CN115413306A - 用于核反应堆的电加热 - Google Patents

用于核反应堆的电加热 Download PDF

Info

Publication number
CN115413306A
CN115413306A CN202180027463.5A CN202180027463A CN115413306A CN 115413306 A CN115413306 A CN 115413306A CN 202180027463 A CN202180027463 A CN 202180027463A CN 115413306 A CN115413306 A CN 115413306A
Authority
CN
China
Prior art keywords
submersible
nuclear
electric heater
submerged
nuclear reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202180027463.5A
Other languages
English (en)
Inventor
鲍勃·伯克特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bao BoBokete
Original Assignee
Bao BoBokete
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bao BoBokete filed Critical Bao BoBokete
Publication of CN115413306A publication Critical patent/CN115413306A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C19/00Arrangements for treating, for handling, or for facilitating the handling of, fuel or other materials which are used within the reactor, e.g. within its pressure vessel
    • G21C19/02Details of handling arrangements
    • G21C19/08Means for heating fuel elements before introduction into the core; Means for heating or cooling fuel elements after removal from the core
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C5/00Moderator or core structure; Selection of materials for use as moderator
    • G21C5/12Moderator or core structure; Selection of materials for use as moderator characterised by composition, e.g. the moderator containing additional substances which ensure improved heat resistance of the moderator
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C19/00Arrangements for treating, for handling, or for facilitating the handling of, fuel or other materials which are used within the reactor, e.g. within its pressure vessel
    • G21C19/20Arrangements for introducing objects into the pressure vessel; Arrangements for handling objects within the pressure vessel; Arrangements for removing objects from the pressure vessel
    • G21C19/205Interchanging of fuel elements in the core, i.e. fuel shuffling
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D5/00Arrangements of reactor and engine in which reactor-produced heat is converted into mechanical energy
    • G21D5/02Reactor and engine structurally combined, e.g. portable
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

用于核反应堆的电加热是用于利用潜水式(浸没式)电加热器替换核反应堆堆芯内的核燃料棒的系统和方法。

Description

用于核反应堆的电加热
对相关申请的引用
本申请要求于2020年4月13日提交的美国临时专利申请No.63/009453的权益。
背景技术
发电是现代社会的基础。目前的主要手段包括核裂变、化石燃料加热锅炉、太阳能和风力涡轮机。燃气涡轮机和蒸汽涡轮机也用于联合和简单循环发电厂。然而,核能存在许多问题。切尔诺贝利、三里岛和福岛就是核能负面影响的例子。没有可接受的处理放射性废料的方法。尤卡山(潜在的核废料储存库)处于一个未确定的状态。在美国五大湖的岸边,有一个储存着60000吨核废料的储存库,这是一个等待发生的事故。此外,大多数核废料储存在产生核废料的发电厂旁边。
目前,纽约肖勒姆核电站已关闭。由于安全考虑,加州的圣奥诺弗雷核电站(SONG)已关闭,目前正在退役。由于福岛灾难后的安全考虑,加州迪亚波罗峡谷核电站计划于2024年和2025年关闭。关闭发电厂的估计费用为40亿美元。日本有43个核反应堆在海啸后于2017年关闭。目前美国大约有100座运行中的核电站。存在的问题是,核能具有潜在的非常危险性,以及废料具有高度放射性。核能的固有危险包括不受控制的放射性、放射性废料和潜在的爆炸。
发明内容
本申请的目的是减少和/或消除用于从电网规模发电厂和任何其他需要核裂变的当前用途的电力生产的核能的需要。为了解决这个问题,必需对现有技术进行新的使用和改进。
在核反应堆内部,含有铀芯的燃料棒被捆绑在一起,在反应堆容器内形成燃料组件。燃料组件装入反应堆堆芯。这些组件将被移除并用潜水式(浸没式)电加热器替换。有多种不同类型的包括法兰、螺旋塞和其他类型的浸没式加热器。本实施例中的潜水式(浸没式)电加热器将需要大量电力来操作。一地面发电厂已经使用它们为电网产生的部分电力来运行电厂基础设施,电加热器将是系统的另一个负载。该系统和方法也可用于新发电厂建设。在快速发展的中国和印度,这会是一个积极的改变传统规则的创新。该系统和方法也可以在日本使用,以便消除未来额外核灾难的威胁。这一概念可用于世界各地的核电站。
这种方法的益处包括降低铀的勘探、加工和运输的成本。该系统和方法减少了核能的固有危险,包括不受控制的放射性、放射性废料和潜在的爆炸。该系统和方法降低了为发电厂操作员的铀的连续加料费用。这一概念还将减少目前核电站退役的需要,这将节省数十亿美元和数千个工作岗位。该系统和方法还将允许发电厂的所有者继续发电。最终结果将是无化石燃料电网规模的电力。
可替换实施例将包括利用本申请的系统和方法为船舶、潜艇和其他船舶推进和电力生产。
附图说明
图1是带有燃料组件(101)的核反应堆容器(100)的俯视图。数字100代表反应堆容器。在该视图中,数字101代表表示燃料组件的所有小正方形。大量的燃料棒捆在一起形成燃料组件。
图2是带有核燃料组件(201)的核反应堆容器(200)的侧视图。数字200代表反应堆容器。在该视图中,数字201代表表示燃料组件201的所有细矩形。大量的(50-300)燃料组件(201)被放置在反应堆容器(200)内用于裂变过程。燃料组件放置在反应堆堆芯内。
图3是燃料组件(300)的俯视图。在该图中,燃料组件(300)包含许多束燃料棒(301),其包含铀或任何其他可裂变材料。数字301代表图中圆圈所示的所有燃料棒。
图4是燃料组件(400)的侧视图。燃料组件(400)包含燃料棒(401)。数字401代表燃料组件(400)内的所有长矩形。
具体实施方式
核反应堆容器(100,200)包含填充有铀芯的在裂变过程中加热水的燃料棒(301,401)。大量的燃料棒(301,401)被捆在一起以形成燃料组件(101,201,300,400)。在反应堆内部,含有铀芯的燃料棒被捆绑在一起,在反应堆容器内形成燃料组件。燃料组件装入反应堆堆芯。这些组件将被移除并用潜水式(浸没式)电加热器替换。这些棒(和组件)将被移除并用在裂变过程中达到与核燃料棒相同或更高温度的潜水式(浸没式)电加热器(未示出)替换。这将导致水温达到与核反应堆相同的温度。
根据忧思科学家联盟的说法,核反应堆内部的温度约为500华氏度,根据太平洋燃气与电力公司(PG&E)的说法,水温达到600华氏度。在撰写本文时已经存在各种不同类型的浸没式电加热器,根据各制造商其可以达到1600华氏度。例如瓦特隆(Watlow)制造的加热器。它们包括最高温度为1600°F或870℃的合金800(Alloy 800)、最高温度为1200°F或650℃的不锈钢和最高温度为750°F或400℃的钢。潜在制造商的另一个例子是欧米茄工程公司(Omega Engineering)。
核电站已经利用发电机发电,用于内部运行和电网,电加热器的供电将是系统的另一个负载。电加热器也可以由外部电网、备用发电机和应急发电机供电。这种解决方案将消除核能的危险,同时保留电网规模系统中无化石燃料电力的益处。
附图标记列表
100.反应堆容器
101.燃料组件
200.反应堆容器
201.燃料组件
300.燃料组件
301.燃料棒
400.燃料组件
401.燃料棒

Claims (20)

1.一种在核反应堆中加热水的系统,所述系统包括:
所述核反应堆;
多个浸没式电加热器;
以及由此所述浸没式电加热器加热所述水。
2.根据权利要求1所述的系统,其中核燃料棒被浸没式电加热器替换。
3.根据权利要求1所述的系统,其中所述浸入式电加热器包括最高温度为1600°F或870℃的合金800和/或最高温度为1200°F或650℃的不锈钢和/或最高温度为750°F或400℃的钢。
4.根据权利要求1所述的系统,其中所述浸没式电加热器由发电厂发电机供电。
5.根据权利要求1所述的系统,其中所述浸没式电加热器由外部电网供电。
6.根据权利要求1所述的系统,其中所述浸没式电加热器由备用发电机和/或应急发电机供电。
7.根据权利要求1所述的系统,其中用于船舶、潜艇和其他船舶的推进和电力生产被产生。
8.根据权利要求1所述的系统,其中所述系统用于新发电厂建设。
9.一种在核反应堆中加热水的方法,包括:
提供所述核反应堆;
利用潜水式和/或浸没式电加热器来加热水。
10.根据权利要求9所述的方法,还包括利用所述潜水式电加热器替换核燃料棒。
11.根据权利要求9所述的方法,还包括利用所述浸没式电加热器替换核燃料棒。
12.根据权利要求9所述的方法,还包括使用发电厂发电机为所述潜水式和/或浸没式电加热器供电。
13.根据权利要求9所述的方法,还包括使用外部电网为所述潜水式和/或浸没式电加热器供电。
14.根据权利要求9所述的方法,还包括使用备用发电机和/或应急发电机为所述潜水式和/或浸没式电加热器供电。
15.根据权利要求9所述的方法,还包括用于船舶、潜艇和其他船舶的推进和电力生产。
16.根据权利要求9所述的方法,还包括利用所述方法用于新发电厂建设。
17.一种在核反应堆中加热水的系统,所述系统包括:
所述核反应堆;
多个潜水式电加热器;
以及由此所述潜水式电加热器加热所述水。
18.根据权利要求17所述的系统,其中所述潜水式电加热器由发电厂发电机供电。
19.根据权利要求17所述的系统,其中核燃料棒被潜水式电热器替换。
20.根据权利要求17所述的系统,其中所述系统用于新发电厂建设。
CN202180027463.5A 2020-04-13 2021-04-06 用于核反应堆的电加热 Pending CN115413306A (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US202063009453P 2020-04-13 2020-04-13
US63/009,453 2020-04-13
US17/222,976 2021-04-05
US17/222,976 US20210319922A1 (en) 2020-04-13 2021-04-05 Electric Heating for Nuclear Reactors
PCT/US2021/026074 WO2021211329A1 (en) 2020-04-13 2021-04-06 Electric heating for nuclear reactors

Publications (1)

Publication Number Publication Date
CN115413306A true CN115413306A (zh) 2022-11-29

Family

ID=78005600

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202180027463.5A Pending CN115413306A (zh) 2020-04-13 2021-04-06 用于核反应堆的电加热

Country Status (7)

Country Link
US (1) US20210319922A1 (zh)
EP (1) EP4136328A1 (zh)
JP (1) JP2023521145A (zh)
KR (1) KR20220166859A (zh)
CN (1) CN115413306A (zh)
CA (1) CA3175226A1 (zh)
WO (1) WO2021211329A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3242053A (en) * 1960-12-08 1966-03-22 Combustion Eng Nuclear power plant system
CN101144395A (zh) * 2007-10-15 2008-03-19 韩培洲 核能中冷等压吸热空气轮机
DE102012007209A1 (de) * 2012-04-10 2012-08-23 Hans-Jürgen Maaß Verfahren und Vorrichtung zur thermischen Speicherung von Elektroenergie
WO2014037261A1 (de) * 2012-09-06 2014-03-13 Siemens Aktiengesellschaft Verfahren zum nachrüsten eines kernkraftwerks
CN108799025A (zh) * 2018-06-29 2018-11-13 中国电力工程顾问集团西北电力设计院有限公司 一种核能和槽式太阳能光热联合发电系统及发电方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3916445A (en) * 1973-02-23 1975-10-28 Westinghouse Electric Corp Training simulator for nuclear power plant reactor coolant system and method
FR2329058A1 (fr) * 1975-10-21 1977-05-20 Westinghouse Electric Corp Pressuriseur comportant des thermoplongeurs tubulaires rectilignes pour reacteurs nucleaires
US4326122A (en) * 1980-07-14 1982-04-20 The United States Of America As Represented By The United States Department Of Energy Electric heater for nuclear fuel rod simulators
US4545766A (en) * 1981-12-16 1985-10-08 Powersafety International, Inc. Training device for nuclear power plant operators
US20120282561A1 (en) * 2007-03-26 2012-11-08 Stewart Kaiser Heater and electrical generator system and related methods
US8497452B2 (en) * 2010-09-09 2013-07-30 Infinity Fluids Corp Axial resistance sheathed heater
US10446280B2 (en) * 2012-04-18 2019-10-15 Bwxt Mpower, Inc. Control room for nuclear power plant
US11963268B2 (en) * 2019-06-19 2024-04-16 Oregon State University Resistance heater rod and method of making such

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3242053A (en) * 1960-12-08 1966-03-22 Combustion Eng Nuclear power plant system
CN101144395A (zh) * 2007-10-15 2008-03-19 韩培洲 核能中冷等压吸热空气轮机
DE102012007209A1 (de) * 2012-04-10 2012-08-23 Hans-Jürgen Maaß Verfahren und Vorrichtung zur thermischen Speicherung von Elektroenergie
WO2014037261A1 (de) * 2012-09-06 2014-03-13 Siemens Aktiengesellschaft Verfahren zum nachrüsten eines kernkraftwerks
CN108799025A (zh) * 2018-06-29 2018-11-13 中国电力工程顾问集团西北电力设计院有限公司 一种核能和槽式太阳能光热联合发电系统及发电方法

Also Published As

Publication number Publication date
US20210319922A1 (en) 2021-10-14
EP4136328A1 (en) 2023-02-22
WO2021211329A1 (en) 2021-10-21
JP2023521145A (ja) 2023-05-23
KR20220166859A (ko) 2022-12-19
CA3175226A1 (en) 2021-04-06

Similar Documents

Publication Publication Date Title
Forsberg et al. Molten-salt-cooled advanced high-temperature reactor for production of hydrogen and electricity
Pioro et al. Generation IV nuclear reactors as a basis for future electricity production in the world
Pioro et al. Current status of electricity generation at nuclear power plants
CN115413306A (zh) 用于核反应堆的电加热
Glazov et al. Brest reactor and plant-site nuclear fuel cycle
Cai et al. Supercritical water-cooled reactors
Abrosimov et al. HTGR–new prospects for nuclear energy
Khan et al. A review: Activities in the field of small and medium sized nuclear power plants
Sink Very High Temperature Reactors
Hoang et al. Conceptual design of a small-pressurized water reactor using the AP1000 fuel assembly design
Mokhov Advanced designs of VVER reactor plant
Burns et al. Design and Modeling of Regulating Control Elements for the Transformational Challenge Reactor (TCR)
Carré et al. A Major Advantage for Energy Transition in France.
Zink Eskom recycles nuke concept.
Dostal et al. A rail transportable lead–bismuth cooled reactor
Kessler The development of nuclear energy in the world
Kupitz et al. International status of HTGRs
Moore Design concept of the AGR
Gordeev et al. Thermal and neutron-physical features of the nuclear reactor for a power pulsation plant for space applications
Homer Review of Light-Water Small Modular Reactor Designs
Antariksawan et al. An evolutionary approach to advanced water cooled reactors
Langston PBMR-a future failsafe gas turbine nuclear power plant?
ANTARIKSAWAN et al. AN EVOLUTIONARY APPROACH TO XA9745975 ADVANCED WATER COOLED REACTORS
Hirayama et al. Roles of plasma neutron source reactor in development of fusion reactor engineering: Comparison with fission reactor engineering
Adamovich et al. Uniterm low-capacity nuclear power plant

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination