivatives thereof by photocatalysis in aqueous phase in one pot | |
Schimler et al. | Copper-mediated functionalization of aryl trifluoroborates | |
Lu et al. | Coordination effect enabled palladium-catalyzed regioselective O-alkylation of 2-pyridones | |
CN111233617A (en) | Synthesis method of 1-iodoalkyne compound | |
CN109293491A (en) | A kind of method that aryl diazonium salts take off acyl group in diazonium | |
De Luca et al. | A simple protocol for efficient N-chlorination of amides and carbamates | |
CN115417751A (en) | Method for hydroxylation of benzene ring C-H phenol | |
CN114805093A (en) | Preparation method of diarylamine compound | |
Bellomo et al. | Synthesis of unnatural cyclitols via a combined enzymatic-palladium catalysis approach | |
CN113443950B (en) | Method for reducing carbonyl into methylene under illumination | |
CN111484441A (en) | Indole triarylmethane derivative and synthetic method thereof | |
Tajbakhsh et al. | Selective iodination of alcohols with NaI/Amberlyst 15 in acetonitrile | |
Grigg et al. | Palladium catalysed tandem cyclisation–anion capture. Part 8: Cascade hydrostannylation—cyclisation–anion capture and cascade hydroboration—cyclisation–anion capture on solid phase | |
Madankar et al. | A Novel Modified Cross-Coupling of Phenols and Amines Using Dichloroimidazolidinedione (DCID) | |
CN101279903B (en) | Synthetic method of o-hydroxyacetophenone | |
Li et al. | Direct and highly efficient synthesis of (Z)-allyl iodides from Baylis-Hillman adducts promoted by TMSCl/NaI system | |
CN110204506B (en) | CO 2 Synthesis of 1,4-dihydro-2H-3,1-benzoxazine-2-one derivative as C1 source | |
Liu et al. | A facile and stereoselective synthesis of unsymmetrical diallylsulfides via indium-promoted one-pot reaction of Baylis-Hillman acetates, sodium thiosulfate, and allyl bromide | |
ZA200503239B (en) | Process for production of an acetylenic compound | |
CN109265391B (en) | Biphenyl polysubstituted 1,2,5, 6-tetrahydropyridine compound and synthetic method and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20221202 |