CN115411292B - Molecular cross-linked molecular sieve nanosheet hybrid membrane, preparation method and application thereof in flow battery - Google Patents
Molecular cross-linked molecular sieve nanosheet hybrid membrane, preparation method and application thereof in flow battery Download PDFInfo
- Publication number
- CN115411292B CN115411292B CN202211064782.6A CN202211064782A CN115411292B CN 115411292 B CN115411292 B CN 115411292B CN 202211064782 A CN202211064782 A CN 202211064782A CN 115411292 B CN115411292 B CN 115411292B
- Authority
- CN
- China
- Prior art keywords
- molecular sieve
- nano
- molecular
- membrane
- zeolite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 115
- 239000002135 nanosheet Substances 0.000 title claims abstract description 68
- 239000002808 molecular sieve Substances 0.000 title claims abstract description 58
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 title claims abstract description 58
- 238000002360 preparation method Methods 0.000 title claims abstract description 13
- 229920000642 polymer Polymers 0.000 claims abstract description 30
- 238000005266 casting Methods 0.000 claims abstract description 15
- 229920002465 poly[5-(4-benzoylphenoxy)-2-hydroxybenzenesulfonic acid] polymer Polymers 0.000 claims description 39
- 239000000243 solution Substances 0.000 claims description 27
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims description 23
- 239000010457 zeolite Substances 0.000 claims description 23
- 229910021536 Zeolite Inorganic materials 0.000 claims description 21
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 21
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 18
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 18
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 15
- 239000002904 solvent Substances 0.000 claims description 11
- 239000006087 Silane Coupling Agent Substances 0.000 claims description 9
- 239000000203 mixture Substances 0.000 claims description 9
- 239000002243 precursor Substances 0.000 claims description 8
- 239000000047 product Substances 0.000 claims description 8
- 230000015572 biosynthetic process Effects 0.000 claims description 7
- 238000003756 stirring Methods 0.000 claims description 7
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 claims description 6
- 239000011521 glass Substances 0.000 claims description 6
- 238000002156 mixing Methods 0.000 claims description 6
- -1 tripropyl pentamethylene Chemical group 0.000 claims description 6
- 238000006243 chemical reaction Methods 0.000 claims description 5
- 239000007795 chemical reaction product Substances 0.000 claims description 5
- 238000001035 drying Methods 0.000 claims description 5
- 238000001027 hydrothermal synthesis Methods 0.000 claims description 5
- 239000012299 nitrogen atmosphere Substances 0.000 claims description 5
- 238000010992 reflux Methods 0.000 claims description 5
- 238000003786 synthesis reaction Methods 0.000 claims description 5
- 238000005406 washing Methods 0.000 claims description 5
- DCQBZYNUSLHVJC-UHFFFAOYSA-N 3-triethoxysilylpropane-1-thiol Chemical group CCO[Si](OCC)(OCC)CCCS DCQBZYNUSLHVJC-UHFFFAOYSA-N 0.000 claims description 4
- 239000004696 Poly ether ether ketone Substances 0.000 claims description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 4
- VHRGRCVQAFMJIZ-UHFFFAOYSA-N cadaverine Chemical compound NCCCCCN VHRGRCVQAFMJIZ-UHFFFAOYSA-N 0.000 claims description 4
- 239000003795 chemical substances by application Substances 0.000 claims description 4
- 239000008367 deionised water Substances 0.000 claims description 4
- 229910021641 deionized water Inorganic materials 0.000 claims description 4
- 229920002530 polyetherether ketone Polymers 0.000 claims description 4
- 238000005119 centrifugation Methods 0.000 claims description 3
- 239000013078 crystal Substances 0.000 claims description 3
- 125000000542 sulfonic acid group Chemical group 0.000 claims description 3
- 238000001291 vacuum drying Methods 0.000 claims description 3
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 claims description 2
- 238000005804 alkylation reaction Methods 0.000 claims description 2
- 239000007864 aqueous solution Substances 0.000 claims description 2
- 238000010438 heat treatment Methods 0.000 claims description 2
- PVWOIHVRPOBWPI-UHFFFAOYSA-N n-propyl iodide Chemical compound CCCI PVWOIHVRPOBWPI-UHFFFAOYSA-N 0.000 claims description 2
- 239000012266 salt solution Substances 0.000 claims description 2
- 238000002791 soaking Methods 0.000 claims description 2
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 claims 4
- 102000020897 Formins Human genes 0.000 claims 1
- 108091022623 Formins Proteins 0.000 claims 1
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 claims 1
- 150000001447 alkali salts Chemical class 0.000 claims 1
- 238000001354 calcination Methods 0.000 claims 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 claims 1
- 230000003301 hydrolyzing effect Effects 0.000 claims 1
- 239000002055 nanoplate Substances 0.000 claims 1
- 239000002064 nanoplatelet Substances 0.000 claims 1
- RGSFGYAAUTVSQA-UHFFFAOYSA-N pentamethylene Natural products C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 claims 1
- LPSKDVINWQNWFE-UHFFFAOYSA-M tetrapropylazanium;hydroxide Chemical compound [OH-].CCC[N+](CCC)(CCC)CCC LPSKDVINWQNWFE-UHFFFAOYSA-M 0.000 claims 1
- 150000002500 ions Chemical class 0.000 abstract description 23
- 238000005342 ion exchange Methods 0.000 abstract description 8
- 238000004132 cross linking Methods 0.000 abstract description 7
- 238000000034 method Methods 0.000 abstract description 7
- 239000000463 material Substances 0.000 abstract description 5
- 230000005540 biological transmission Effects 0.000 abstract description 3
- 239000011256 inorganic filler Substances 0.000 abstract description 3
- 229910003475 inorganic filler Inorganic materials 0.000 abstract description 3
- 230000008707 rearrangement Effects 0.000 abstract description 2
- 239000003054 catalyst Substances 0.000 abstract 1
- 229910006069 SO3H Inorganic materials 0.000 description 18
- 238000012360 testing method Methods 0.000 description 15
- 238000011068 loading method Methods 0.000 description 9
- 230000008961 swelling Effects 0.000 description 9
- 238000012546 transfer Methods 0.000 description 9
- 229910001456 vanadium ion Inorganic materials 0.000 description 9
- 238000010521 absorption reaction Methods 0.000 description 8
- 229910052720 vanadium Inorganic materials 0.000 description 8
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 8
- 238000002411 thermogravimetry Methods 0.000 description 7
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 6
- 239000003792 electrolyte Substances 0.000 description 6
- 239000011159 matrix material Substances 0.000 description 6
- 239000011148 porous material Substances 0.000 description 6
- 230000032258 transport Effects 0.000 description 6
- 229920000557 Nafion® Polymers 0.000 description 5
- 238000009792 diffusion process Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 125000000524 functional group Chemical group 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 5
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 4
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 4
- 239000004695 Polyether sulfone Substances 0.000 description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 4
- 230000004888 barrier function Effects 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 4
- 239000000945 filler Substances 0.000 description 4
- 238000010348 incorporation Methods 0.000 description 4
- 230000014759 maintenance of location Effects 0.000 description 4
- 229920006393 polyether sulfone Polymers 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 3
- 239000012621 metal-organic framework Substances 0.000 description 3
- 239000002159 nanocrystal Substances 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- 230000010287 polarization Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- URLKBWYHVLBVBO-UHFFFAOYSA-N Para-Xylene Chemical group CC1=CC=C(C)C=C1 URLKBWYHVLBVBO-UHFFFAOYSA-N 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- 239000004693 Polybenzimidazole Substances 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- 239000004721 Polyphenylene oxide Substances 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 2
- 239000013543 active substance Substances 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 239000013310 covalent-organic framework Substances 0.000 description 2
- 238000012864 cross contamination Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000004205 dimethyl polysiloxane Substances 0.000 description 2
- 238000004146 energy storage Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- UQSQSQZYBQSBJZ-UHFFFAOYSA-N fluorosulfonic acid Chemical compound OS(F)(=O)=O UQSQSQZYBQSBJZ-UHFFFAOYSA-N 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- JMMWKPVZQRWMSS-UHFFFAOYSA-N isopropanol acetate Natural products CC(C)OC(C)=O JMMWKPVZQRWMSS-UHFFFAOYSA-N 0.000 description 2
- 229940011051 isopropyl acetate Drugs 0.000 description 2
- GWYFCOCPABKNJV-UHFFFAOYSA-N isovaleric acid Chemical compound CC(C)CC(O)=O GWYFCOCPABKNJV-UHFFFAOYSA-N 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 229920000620 organic polymer Polymers 0.000 description 2
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920002480 polybenzimidazole Polymers 0.000 description 2
- 229920000570 polyether Polymers 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 238000006277 sulfonation reaction Methods 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 230000004580 weight loss Effects 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- OSNIIMCBVLBNGS-UHFFFAOYSA-N 1-(1,3-benzodioxol-5-yl)-2-(dimethylamino)propan-1-one Chemical compound CN(C)C(C)C(=O)C1=CC=C2OCOC2=C1 OSNIIMCBVLBNGS-UHFFFAOYSA-N 0.000 description 1
- SJECZPVISLOESU-UHFFFAOYSA-N 3-trimethoxysilylpropan-1-amine Chemical compound CO[Si](OC)(OC)CCCN SJECZPVISLOESU-UHFFFAOYSA-N 0.000 description 1
- UUEWCQRISZBELL-UHFFFAOYSA-N 3-trimethoxysilylpropane-1-thiol Chemical compound CO[Si](OC)(OC)CCCS UUEWCQRISZBELL-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 102000004310 Ion Channels Human genes 0.000 description 1
- XOJVVFBFDXDTEG-UHFFFAOYSA-N Norphytane Natural products CC(C)CCCC(C)CCCC(C)CCCC(C)C XOJVVFBFDXDTEG-UHFFFAOYSA-N 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical class [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 238000003917 TEM image Methods 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 238000002159 adsorption--desorption isotherm Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 238000000627 alternating current impedance spectroscopy Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- JUPQTSLXMOCDHR-UHFFFAOYSA-N benzene-1,4-diol;bis(4-fluorophenyl)methanone Chemical compound OC1=CC=C(O)C=C1.C1=CC(F)=CC=C1C(=O)C1=CC=C(F)C=C1 JUPQTSLXMOCDHR-UHFFFAOYSA-N 0.000 description 1
- 125000001951 carbamoylamino group Chemical group C(N)(=O)N* 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000005562 fading Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 239000012767 functional filler Substances 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 159000000011 group IA salts Chemical class 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000012510 hollow fiber Substances 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 239000003014 ion exchange membrane Substances 0.000 description 1
- 230000037427 ion transport Effects 0.000 description 1
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000003760 magnetic stirring Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000696 nitrogen adsorption--desorption isotherm Methods 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920000867 polyelectrolyte Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- 125000003944 tolyl group Chemical group 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000004841 transmission electron microscopy energy-dispersive X-ray spectroscopy Methods 0.000 description 1
- FRGPKMWIYVTFIQ-UHFFFAOYSA-N triethoxy(3-isocyanatopropyl)silane Chemical compound CCO[Si](OCC)(OCC)CCCN=C=O FRGPKMWIYVTFIQ-UHFFFAOYSA-N 0.000 description 1
- DENFJSAFJTVPJR-UHFFFAOYSA-N triethoxy(ethyl)silane Chemical compound CCO[Si](CC)(OCC)OCC DENFJSAFJTVPJR-UHFFFAOYSA-N 0.000 description 1
- HPEPIADELDNCED-UHFFFAOYSA-N triethoxysilylmethanol Chemical compound CCO[Si](CO)(OCC)OCC HPEPIADELDNCED-UHFFFAOYSA-N 0.000 description 1
- YUYCVXFAYWRXLS-UHFFFAOYSA-N trimethoxysilane Chemical compound CO[SiH](OC)OC YUYCVXFAYWRXLS-UHFFFAOYSA-N 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0271—Sealing or supporting means around electrodes, matrices or membranes
- H01M8/028—Sealing means characterised by their material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/18—Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- Manufacturing & Machinery (AREA)
- General Chemical & Material Sciences (AREA)
- Sustainable Energy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Sustainable Development (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
Abstract
Description
技术领域technical field
本发明属于新材料技术领域,涉及一种分子交联分子筛纳米片杂化膜的制备方法和应用。The invention belongs to the technical field of new materials, and relates to a preparation method and application of a molecular cross-linked molecular sieve nanosheet hybrid membrane.
背景技术Background technique
随着世界能源结构的变革以及应对全球气候变化的问题,如何高效利用可再生能源成为我们面临的重大挑战。液流电池作为一种大规模的储能技术,它具有环境友好,效率高,功率和容量可调节,循环寿命长,维护成本低等特点,已被证明能有效地利用可再生能源,实现“削峰填谷”的作用。质子传导膜作为液流电池中重要的组成部分,发挥着分隔正负极电解液以及传递质子的主要功能,其性能会极大地影响电池系统的性能。因此,低成本高性能的质子传导膜材料的开发对于大规模储能液流电池系统的发展具有重要的意义With the transformation of the world's energy structure and the response to global climate change, how to efficiently use renewable energy has become a major challenge we face. As a large-scale energy storage technology, flow batteries have the characteristics of environmental friendliness, high efficiency, adjustable power and capacity, long cycle life, and low maintenance cost. The role of cutting peaks and filling valleys. As an important part of the flow battery, the proton-conducting membrane plays the main function of separating the positive and negative electrolytes and transferring protons, and its performance will greatly affect the performance of the battery system. Therefore, the development of low-cost and high-performance proton-conducting membrane materials is of great significance for the development of large-scale energy storage flow battery systems.
近年来,磺化非氟聚合物作为一种低成本的离子交换膜材料被人们广泛研究,它可以通过调节磺化度的方式来调节隔膜的质子传导率,然而过高的磺化度往往会导致较为严重的溶胀现象以及较差的离子选择性和机械性能。通过将功能性无机填料与聚合物基质共混杂化是一种提升隔膜性能的通用策略,这能够很好地整合有机聚合物的加工特性以及纳米填料多样的功能特性。沸石、金属有机骨架(MOF)和共价有机骨架(COF)等多孔材料是制备高性能质子传导膜一种新型功能性填料,其固有规整孔道可以实现对尺寸较大的活性物质的有效拦截,同时可以允许质子等载流子快速通过。值得注意的是,沸石分子筛具有三维互连刚性规整通道,可对埃米级尺寸范围内的离子或者分子进行识别。由于较大的横向尺寸和优选的直通道方向的纳米级厚度,基于二维沸石纳米片(ZN)的膜在离子和分子分离方面表现出优异的性能。高纵横比ZN可以最大限度地提高离子辨别能力并最大限度地减少质子传输路径,具有作为开发新型质子传导膜的功能构件的巨大潜力(非专利文献1-54)。虽然这类无机多孔材料作为质子传导膜的基本构筑单元展现出了巨大的前景,然而在实际应用中仍面面临挑战,例如有机-无机界面通常存在相容性差的问题,并且外来填料易改变聚合物相中离子交换基团分布导致难以形成连续的质子传递通道。因此开发合适的策略来充分发挥这类无机纳米填料的应用潜力具有极大的实际意义。In recent years, sulfonated non-fluorine polymers have been widely studied as a low-cost ion-exchange membrane material. It can adjust the proton conductivity of the membrane by adjusting the degree of sulfonation. However, too high a degree of sulfonation often leads to Lead to more serious swelling phenomenon and poor ion selectivity and mechanical properties. Co-hybridization of functional inorganic fillers with polymer matrices is a general strategy to improve the performance of separators, which can well integrate the processing characteristics of organic polymers and the diverse functional properties of nanofillers. Porous materials such as zeolites, metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) are new types of functional fillers for the preparation of high-performance proton-conducting membranes. Their inherently regular pores can effectively intercept larger active substances. At the same time, carriers such as protons can be allowed to pass through quickly. It is worth noting that zeolite molecular sieves have three-dimensional interconnected rigid and regular channels, which can recognize ions or molecules in the Angstrom size range. Two-dimensional zeolite nanosheet (ZN)-based membranes exhibit excellent performance in ion and molecular separation due to the large lateral dimensions and the nanoscale thickness in the preferred straight channel direction. High-aspect-ratio ZNs, which can maximize ion discrimination and minimize proton transport pathways, have great potential as functional building blocks for the development of novel proton-conducting membranes (Non-Patent Documents 1–54). Although such inorganic porous materials have shown great promise as the basic building blocks of proton-conducting membranes, they still face challenges in practical applications, such as the poor compatibility of the organic-inorganic interface, and foreign fillers are easy to change the polymerization. The distribution of ion exchange groups in the phase makes it difficult to form continuous proton transfer channels. Therefore, it is of great practical significance to develop suitable strategies to fully utilize the application potential of this kind of inorganic nanofillers.
非专利文献1:Kim D,Jeon MY,Stottrup BL,Tsapatsis M.para-Xylene ultra-selective zeolite MFI membranes fabricated from nanosheet monolayers at theair–water interface.Angew Chem IntEd.2018;57:480-485.Non-Patent Document 1: Kim D, Jeon MY, Stottrup BL, Tsapatsis M. para-Xylene ultra-selective zeolite MFI membranes fabricated from nanosheet monolayers at the air–water interface. Angew Chem IntEd. 2018; 57:480-485.
非专利文献2:Min B,Yang S,Korde A,Kwon YH,Jones CW,Nair S.Continuouszeolite MFI membranes fabricated from 2D MFI nanosheets on ceramic hollowfibers.Angew Chem Int Ed.2019;58:8201-8205.Non-Patent Document 2: Min B, Yang S, Korde A, Kwon YH, Jones CW, Nair S. Continuous zeolite MFI membranes fabricated from 2D MFI nanosheets on ceramic hollowfibers. Angew Chem Int Ed. 2019; 58:8201-8205.
非专利文献3:Dai L,Xu F,Huang K,et al.Ultrafast water transport intwo-dimensional channels enabled by spherical polyelectrolyte brushes withcontrollable flexibility.Angew Chem IntEd.2021;60:19933-19941.Non-Patent Document 3: Dai L, Xu F, Huang K, et al. Ultrafast water transport intwo-dimensional channels enabled by spherical polyelectrolyte brushes with controllable flexibility. Angew Chem IntEd. 2021; 60: 19933-19941.
非专利文献4:Liu Y,Qiang W,Ji T,et al.Uniform hierarchical MFInanosheets prepared via anisotropic etching for solution-based sub-100-nm-thick oriented MFI layer fabrication.Sci Adv.2020;6:eaay5993.Non-Patent Document 4: Liu Y, Qiang W, Ji T, et al. Uniform hierarchical MFInanosheets prepared via anisotropic etching for solution-based sub-100-nm-thick oriented MFI layer fabrication. Sci Adv.2020; 6:eaay5993.
发明内容Contents of the invention
本发明的目的是:解决普通的二维的沸石分子筛纳米片在应用于液流电池隔膜材料中存在着的相容性不好、电池性能不高的问题。本专利方法采用表面功能分子交联在二维分子筛表面引入带有-SO3H、-NH2等官能团的有机侧链,将功能分子交联的分子筛纳米片分散于聚合物溶液中得到均匀铸膜液,然后通过溶液浇铸法制得杂化膜。这种分子交联的有机侧链有效改善了有机-无机界面相容性以及无机填料与聚合物相的应力传递,同时可以与聚合物链上的离子交换基团结合并诱导其重排构成连续的离子传输通道,增强了隔膜的机械强度、稳定性、离子选择性和质子传导率。The purpose of the present invention is to solve the problems of poor compatibility and low battery performance of ordinary two-dimensional zeolite molecular sieve nanosheets used in flow battery diaphragm materials. This patented method uses surface functional molecular cross-linking to introduce organic side chains with functional groups such as -SO 3 H and -NH 2 on the surface of two-dimensional molecular sieves, and disperses the functional molecular cross-linked molecular sieve nanosheets in the polymer solution to obtain uniform casting. Membrane solution, and then the hybrid membrane was prepared by solution casting method. This kind of molecularly cross-linked organic side chain effectively improves the organic-inorganic interface compatibility and the stress transfer between the inorganic filler and the polymer phase, and at the same time can combine with the ion-exchange groups on the polymer chain and induce its rearrangement to form a continuous Ion transport channels that enhance the mechanical strength, stability, ion selectivity, and proton conductivity of the membrane.
一种分子交联分子筛纳米片杂化膜,包含有聚合物以及分子筛纳米片,所述的分子筛纳米片的表面接枝有硅烷偶联剂,且硅烷偶联剂上带有氨基、磺酸基、巯基、羟甲基、脲基或者、乙氧基、甲氧基或者异氰酸基官能团中的一种或几种。A hybrid membrane of molecularly cross-linked molecular sieve nanosheets, including polymers and molecular sieve nanosheets, the surface of the molecular sieve nanosheets is grafted with a silane coupling agent, and the silane coupling agent has amino and sulfonic acid groups , mercapto, hydroxymethyl, ureido, or one or more of ethoxy, methoxy or isocyanate functional groups.
所述的聚合物为磺化聚醚醚酮、全氟磺酸树脂、聚醚嵌段聚酰胺、聚二甲基硅氧烷、聚醚砜、磺化聚醚砜、聚苯并咪唑或聚酰亚胺。The polymer is sulfonated polyetheretherketone, perfluorosulfonic acid resin, polyether block polyamide, polydimethylsiloxane, polyethersulfone, sulfonated polyethersulfone, polybenzimidazole or poly imide.
所述的分子筛纳米片选自ZSM-5分子筛纳米片、ZSM-35分子筛纳米片或ZSM-22纳米片。The molecular sieve nanosheets are selected from ZSM-5 molecular sieve nanosheets, ZSM-35 molecular sieve nanosheets or ZSM-22 nanosheets.
硅烷偶联剂为3-巯丙基三乙氧基硅烷、3-巯基丙基三甲氧基硅烷、3-氨丙基三乙氧基硅烷、3-氨丙基三甲氧基硅烷、羟甲基三乙氧基硅烷、乙基三乙氧基硅烷、脲丙基三乙氧基硅烷、三甲氧基硅烷或异氰酸丙基三乙氧基硅烷。The silane coupling agent is 3-mercaptopropyltriethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, hydroxymethyl Triethoxysilane, ethyltriethoxysilane, ureapropyltriethoxysilane, trimethoxysilane or isocyanatopropyltriethoxysilane.
分子筛纳米片与聚合物的重量比为0.1:100~30:100。The weight ratio of the molecular sieve nano sheet to the polymer is 0.1:100-30:100.
杂化膜厚度为20~150μm。The thickness of the hybrid film is 20-150 μm.
上述的分子交联分子筛纳米片杂化膜的制备方法,包括如下步骤:The preparation method of the above-mentioned molecular cross-linked molecular sieve nanosheet hybrid membrane comprises the following steps:
步骤1,将分子筛纳米片和硅烷偶联剂在第一溶剂中进行交联反应,产物洗涤后烘干;Step 1, carry out the crosslinking reaction of the molecular sieve nanosheet and the silane coupling agent in the first solvent, and dry the product after washing;
步骤2,将步骤1中获得的分子交联分子筛纳米片、聚合物分散于第二溶剂中,获得铸膜液;Step 2, dispersing the molecularly crosslinked molecular sieve nanosheets and polymers obtained in step 1 in a second solvent to obtain a casting solution;
步骤3,将铸膜液进行成膜处理后,得到杂化膜。In step 3, the casting solution is subjected to film-forming treatment to obtain a hybrid film.
所述的步骤1中,分子筛纳米片与硅烷偶联剂的重量比为1:0.1~1:1。In the step 1, the weight ratio of the molecular sieve nanosheets to the silane coupling agent is 1:0.1˜1:1.
所述的交联反应的条件是80~120℃冷凝回流24~48h。The condition of the cross-linking reaction is reflux at 80-120° C. for 24-48 hours.
所述的第一溶剂选自甲苯、苯或二甲苯。The first solvent is selected from toluene, benzene or xylene.
所述的步骤2中,第二溶剂选自N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、水、乙醇、丙醇、丁醇、丙二醇、二甲基亚砜、乙酸异丙酯、四氢呋喃中的一种或几种。In the step 2, the second solvent is selected from N,N-dimethylformamide, N,N-dimethylacetamide, water, ethanol, propanol, butanol, propylene glycol, dimethyl sulfoxide, One or more of isopropyl acetate and tetrahydrofuran.
铸膜液中聚合物的质量分数为1%~30%。The mass fraction of the polymer in the casting liquid is 1%-30%.
有益效果Beneficial effect
本发明成功通过分子交联对二维分子筛纳米片进行了一系列表面功能化修饰,并将其作为填料制得功能分子交联的分子筛纳米片杂化膜。分子交联的分子筛纳米片有效的增强了隔膜的机械强度、离子选择性和质子传导率。本发明方法充分发挥了分子筛纳米片选择性筛分效应,通过分子交联提高了分子筛纳米片与聚合物相之间的相容性,为充分挖掘分子筛纳米片的质子选择性传输优势以及在电池隔膜中的应用提供了一种新的思路和策略。The invention successfully carries out a series of surface functional modification on the two-dimensional molecular sieve nano-sheet through molecular cross-linking, and uses it as a filler to prepare a molecular sieve nano-sheet hybrid film with functional molecular cross-linking. Molecularly cross-linked molecular sieve nanosheets effectively enhance the mechanical strength, ion selectivity and proton conductivity of the separator. The method of the present invention fully exerts the selective screening effect of the molecular sieve nanosheets, improves the compatibility between the molecular sieve nanosheets and the polymer phase through molecular cross-linking, and fully exploits the advantages of the molecular sieve nanosheets in the selective transmission of protons and in batteries. The application in the diaphragm provides a new idea and strategy.
附图说明Description of drawings
图1是功能分子交联沸石纳米片(ZN)增强膜的制备和结构示意图。(a)氨基官能化ZN(ZN-NH2)和磺酸官能化ZN(ZN-SO3H)的功能设计混合方法示意图。(b)(i)SPEEK膜和嵌入(ii)ZN-NH2和(iii)ZN-SO3H的混合膜中质子通道的结构示意图。Figure 1 is a schematic diagram of the preparation and structure of functional molecular cross-linked zeolite nanosheets (ZN) reinforced membranes. (a) Schematic diagram of the hybrid approach for functional design of amino-functionalized ZN (ZN-NH 2 ) and sulfonic acid-functionalized ZN (ZN-SO 3 H). (b) Schematic structure of proton channels in (i) SPEEK membrane and hybrid membrane embedded with (ii) ZN- NH2 and (iii) ZN- SO3H .
图2是ZN的表征。(a)ZN、(b)ZN-SO3H和(c)ZN-NH2的透射电子显微镜(TEM)图像和能量色散X射线能谱(EDS)结果(插图)。(d)X射线光电子能谱(XPS)结果,(e)热重分析(TG)曲线,(f)X射线衍射(XRD)图,(g)N2在77K的吸附-脱附等温线,(h)孔径分布曲线,和(i)ZNs的离子交换容量(IEC)结果。Figure 2 is the characterization of ZN. Transmission electron microscopy (TEM) images and energy dispersive X-ray spectroscopy (EDS) results (inset) of (a) ZN, (b) ZN-SO 3 H and (c) ZN-NH 2 . (d) X-ray photoelectron spectroscopy (XPS) results, (e) thermogravimetric analysis (TG) curve, (f) X-ray diffraction (XRD) pattern, (g) adsorption-desorption isotherm of N2 at 77K, ( h) Pore size distribution curves, and (i) ion exchange capacity (IEC) results of ZNs.
图3是掺入ZN的杂化膜形貌。(a)SPEEK膜和掺入(b)ZN、(c)ZN-NH2和(d)ZN-SO3H的杂化膜的表面、横截面和局部放大扫描电子显微镜(SEM)图像。从左到右:表面图像、横截面图像和局部放大图像。ZN负载为4wt%。Figure 3 is the morphology of the hybrid film doped with ZN. Surface, cross-sectional, and local magnification scanning electron microscope (SEM) images of (a) SPEEK film and hybrid films doped with (b) ZN, (c) ZN-NH2, and (d) ZN-SO3H. From left to right: surface image, cross-sectional image, and partially enlarged image. The ZN loading was 4 wt%.
图4是膜性质。(a)吸水率和溶胀率,(b)拉伸强度,(c)TG曲线,(d)渗透侧VO2+的扩散浓度与时间的关系,(e)质子电导率和面电阻,以及(f)不同膜的离子选择性。Figure 4 is the film properties. (a) Water absorption and swelling rate, (b) Tensile strength, (c) TG curve, (d) Time-dependent diffusion concentration of VO2+ on the permeation side, (e) Proton conductivity and surface resistance, and (f) Ion selectivity of different membranes.
图5是电池性能。(a)配备不同膜的VFB电池的库仑效率(CE)、电压效率(VE)和能量效率(EE)。(b)S/ZN-SO3H-4%膜与报道的基于SPEEK的膜在不同电流密度下应用于VFB的EE的比较。有机和无机代表分别通过有机聚合物共混和无机纳米填料混合改性的基于SPEEK的膜。(c)配备不同膜的VFB电池的CE、VE和EE,在120mA cm-2的电流密度下进行长循环测试。(d)在电流密度为120mA cm-2的长循环测试中,不同膜的放电容量保持率。Figure 5 is the battery performance. (a) Coulombic efficiency (CE), voltage efficiency (VE), and energy efficiency (EE) of VFB cells equipped with different membranes. (b) Comparison of the EE of the S/ZN-SO3H-4% membrane with the reported SPEEK-based membrane applied to VFB at different current densities. Organic and inorganic represent SPEEK-based membranes modified by organic polymer blending and inorganic nanofiller mixing, respectively. (c) CE, VE, and EE of VFB cells equipped with different membranes, subjected to long-cycle tests at a current density of 120 mA cm-2. (d) Discharge capacity retention of different films in a long-cycle test at a current density of 120 mA cm-2.
具体实施方式Detailed ways
本发明的杂化膜的制备步骤详述如下:The preparation steps of the hybrid membrane of the present invention are described in detail as follows:
步骤(1)、制备分子交联分子筛纳米片:依次往溶剂A中加入分子筛纳米片和硅烷偶联剂,转速100~500rpm搅拌,在惰性气氛下加热至80~120℃,冷凝回流24~48h,待反应混合物冷却至室温后,在5000~10000rpm转速下离心反应混合物,倒掉上清液,将收集到的反应产物使用无水乙醇洗涤3~5次,放入烘箱80℃烘干,得到分子交联分子筛纳米片。Step (1), preparation of molecularly cross-linked molecular sieve nanosheets: add molecular sieve nanosheets and silane coupling agent to solvent A in sequence, stir at 100-500 rpm, heat to 80-120°C under an inert atmosphere, condense and reflux for 24-48 hours , after the reaction mixture is cooled to room temperature, the reaction mixture is centrifuged at 5000-10000 rpm, the supernatant is poured off, the collected reaction product is washed with absolute ethanol for 3-5 times, and dried in an oven at 80°C to obtain Molecularly crosslinked molecular sieve nanosheets.
步骤(2)、制备分子交联分子筛纳米片铸膜液:在溶剂B中加入步骤(1)制备的分子交联分子筛纳米片,超声12h使分子交联分子筛纳米片分散均匀,得到分散液。然后在分散液中加入聚合物,超声6h随后50~350rpm搅拌24小时使聚合物充分溶解,得到分子交联分子筛纳米片铸膜液。Step (2), preparation of molecular crosslinked molecular sieve nanosheet casting solution: add molecular crosslinked molecular sieve nanosheet prepared in step (1) to solvent B, and ultrasonically disperse molecular crosslinked molecular sieve nanosheet evenly for 12 hours to obtain a dispersion. Then add the polymer into the dispersion liquid, ultrasonicate for 6 hours and then stir at 50-350 rpm for 24 hours to fully dissolve the polymer, and obtain the molecular cross-linked molecular sieve nanosheet casting solution.
步骤(3)、制备分子交联分子筛纳米片杂化膜:将步骤(2)制备的分子交联分子筛纳米片铸膜液平铺在玻璃平板上,在60℃干燥6h挥发溶剂,然后将玻璃平板转移至真空干燥箱100~140℃干燥12h,得到分子交联分子筛纳米片杂化膜。Step (3), preparation of molecularly crosslinked molecular sieve nanosheet hybrid membrane: Spread the molecularly crosslinked molecular sieve nanosheet casting solution prepared in step (2) on a glass plate, dry at 60°C for 6h to evaporate the solvent, and then place the glass The plate is transferred to a vacuum drying oven for drying at 100-140° C. for 12 hours to obtain a molecularly cross-linked molecular sieve nanosheet hybrid membrane.
步骤(1)中,所述的溶剂A为甲苯、苯或二甲苯。In step (1), the solvent A is toluene, benzene or xylene.
步骤(1)中,所述的分子筛纳米片为ZSM-5分子筛纳米片、ZSM-35分子筛纳米片或ZSM-22纳米片。In step (1), the molecular sieve nanosheets are ZSM-5 molecular sieve nanosheets, ZSM-35 molecular sieve nanosheets or ZSM-22 nanosheets.
步骤(1)中,所述的In step (1), the described
步骤(1)中,所述的惰性气氛为氮气、氦气或氩气气氛。In step (1), the inert atmosphere is nitrogen, helium or argon atmosphere.
步骤(2)中,所述的溶剂B为N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、水、乙醇、丙醇、丁醇、丙二醇、二甲基亚砜、乙酸异丙酯、四氢呋喃中的一种或几种。In step (2), the solvent B is N,N-dimethylformamide, N,N-dimethylacetamide, water, ethanol, propanol, butanol, propylene glycol, dimethylsulfoxide, One or more of isopropyl acetate and tetrahydrofuran.
步骤(2)中,所述的聚合物为磺化聚醚醚酮、全氟磺酸树脂、聚醚嵌段聚酰胺、聚二甲基硅氧烷、聚醚砜、磺化聚醚砜、聚苯并咪唑或聚酰亚胺。In step (2), the polymer is sulfonated polyetheretherketone, perfluorosulfonic acid resin, polyether block polyamide, polydimethylsiloxane, polyethersulfone, sulfonated polyethersulfone, Polybenzimidazole or polyimide.
步骤(1)中,所述的分子筛纳米片与硅烷偶联剂的重量比为1:0.1~1:1。In step (1), the weight ratio of the molecular sieve nanosheets to the silane coupling agent is 1:0.1˜1:1.
步骤(2)中,所述的分子交联分子筛纳米片与聚合物的重量比为0.1:100~30:100。In step (2), the weight ratio of the molecularly cross-linked molecular sieve nanosheets to the polymer is 0.1:100-30:100.
步骤(2)中,所述的铸膜液中聚合物的质量分数为1%~30%。In step (2), the mass fraction of the polymer in the casting solution is 1%-30%.
步骤(3)中,所述的杂化膜厚度为20~150μm。In step (3), the thickness of the hybrid film is 20-150 μm.
实施例1ZSM-5沸石纳米片(ZN)的合成The synthesis of embodiment 1ZSM-5 zeolite nanosheet (ZN)
ZN是由两步水热反应合成的。按照摩尔比例为10SiO2:2.4TPAOH:0.87NaOH:114H2O配置前体溶胶。将混合物在室温下搅拌过夜,然后在常压下温度为50℃水热反应6天,紧接着升温至100℃继续反应三天。反应结束后,将沸石纳米晶种用去离子水洗涤,离心收集。模板剂双-1,5三丙基五亚甲基二碘化铵(dC5)是通过1,5-二氨基戊烷和1-碘丙烷的彻底烷基化反应合成,然后使用乙醇、2-丁酮以及乙酸乙酯纯化得到。第二步,按照摩尔比例为80TEOS:3.75dC5:20KOH:9500H2O配置前体溶胶,将前体溶胶在室温下水解过夜然后与第一步合成的沸石纳米晶种进行混合,沸石纳米晶种与前体溶胶的二氧化硅比为1:800。将混合物在140℃的条件下水热反应3.5天后,向其中加入1MNaAlO2(Si/Al为25)后继续水热反应0.5天。将反应产物用碱盐溶液进行处理以去除无定形二氧化硅,然后用去离子水洗涤,离心收集可得到ZN。将合成的ZN在500℃空气中煅烧6小时以去除模板剂并活化,升温速率为1℃min-1。ZN was synthesized by a two-step hydrothermal reaction. The precursor sol was configured according to the molar ratio of 10SiO 2 :2.4TPAOH:0.87NaOH:114H 2 O. The mixture was stirred overnight at room temperature, then hydrothermally reacted at 50° C. under normal pressure for 6 days, and then heated to 100° C. for three days. After the reaction, the zeolite nano-crystal seeds were washed with deionized water and collected by centrifugation. The template bis-1,5-tripropylpentamethylene diiodide (dC5) is synthesized by the thorough alkylation reaction of 1,5-diaminopentane and 1-iodopropane, and then using ethanol, 2- Butanone and ethyl acetate were purified. In the second step, the precursor sol is prepared according to the molar ratio of 80TEOS:3.75dC5:20KOH:9500H 2 O, the precursor sol is hydrolyzed at room temperature overnight and then mixed with the zeolite nano-crystal seeds synthesized in the first step, the zeolite nano-crystal seeds The ratio of silica to precursor sol is 1:800. After the mixture was hydrothermally reacted at 140° C. for 3.5 days, 1M NaAlO 2 (Si/Al was 25) was added thereto and the hydrothermal reaction was continued for 0.5 days. The reaction product was treated with alkaline salt solution to remove amorphous silica, then washed with deionized water, and collected by centrifugation to obtain ZN. The as-synthesized ZN was calcined at 500°C in air for 6 hours to remove the templating agent and activate it, with a heating rate of 1°C min -1 .
实施例2ZN-SO3H的合成The synthesis of embodiment 2ZN-SO 3 H
将0.5g活化后的ZN与15mL甲苯加入三颈烧瓶中并充分搅拌。在氮气气氛下,向混合物中加入0.25g 3-巯基丙基三乙氧基硅烷,缓慢加热至110℃回流反应48h后,使用甲苯以及乙醇多次洗涤、离心并在60℃下干燥6h获得反应产物。在氮气气氛下,将产物在H2O2水溶液中室温搅拌氧化24h,后将产物在10mL 0.1M H2SO4中浸泡6h将磺酸基团质子化。最后将产物离心,洗涤,在80℃下干燥过夜获得ZN-SO3H粉末。Add 0.5g activated ZN and 15mL toluene into the three-necked flask and stir well. Under a nitrogen atmosphere, add 0.25g of 3-mercaptopropyltriethoxysilane to the mixture, heat slowly to 110°C for 48h under reflux, wash with toluene and ethanol several times, centrifuge and dry at 60°C for 6h to obtain the reaction product. Under a nitrogen atmosphere, the product was stirred and oxidized in H 2 O 2 aqueous solution at room temperature for 24 h, and then the product was soaked in 10 mL of 0.1M H 2 SO 4 for 6 h to protonate the sulfonic acid group. Finally, the product was centrifuged, washed, and dried overnight at 80° C. to obtain ZN-SO 3 H powder.
实施例3ZN-NH2的合成:Embodiment 3ZN-NH Synthesis of:
将0.5g活化后的ZN与15mL甲苯加入三颈烧瓶中并充分搅拌。在氮气气氛下,向混合物中加入0.25g 3-氨基丙基三乙氧基硅烷,缓慢加热至110℃回流反应48h后,使用甲苯以及乙醇多次洗涤、离心并在80℃下干燥过夜获得ZN-NH2粉末。Add 0.5g activated ZN and 15mL toluene into the three-necked flask and stir well. Under a nitrogen atmosphere, add 0.25g of 3-aminopropyltriethoxysilane to the mixture, slowly heat to 110°C and reflux for 48h, wash with toluene and ethanol several times, centrifuge and dry overnight at 80°C to obtain ZN -NH2 powder.
实施例4SPEEK/分子筛杂化膜的制备Preparation of embodiment 4SPEEK/molecular sieve hybrid membrane
SPEEK是通过将PEEK在50℃的硫酸中(98wt.%)磺化5h制备得到的。然后通过如下方法制备SPEEK/MOF杂化膜。SPEEK was prepared by sulfonating PEEK in sulfuric acid (98wt.%) at 50°C for 5h. Then SPEEK/MOF hybrid membranes were prepared by the following method.
分别将实施例1-3中的ZN、ZN-SO3H、ZN-NH2与SPEEK溶解于N,N-二甲基甲酰胺中,使SPEEK的浓度为,并使ZN、ZN-SO3H或者ZN-NH2占SPEEK质量的1-5%,且SPEEK在N,N-二甲基甲酰胺中的浓度约14wt%,混合均匀后作为铸膜液。铸膜液平铺在玻璃平板上,在60℃干燥6h挥发溶剂,然后将玻璃平板转移至真空干燥箱100~140℃干燥12h,得到分子交联分子筛纳米片杂化膜。Dissolve ZN, ZN-SO 3 H, ZN-NH 2 and SPEEK in Examples 1-3 respectively in N,N-dimethylformamide, so that the concentration of SPEEK is , and make ZN, ZN-SO 3 H or ZN-NH 2 accounts for 1-5% of the mass of SPEEK, and the concentration of SPEEK in N,N-dimethylformamide is about 14wt%, and it is used as a casting solution after mixing evenly. The casting solution was flatly spread on a glass plate, dried at 60°C for 6h to evaporate the solvent, and then the glass plate was transferred to a vacuum drying oven at 100-140°C for 12h to obtain a molecularly cross-linked molecular sieve nanosheet hybrid membrane.
测试方法Test Methods
1.溶胀率和吸水率1. Swelling rate and water absorption rate
膜的SR(溶胀率)和WU(吸水率)分别由以下两个方程得到:The SR (swelling rate) and WU (water absorption rate) of the membrane are obtained by the following two equations, respectively:
式中,d和W分别为湿态和干态时膜的直径和质量。where d and W are the diameter and mass of the membrane in wet and dry state, respectively.
2.机械性能2. Mechanical properties
在拉力速度为10mm min-1的万能试验机上获得膜的力学性能。将样品切成20mm×5mm的长条,测试前擦拭湿膜表面的水。为了减小测试误差,对每个膜进行三个样本的测试,并对得到的数据进行平均。薄膜试样的抗拉强度计算公式如下:The mechanical properties of the films were obtained on a universal testing machine with a tensile speed of 10 mm min −1 . Cut the sample into strips of 20mm×5mm, and wipe off the water on the surface of the wet film before testing. In order to reduce the test error, three samples were tested for each film, and the obtained data were averaged. The formula for calculating the tensile strength of the film sample is as follows:
式中,FMax为最大张力;W和D分别为样品膜的宽度和厚度。In the formula, F Max is the maximum tension; W and D are the width and thickness of the sample film, respectively.
3.质子传递率3. Proton transfer rate
采用交流阻抗谱测试,在电化学工作站(Solartron analytical 1470E+1260A)上测量膜的质子传递率。样品夹在两片圆形钛片之间,钛片用纽扣电池夹固定。测试频率在103至106赫兹之间,交流振幅为5mV。膜的质子传递率采用李教授团队的最新方法进行测量,计算公式如下:The proton transfer rate of the membrane was measured on an electrochemical workstation (Solartron analytical 1470E+1260A) by AC impedance spectroscopy. The sample is sandwiched between two circular titanium sheets held in place by a button cell clip. The test frequency is between 10 3 and 10 6 Hz with an AC amplitude of 5 mV. The proton transfer rate of the membrane is measured by the latest method of Professor Li's team, and the calculation formula is as follows:
式中σ为膜的质子传递率。L是样品的厚度。R是膜的阻抗。A为膜的有效面积,即钛片的面积。where σ is the proton transfer rate of the membrane. L is the thickness of the sample. R is the resistance of the membrane. A is the effective area of the membrane, that is, the area of the titanium sheet.
膜面电阻可由下式计算:The membrane surface resistance can be calculated by the following formula:
RA=R×AR A = R × A
RA是膜面电阻。R A is the film area resistance.
4.钒离子渗透速率和离子选择性4. Vanadium ion permeation rate and ion selectivity
在有效面积为1.77em2的H型对扩散池中测试。一侧扩散池中装有50mL 1.5MVOSO4/3.0M H2SO4溶液,另一侧扩散池装填相同体积的1.5M MgSO4/3.0M H2SO4溶液,以平衡离子强度和渗透压,并在测试中用磁力搅拌减小浓差极化。每隔24h在MgSO4/H2SO4溶液测取品,在762nm处用紫外-可见分光光度计测定吸光度。用标准的吸光度/浓度曲线确定了VO2+的浓度。钒的渗透速率可以用下式计算:Tested in an H-type pair diffusion cell with an effective area of 1.77cm2 . One side of the diffusion cell is filled with 50mL 1.5MVOSO 4 /3.0MH 2 SO 4 solution, and the other side of the diffusion cell is filled with the same volume of 1.5M MgSO 4 /3.0MH 2 SO 4 solution to balance the ionic strength and osmotic pressure. Magnetic stirring was used to reduce concentration polarization during the test. The product was measured in MgSO 4 /H 2 SO 4 solution every 24 hours, and the absorbance was measured with a UV-Vis spectrophotometer at 762nm. VO2 + concentrations were determined using standard absorbance/concentration curves. The penetration rate of vanadium can be calculated by the following formula:
其中VB为MgSO4/H2SO4溶液体积,本实验为50ml;CB(t)为t时刻MgSO4/H2SO4溶液中VO2+离子的浓度;CA为VOSO4/H2SO4溶液中的VO2+浓度,在试验时间不太长的情况下,可以认为是常数,以简化计算;A、L分别为有效膜面积和膜厚度;P是钒离子的渗透速率。Among them, V B is the volume of MgSO 4 /H 2 SO 4 solution, which is 50ml in this experiment; C B (t) is the concentration of VO 2+ ions in MgSO 4 /H 2 SO 4 solution at time t; C A is VOSO 4 /H The concentration of VO 2+ in 2 SO 4 solution can be regarded as a constant when the test time is not too long to simplify the calculation; A and L are the effective membrane area and membrane thickness respectively; P is the permeation rate of vanadium ions.
离子选择性定义为质子传递率与VO2+渗透速率的比值,计算公式如下:Ion selectivity is defined as the ratio of proton transfer rate to VO2 + permeation rate, calculated as follows:
5.离子交换容量5. Ion exchange capacity
离子交换容量采用传统滴定法测试,将样本浸泡于饱和NaCl溶液中24h,将置换得到的含H+的溶液用0.03M的NaOH溶液进行滴定,即可按下述公式计算离子交换容量:The ion exchange capacity is tested by the traditional titration method. The sample is immersed in a saturated NaCl solution for 24 hours, and the H+-containing solution obtained by the replacement is titrated with a 0.03M NaOH solution, and the ion exchange capacity can be calculated according to the following formula:
cNaOH为NaOH溶液的浓度;VNaOH为NaOH溶液的体积;W为样品的质量c NaOH is the concentration of NaOH solution; V NaOH is the volume of NaOH solution; W is the quality of the sample
6.单电池性能6. Single battery performance
使用自制的液流电池系统测试VRFB的性能,该系统由一片膜(有效面积为4cm2),两个碳毡电极,两个石墨板集流器和一对壳体组成。膜分隔负极电解液(10ml 1.5M V2+/V3+3MH2SO4)和正极电解液(10ml 1.5M的VO2+/VO2+3M H2SO4),并被夹在两个之间电极。对于充放电测试,充电和放电的截止电压分别为1.7V和0.8V,测试的电流密度为40-200mA cm-2。对于循环测试,恒定电流密度为120mA cm-2在相同的截止电压下测试。在测试过程中,使用氮气保护。通过以下公式计算电池的库仑效率(CE),电压效率(VE)和能量效率(EE):The performance of the VRFB was tested using a self-made flow battery system consisting of a membrane (with an effective area of 4 cm 2 ), two carbon felt electrodes, two graphite plate current collectors, and a pair of shells. The membrane separates the negative electrolyte (10ml 1.5MV 2+ /V 3+ 3MH 2 SO 4 ) and the positive electrolyte (10ml 1.5M VO 2+ /VO2+3M H 2 SO 4 ), and is sandwiched between the two electrode. For the charge and discharge test, the cut-off voltages of charge and discharge are 1.7V and 0.8V respectively, and the current density of the test is 40-200mA cm -2 . For the cycle test, a constant current density of 120mA cm -2 was tested at the same cut-off voltage. During the test, nitrogen protection was used. The Coulombic efficiency (CE), voltage efficiency (VE) and energy efficiency (EE) of the battery are calculated by the following formulas:
其中Cd和Cc分别是放电容量和充电容量;Ed和Ec分别是放电能量和充电能量。Among them, C d and C c are discharge capacity and charge capacity, respectively; E d and E c are discharge energy and charge energy, respectively.
分子筛纳米片(ZN)的表征Characterization of Molecular Sieve Nanosheets (ZN)
如图2的a-c区域所示,原始ZN、ZN-NH2和ZN-SO3H均表现出单层或多层二维纳米片的典型特征。能量色散X射线能谱(EDS)和X射线光电子能谱(XPS)分别检测出ZN-NH2和ZN-SO3H中的氮和硫元素,除分子筛固有元素外,在ZN(图2的a-d区域)中未检出其他元素,这证明了-NH2和-SO3H官能团的成功接枝。热重分析(TGA)表明ZN具有优异的热稳定性,并且ZN-NH2和ZN-SO3H的失重行为可归因于接枝在ZN表面的有机侧链的分解(图2的e区域)。X射线衍射(XRD)图谱、N2吸附-脱附等温线和孔径分布曲线表明ZN的晶体结构和固有的孔道在表面功能改性后得到了很好的保留(图2的f-h区域)。此外,ZN-NH2(0.45mmolg-1)和ZN-SO3H(0.57mmolg-1)都表现出比ZN(0.27mmolg-1)更高的离子交换容量(IEC)(图2的i区域),预计为质子传输提供更多的交换位点。As shown in the ac regions of Fig. 2, pristine ZN, ZN- NH2, and ZN- SO3H all exhibit the typical characteristics of single-layer or multilayer 2D nanosheets. Energy dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) detected nitrogen and sulfur elements in ZN-NH 2 and ZN-SO 3 H, respectively. ad regions) no other elements were detected, which demonstrates the successful grafting of -NH2 and -SO3H functional groups. Thermogravimetric analysis (TGA) showed that ZN has excellent thermal stability, and the weight loss behavior of ZN- NH2 and ZN- SO3H can be attributed to the decomposition of organic side chains grafted on the surface of ZN (region e of Fig. ). X-ray diffraction (XRD) patterns, N2 adsorption–desorption isotherms, and pore size distribution curves indicated that the crystal structure and intrinsic pores of ZN were well preserved after surface functional modification (fh region of Fig. 2). In addition, both ZN-NH 2 (0.45mmolg -1 ) and ZN-SO 3 H (0.57mmolg-1 ) exhibited higher ion exchange capacity (IEC) than ZN (0.27mmolg -1 ) (region i of Fig. 2 ), which are expected to provide more exchange sites for proton transport.
膜的形貌Membrane Morphology
将上述ZN、ZN-NH2和ZN-SO3H分别掺入SPEEK基质中制备质子传导膜,分子筛负载量控制在1wt%~5wt%。相应的膜表示为S/Z-X%,其中S为SPEEK,Z代表ZN、ZN-NH2或ZN-SO3H,X%为纳米片与SPEEK的重量比。不同膜的厚度很好地控制在49±2μm,并且杂化膜的厚度随着ZN含量的增加而增加。由于ZN在聚合物基质中的均匀分散,所有杂化膜在颜色、不透明度和柔韧性等表观物理性质上几乎与纯SPEEK膜相同。通过扫描电子显微镜(SEM)表征横截面形态。SPEEK膜和含ZN的杂化膜均匀、致密且无缺陷,掺入的ZN均匀悬浮在聚合物相中(图3)。与纯SPEEK膜的光滑横截面不同(图3的a区域),掺入ZN的膜表现出更粗糙的横截面,具有特定的皱纹网络结构,由于ZN均匀分布和丰富的界面相互作用,网络结构随着ZN负载的增加变得更密集(图3的b-d区域)。重要的是,在掺入ZN-NH2和ZN-SO3H的膜(图3的c,d区域)中没有观察到由界面不相容性导致的ZN和聚合物相之间的明显间隙(图3的b区域),这表明通过接枝-NH2和-SO3H官能团有效的增强了ZN和聚合物之间的表面亲和力。The above-mentioned ZN, ZN-NH 2 and ZN-SO 3 H were respectively incorporated into the SPEEK matrix to prepare a proton conduction membrane, and the molecular sieve loading was controlled at 1wt%-5wt%. The corresponding film is expressed as S/ZX%, where S is SPEEK, Z represents ZN, ZN- NH2 or ZN- SO3H , and X% is the weight ratio of nanosheets to SPEEK. The thickness of the different films is well controlled at 49 ± 2 μm, and the thickness of the hybrid films increases with increasing ZN content. Due to the uniform dispersion of ZN in the polymer matrix, all the hybrid films are almost identical to the pure SPEEK films in terms of apparent physical properties such as color, opacity, and flexibility. The cross-sectional morphology was characterized by scanning electron microscopy (SEM). The SPEEK film and ZN-containing hybrid film are uniform, dense, and defect-free, and the incorporated ZN is uniformly suspended in the polymer phase (Fig. 3). Unlike the smooth cross-section of the pure SPEEK film (region a of Fig. 3), the ZN-incorporated film exhibits a rougher cross-section with a specific wrinkled network structure. Due to the uniform distribution of ZN and abundant interfacial interactions, the network structure It becomes denser with increasing ZN loading (region bd of Fig. 3). Importantly, no apparent gap between the ZN and polymer phases caused by interfacial incompatibility was observed in the ZN- NH2 and ZN- SO3H -incorporated films (Fig. 3, c, d regions). (region b of Fig. 3), which indicated that the surface affinity between ZN and the polymer was effectively enhanced by grafting -NH 2 and -SO 3 H functional groups.
膜的性质membrane properties
吸水率和溶胀率是液流电池用质子传导膜的两个关键参数,其中前者与质子的传输相关,后者反映了膜的尺寸稳定性。由于分子筛固有的微孔结构(图4的a区域),ZN嵌入膜的吸水能力高于纯SPEEK膜(图4的a区域),并且杂化膜的吸水率随着ZN负载的增加而增加。此外,由于引入了亲水性-SO3H官能团,与ZN和ZN-NH2相比,在掺入ZN-SO3H的膜中这种吸水能力增强更为明显。同时,由于刚性分子筛骨架的空间限制效应,聚合物伴随水吸附的溶胀率受到了很好的限制(图4的a区域)。随着ZN负载的增加,所有混合膜的溶胀率均降低。特别是,由于SPEEK基质中的-SO3H基团与ZN-NH2中的-NH2官能团之间形成酸碱对,因此掺入ZN-NH2的膜的尺寸稳定性进一步增强,因此掺入ZN的膜-NH2表现出比ZN和ZN-SO3H更高的抗溶胀性。Water absorption and swelling are two key parameters of proton-conducting membranes for flow batteries, where the former is related to the transport of protons and the latter reflects the dimensional stability of the membrane. Due to the inherent microporous structure of molecular sieves (region a of Figure 4), the water absorption capacity of the ZN-embedded membrane is higher than that of the pure SPEEK membrane (region a of Figure 4), and the water absorption of the hybrid membrane increases with the increase of ZN loading. In addition, due to the introduction of hydrophilic -SO3H functional groups, this enhanced water absorption capacity is more pronounced in ZN- SO3H -incorporated membranes compared with ZN and ZN- NH2 . At the same time, due to the steric confinement effect of the rigid zeolite framework, the swelling rate of the polymer with water adsorption is well restricted (region a of Figure 4). The swelling ratios of all hybrid membranes decreased with increasing ZN loading. In particular, due to the formation of acid-base pairs between the -SO3H groups in the SPEEK matrix and the -NH2 functional groups in ZN- NH2 , the dimensional stability of the ZN- NH2 -incorporated membranes was further enhanced, so the incorporation The membranes incorporating ZN- NH2 exhibited higher swelling resistance than ZN and ZN- SO3H .
膜的稳定性包括机械稳定性、化学稳定性和热稳定性,是决定电池组装和运行过程中长期稳定性不可或缺的参数。与纯SPEEK膜相比,ZN的加入提高了膜的拉伸强度,这源于ZN填料添加的分散强化效应。此外,在相同的ZN负载下,嵌入ZN-NH2的膜表现出优于ZN和ZN-SO3H的膜的拉伸强度,因为酸碱对的协同作用有助于更好地从聚合物基质到纳米填料的应力传递(图4的b区域)。由于含有VO2+的电解液的腐蚀,化学稳定性是VFB应用膜的另一个关键参数。膜的降解通常由充放电过程中VO2+离子的强氧化引起。吸收光谱显示,在将膜浸入含有VO2+离子的溶液中15天后,浸泡溶液中的钒物种没有可检测到的变化,这表明膜具有优异的化学稳定性。此外,通过热重分析(TGA)评估的热稳定性(图4的c区域)。膜的失重行为几乎没有明显差异,这表明ZN的掺入并未改变膜的热力学性质。Membrane stability, including mechanical, chemical, and thermal stability, is an indispensable parameter for determining long-term stability during battery assembly and operation. Compared with the pure SPEEK film, the addition of ZN improves the tensile strength of the film, which originates from the dispersion strengthening effect of ZN filler addition. In addition, under the same ZN loading, the ZN- NH2 embedded membrane exhibited better tensile strength than ZN and ZN- SO3H membranes, because the synergistic effect of the acid-base pair contributes to better extraction from the polymer Stress transfer from the matrix to the nanofillers (region b of Figure 4). Chemical stability is another critical parameter of membranes for VFB applications due to the corrosion of electrolytes containing VO 2+ . The degradation of the membrane is usually caused by the strong oxidation of VO ions during charge and discharge. Absorption spectra revealed no detectable changes in the vanadium species in the soaking solution after immersing the membrane in a solution containing VO ions for 15 days, which indicated the excellent chemical stability of the membrane. Furthermore, the thermal stability was assessed by thermogravimetric analysis (TGA) (region c of Fig. 4). There was almost no obvious difference in the weight loss behavior of the films, which indicated that the incorporation of ZN did not change the thermodynamic properties of the films.
膜的离子选择性和电导率是直接决定电池性能的两个最重要的参数。具有更高离子选择性的隔膜可以有效防止正负极电解液中活性物质的交叉污染,减缓电池的自放电。首先通过钒离子渗透实验研究了膜的钒渗透性。如图4的d区域所示,嵌入ZN对阻隔钒离子渗透的有益作用显而易见。一旦ZN掺入SPEEK聚合物基质中,所有膜的钒渗透速率显着降低,钒渗透速率随着ZN负载的增加而降低。钒离子阻隔作用的增强可归因于分子筛刚性通道完全阻挡直径大于0.6nm的钒离子和显着延长的钒离子扩散路径。值得注意的是,在4wt%ZN负载下,掺入ZN-NH2的膜的钒渗透率略低于掺入ZN和ZN-SO3H的膜,因为ZN-NH2与SPEEK形成的界面相互作用进一步阻止了大离子通道的形成(图4的d区域)。The ion selectivity and conductivity of the membrane are the two most important parameters that directly determine the performance of the battery. A separator with higher ion selectivity can effectively prevent the cross-contamination of active substances in the positive and negative electrolytes and slow down the self-discharge of the battery. The vanadium permeability of the membrane was first studied by vanadium ion permeation experiments. As shown in region d of Fig. 4, the beneficial effect of intercalated ZN on blocking the permeation of vanadium ions is evident. Once ZN was incorporated into the SPEEK polymer matrix, the vanadium permeation rate decreased significantly for all membranes, and the vanadium permeation rate decreased with increasing ZN loading. The enhanced barrier effect of vanadium ions can be attributed to the complete blocking of vanadium ions with a diameter larger than 0.6 nm by the rigid channels of the zeolites and the significantly prolonged vanadium ion diffusion path. It is worth noting that at 4wt% ZN loading, the vanadium permeability of the membrane doped with ZN- NH2 is slightly lower than that of the membrane doped with ZN and ZN- SO3H , because the interface formed by ZN- NH2 and SPEEK interacts with each other. The effect further prevents the formation of large ion channels (region d of Figure 4).
与纯SPEEK膜和商业Nafion 212相比,嵌入ZN、ZN-NH2或ZN-SO3H的所有膜都表现出较低的面电阻和较高的质子电导率(图4的e区域)。掺入不同种类ZN的膜的质子电导率呈现出相似的变化趋势,质子电导率随着ZNs含量的增加而增加,在4wt%时达到最大值,然后下降。杂化膜增加的电导率归因于掺入的ZN的亲水离子化表面和b轴直通道,这为质子的快速捕获和传输提供了另一个内部通道。然而,过多的ZN会导致严重的聚集并阻碍质子的传输。此外,聚合物基质和表面官能团之间的界面相互作用沿着SPEEK和ZN之间的界面构建了一个连续的长程和低能垒质子转移通道(图1的b区域)。因此,在相同的4wt%ZN负载下,使用ZN-NH2和ZN-SO3H作为填料导致质子电导率的增加高于ZN,遵循S/ZN-SO3H-4%膜>S/ZN-NH2-4%膜>S/ZN-4%膜的顺序。S/ZN-SO3H-4%膜的质子电导率达到92.4mS cm-1,是纯SPEEK膜(56.7mS cm-1)的1.6倍左右,是商用Nafion212膜的2.4倍(39.3mS cm-1)。离子选择性,定义为质子电导率与钒渗透率之比,通常反映膜的整体性能。由于钒离子阻隔能力和质子电导率的显着增强,所有杂化膜都表现出更高的离子选择性,并且与质子电导率的趋势很好地对应(图4的f区域)。S/ZN-SO3H-4%膜在本专利的所有膜中表现出最高的离子选择性(6.0×105S min cm-3),远高于纯SPEEK膜(1.6×105S min cm-3)和商业Nafion 212膜(0.8×105S min cm-3)。All the films embedded with ZN, ZN- NH2 , or ZN- SO3H exhibited lower sheet resistance and higher proton conductivity compared with pure SPEEK film and commercial Nafion 212 (region e of Fig. 4). The proton conductivity of the membranes doped with different kinds of ZN showed a similar trend, and the proton conductivity increased with the increase of ZNs content, reached a maximum at 4 wt%, and then decreased. The increased conductivity of the hybrid membrane is attributed to the hydrophilic ionized surface and b-axis straight channel of the incorporated ZN, which provides another internal channel for the fast capture and transport of protons. However, too much ZN will cause severe aggregation and hinder the transport of protons. Furthermore, the interfacial interactions between the polymer matrix and the surface functional groups construct a continuous long-range and low energy barrier proton transfer channel along the interface between SPEEK and ZN (region b of Figure 1). Therefore, at the same 4wt% ZN loading, the use of ZN-NH 2 and ZN-SO 3 H as fillers resulted in an increase in proton conductivity higher than that of ZN, following the S/ZN-SO 3 H-4% film>S/ZN The order of -NH 2 -4% film>S/ZN-4% film. The proton conductivity of the S/ZN-SO 3 H-4% membrane reaches 92.4mS cm -1 , which is about 1.6 times that of the pure SPEEK membrane (56.7mS cm -1 ) and 2.4 times that of the commercial Nafion212 membrane (39.3mS cm -1 ). 1 ). Ion selectivity, defined as the ratio of proton conductivity to vanadium permeability, usually reflects the overall performance of the membrane. All the hybrid membranes exhibited higher ion selectivity due to the significant enhancement of vanadium ion barrier capacity and proton conductivity, which corresponded well with the trend of proton conductivity (region f of Fig. 4). The S/ZN-SO 3 H-4% membrane exhibited the highest ion selectivity (6.0×10 5 S min cm -3 ) among all the membranes in this patent, much higher than the pure SPEEK membrane (1.6×10 5 S min cm -3 ) and commercial Nafion 212 membrane (0.8×10 5 S min cm -3 ).
电池性能battery performance
掺入4wt%ZN的膜表现出最吸引人的综合性能,如增强的吸水性、更好的抗溶胀性、较高的离子选择性和电导率、在恶劣环境下的稳定性好,有望具有优异的电池性能。.为了进一步验证杂化膜的可用性和优越性,对S/ZN-4%膜、S/ZN-NH2-4%膜、S/ZN-SO3H-4%膜、SPEEK膜进行了VFB单电池测试和商业Nafion 212膜。在40至200mA cm-2的电流密度下,所有掺入ZN、ZN-NH2或ZN-SO3H的膜都表现出比纯SPEEK膜更好的CE、VE和EE(图5的a区域)。值得注意的是,在整个测试范围内,嵌入ZN的膜的CE显着高于纯SPEEK膜和Nafion 212,尤其是在低电流密度下,这与钒渗透结果一致(图4的d区域)。由于高电流密度下的高过电位和欧姆极化,膜的VE随着电流密度的增加而逐渐降低(图5的a区域)。尽管如此,配备嵌入ZN的膜的VFB仍然表现出比配备纯SPEEK膜的VFB显着更高的VE,因为高质子电导率有效地降低了欧姆极化。在相同电流密度下,掺入不同种类ZN膜的电池的VE仍遵循S/ZN-SO3H-4%膜>S/ZN-NH2-4%膜>S/ZN-4%膜的顺序。这与质子电导率结果很好地吻合(图4的e区域)。总体而言,出色的CE和VE表明ZN的加入同时提高了钒离子阻隔能力和质子电导率,并打破了离子选择性和质子电导率之间的权衡。因此,所有掺入ZN的膜都表现出增强的EE(图5的a区域),其中S/ZN-SO3H-4%膜的EE最高。S/ZN-SO3H-4%膜的电池的CE和EE在120mAcm-2的电流密度下达到99.0%和85.0%,与纯SPEEK膜的97.8%和78.4%形成鲜明对比Nafion 212膜分别为96.3%和80.1%。The membrane incorporating 4wt% ZN exhibited the most attractive comprehensive properties, such as enhanced water absorption, better swelling resistance, higher ion selectivity and conductivity, good stability in harsh environments, and is expected to have Excellent battery performance. .In order to further verify the availability and superiority of hybrid membranes, VFB was carried out on S/ZN-4% membrane, S/ZN-NH 2 -4% membrane, S/ZN-SO 3 H-4% membrane, SPEEK membrane Single cell tests and commercial Nafion 212 membranes. All the films doped with ZN, ZN- NH2 or ZN- SO3H exhibited better CE, VE and EE than pure SPEEK films at current densities ranging from 40 to 200 mA cm -2 (region a of Fig. 5 ). It is worth noting that the CE of the ZN-embedded membrane is significantly higher than that of the pure SPEEK membrane and Nafion 212 over the entire tested range, especially at low current densities, which is consistent with the vanadium permeation results (region d of Figure 4). Due to the high overpotential and ohmic polarization at high current density, the VE of the film gradually decreases with increasing current density (region a of Figure 5). Nevertheless, VFBs equipped with ZN-embedded membranes still exhibit significantly higher VEs than those equipped with pure SPEEK membranes because the high proton conductivity effectively reduces the ohmic polarization. At the same current density, the VE of the batteries mixed with different kinds of ZN films still followed the order of S/ZN-SO 3 H-4% film>S/ZN-NH 2 -4% film>S/ZN-4% film . This agrees well with the proton conductivity results (region e of Figure 4). Overall, the excellent CE and VE indicated that the incorporation of ZN simultaneously enhanced the vanadium ion barrier ability and proton conductivity, and broke the trade-off between ion selectivity and proton conductivity. Therefore, all ZN-incorporated films exhibited enhanced EE (region a of Fig. 5), with the highest EE for the S/ZN- SO3H -4% film. The CE and EE of the cell with the S/ZN- SO3H -4% film reached 99.0% and 85.0% at a current density of 120mAc m-2 , in sharp contrast to 97.8% and 78.4% of the pure SPEEK film and Nafion 212 film, respectively. 96.3% and 80.1%.
图5的b区域总结了通过有机共混和无机纳米填料混合改性的SPEEK膜用于VFB应用的前沿报告。很明显,在大电流密度范围内,具有S/ZN-SO3H-4%膜的电池的EE优于大多数报道的膜,这得益于掺入的功能性ZN同时提高了离子选择性和电导率。Panel b of Fig. 5 summarizes the cutting-edge reports on SPEEK membranes modified by mixing organic blends and inorganic nanofillers for VFB applications. It is clear that the EE of the cell with the S/ZN-SO3H-4% membrane is superior to most of the reported membranes in the large current density range, which is benefited from the simultaneous enhancement of ion selectivity and conductance by the incorporation of functional ZN. Rate.
为了进一步证实混合膜的稳定性和可靠性,配备有S/ZN-SO3H-4%膜、S/ZN-NH2-4%膜和SPEEK膜的VFB电池在120mA cm-2的电流密度下运行用于长循环测试(图5的c区域)。S/ZN-SO3H-4%膜和S/ZN-NH2-4%膜的电池效率相对稳定,在整个测试过程中没有出现明显的下降,而SPEEK膜在80次循环后效率急剧下降由于在操作过程中膜破裂。此外,与SPEEK膜相比,嵌入ZN的膜,尤其是ZN-NH2的膜,表现出显着更高的容量保留率,因为具有高离子选择性的膜可以有效地抵抗电解质的交叉污染(图5的d区域)。SPEEK膜在80个循环后容量保持率为74.3%,容量衰减为每个循环0.32%和每天6.36%。相比之下,S/ZN-SO3H-4%膜和S/ZN-NH2-4%膜在250次循环后的容量保持率分别为57.0%和64.0%,这表明容量衰减比SPEEK膜显着降低(每循环0.17%和3.35S/ZN-SO3H-4%每天%,每个循环0.14%和S/ZN-NH2-4%每天2.54%)。In order to further confirm the stability and reliability of the hybrid membrane, VFB cells equipped with S/ZN-SO 3 H-4% membrane, S/ZN-NH 2 -4% membrane and SPEEK membrane at a current density of 120mA cm -2 The down run is used for long loop tests (region c of Figure 5). The cell efficiencies of the S/ZN-SO 3 H-4% and S/ZN-NH 2 -4% membranes were relatively stable with no significant drop during the entire test, while the efficiency of the SPEEK membrane dropped sharply after 80 cycles Due to rupture of the membrane during operation. Furthermore, ZN-embedded membranes, especially ZN- NH2 membranes, exhibited significantly higher capacity retention compared with SPEEK membranes, since membranes with high ion selectivity can effectively resist electrolyte cross-contamination ( Region d of Figure 5). The capacity retention rate of the SPEEK membrane was 74.3% after 80 cycles, and the capacity fading was 0.32% per cycle and 6.36% per day. In contrast, the capacity retentions of S/ZN-SO 3 H-4% and S/ZN-NH 2 -4% films after 250 cycles were 57.0% and 64.0%, respectively, which indicated that the capacity fade was higher than that of SPEEK Films were significantly lower (0.17% per cycle and 3.35% per day for S/ZN- SO3H -4%, 0.14% per cycle and 2.54% per day for S/ZN- NH2-4 %).
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211064782.6A CN115411292B (en) | 2022-09-01 | 2022-09-01 | Molecular cross-linked molecular sieve nanosheet hybrid membrane, preparation method and application thereof in flow battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211064782.6A CN115411292B (en) | 2022-09-01 | 2022-09-01 | Molecular cross-linked molecular sieve nanosheet hybrid membrane, preparation method and application thereof in flow battery |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115411292A CN115411292A (en) | 2022-11-29 |
CN115411292B true CN115411292B (en) | 2023-08-18 |
Family
ID=84163244
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211064782.6A Active CN115411292B (en) | 2022-09-01 | 2022-09-01 | Molecular cross-linked molecular sieve nanosheet hybrid membrane, preparation method and application thereof in flow battery |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115411292B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024212213A1 (en) * | 2023-04-14 | 2024-10-17 | 浙江大学 | Rapid synthesis method for two-dimensional molecular sieve and two-dimensional molecular sieve |
CN117423875A (en) * | 2023-09-06 | 2024-01-19 | 南京工业大学 | Hybrid membrane based on hollow zeolite molecular sieve, preparation method thereof and application thereof in flow battery |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102146190A (en) * | 2010-02-08 | 2011-08-10 | 南京工业大学 | Method for preparing organic-inorganic composite material |
CN102294182A (en) * | 2011-07-18 | 2011-12-28 | 清华大学 | Preparation method of hydrophobic nano mesoporous molecular sieve filling PDMC composite film |
WO2012045335A1 (en) * | 2010-10-05 | 2012-04-12 | Universiteit Twente | Proton exchange membrane |
CN104383819A (en) * | 2014-11-17 | 2015-03-04 | 清华大学 | Preparation method of microporous molecular sieve filled solvent resistant composite film |
CN105521717A (en) * | 2016-01-28 | 2016-04-27 | 中国科学院宁波材料技术与工程研究所 | Method for preparing organic-inorganic hybridized full heat exchange film with coupling agent method |
CN113957472A (en) * | 2021-10-15 | 2022-01-21 | 国网浙江省电力有限公司嘉善县供电公司 | Proton exchange membrane electrode for hydrogen production by water electrolysis and preparation method |
KR20220011459A (en) * | 2020-07-21 | 2022-01-28 | 인천대학교 산학협력단 | Sulfonated polyethersulfone copolymer, composite membranes for ion exchange membrane comprising the same, ion exchange membrane comprising the composite membrane, fuel cell comprising the ion exchange membrane, method for manufacturing the copolymer and method for manufacturing composite membrane for the ion exchange membrane |
CN114426644A (en) * | 2020-09-29 | 2022-05-03 | 中国石油化工股份有限公司 | Preparation method and application of copolymer membrane material containing zeolite molecular sieve |
CN114725418A (en) * | 2022-03-23 | 2022-07-08 | 大连理工大学 | An ionic sieving flow battery separator with functional polymer/covalent organic framework interspersed with shrinkage pore structure |
CN114917762A (en) * | 2022-04-27 | 2022-08-19 | 南京工业大学 | Method for preparing hybrid membrane with molecular sieve nanosheets distributed in parallel and orderly in polymer |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030131731A1 (en) * | 2001-12-20 | 2003-07-17 | Koros William J. | Crosslinked and crosslinkable hollow fiber mixed matrix membrane and method of making same |
US7109140B2 (en) * | 2002-04-10 | 2006-09-19 | Virginia Tech Intellectual Properties, Inc. | Mixed matrix membranes |
-
2022
- 2022-09-01 CN CN202211064782.6A patent/CN115411292B/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102146190A (en) * | 2010-02-08 | 2011-08-10 | 南京工业大学 | Method for preparing organic-inorganic composite material |
WO2012045335A1 (en) * | 2010-10-05 | 2012-04-12 | Universiteit Twente | Proton exchange membrane |
CN102294182A (en) * | 2011-07-18 | 2011-12-28 | 清华大学 | Preparation method of hydrophobic nano mesoporous molecular sieve filling PDMC composite film |
CN104383819A (en) * | 2014-11-17 | 2015-03-04 | 清华大学 | Preparation method of microporous molecular sieve filled solvent resistant composite film |
CN105521717A (en) * | 2016-01-28 | 2016-04-27 | 中国科学院宁波材料技术与工程研究所 | Method for preparing organic-inorganic hybridized full heat exchange film with coupling agent method |
KR20220011459A (en) * | 2020-07-21 | 2022-01-28 | 인천대학교 산학협력단 | Sulfonated polyethersulfone copolymer, composite membranes for ion exchange membrane comprising the same, ion exchange membrane comprising the composite membrane, fuel cell comprising the ion exchange membrane, method for manufacturing the copolymer and method for manufacturing composite membrane for the ion exchange membrane |
CN114426644A (en) * | 2020-09-29 | 2022-05-03 | 中国石油化工股份有限公司 | Preparation method and application of copolymer membrane material containing zeolite molecular sieve |
CN113957472A (en) * | 2021-10-15 | 2022-01-21 | 国网浙江省电力有限公司嘉善县供电公司 | Proton exchange membrane electrode for hydrogen production by water electrolysis and preparation method |
CN114725418A (en) * | 2022-03-23 | 2022-07-08 | 大连理工大学 | An ionic sieving flow battery separator with functional polymer/covalent organic framework interspersed with shrinkage pore structure |
CN114917762A (en) * | 2022-04-27 | 2022-08-19 | 南京工业大学 | Method for preparing hybrid membrane with molecular sieve nanosheets distributed in parallel and orderly in polymer |
Non-Patent Citations (1)
Title |
---|
Ultrathin ZSM-5 zeolite nanosheet laminated membrane for high-flux desalination of concentrated brines;Zishu Cao等;《Science Advances》;20181123;第4卷(第11期);正文全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN115411292A (en) | 2022-11-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Xiong et al. | A chemistry and microstructure perspective on ion‐conducting membranes for redox flow batteries | |
Niu et al. | Novel graphitic carbon nitride nanosheets/sulfonated poly (ether ether ketone) acid-base hybrid membrane for vanadium redox flow battery | |
Zhao et al. | Nanofiber hybrid membranes: progress and application in proton exchange membranes | |
US7108935B2 (en) | Ion conducting composite membrane materials containing an optionally modified zirconium phosphate dispersed in a polymeric matrix, method for preparation of the membrane material and its use | |
Laberty-Robert et al. | Design and properties of functional hybrid organic–inorganic membranes for fuel cells | |
Hu et al. | “Fishnet-like” ion-selective nanochannels in advanced membranes for flow batteries | |
CN115411292B (en) | Molecular cross-linked molecular sieve nanosheet hybrid membrane, preparation method and application thereof in flow battery | |
Yao et al. | An enhanced proton conductivity and reduced methanol permeability composite membrane prepared by sulfonated covalent organic nanosheets/Nafion | |
US20050053818A1 (en) | Ion exchange composite material based on proton conductive functionalized inorganic support compounds in a polymer matrix | |
WO2012045335A1 (en) | Proton exchange membrane | |
Qian et al. | High-performance composite membrane based on synergistic main-chain/side-chain proton conduction channels for the vanadium redox flow battery | |
Prapainainar et al. | Homogeneous polymer/filler composite membrane by spraying method for enhanced direct methanol fuel cell performance | |
Yadav et al. | Insight toward the electrochemical properties of sulfonated poly (2, 6-dimethyl-1, 4-phenylene oxide) via impregnating functionalized boron nitride: alternate composite polymer electrolyte for direct methanol fuel cell | |
Muhmed et al. | Improvement in properties of nanocrystalline cellulose/poly (vinylidene fluoride) nanocomposite membrane for direct methanol fuel cell application | |
An et al. | Surface-modified approach to fabricate nafion membranes covalently bonded with polyhedral oligosilsesquioxane for vanadium redox flow batteries | |
Abdiani et al. | Novel polyolefin based alkaline polymer electrolyte membrane for vanadium redox flow batteries | |
CN114725418A (en) | An ionic sieving flow battery separator with functional polymer/covalent organic framework interspersed with shrinkage pore structure | |
Luan et al. | Advanced hybrid polybenzimidazole membrane enabled by a “linker” of metal-organic framework for high-performance vanadium flow battery | |
Xiao et al. | Usability of unstable metal organic framework enabled by carbonization within flow battery membrane under harsh environment | |
Xia et al. | Functional molecular cross‐linked zeolite nanosheets heighten ion selectivity and conductivity of flow battery membrane | |
Pourzare et al. | Improvement of proton conductivity of magnetically aligned phosphotungstic acid-decorated cobalt oxide embedded Nafion membrane | |
Zhao et al. | A highly selective and high-performance sulfonated poly (ether ether ketone)-based hybrid membrane enabled by complexed UiO-66-NH 2 and sulfonated graphitic carbon nitride for vanadium flow batteries | |
US20220093954A1 (en) | Separator for redox flow battery and manufacturing method therefor | |
Banerjee et al. | Electrolyte membranes for fuel cells: synthesis, characterization and degradation analysis | |
WO2019050272A1 (en) | Separation film for redox flow battery, method for preparing separation film for redox flow battery, and redox flow battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |