CN115408652A - A method for determining the protection level of EKF integrated navigation based on truncation error estimation - Google Patents
A method for determining the protection level of EKF integrated navigation based on truncation error estimation Download PDFInfo
- Publication number
- CN115408652A CN115408652A CN202211341296.4A CN202211341296A CN115408652A CN 115408652 A CN115408652 A CN 115408652A CN 202211341296 A CN202211341296 A CN 202211341296A CN 115408652 A CN115408652 A CN 115408652A
- Authority
- CN
- China
- Prior art keywords
- error
- truncation
- protection level
- truncation error
- pseudo
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/11—Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/10—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
- G01C21/12—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
- G01C21/16—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
- G01C21/183—Compensation of inertial measurements, e.g. for temperature effects
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/01—Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/03—Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
- G01S19/07—Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing data for correcting measured positioning data, e.g. DGPS [differential GPS] or ionosphere corrections
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/38—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
- G01S19/39—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/393—Trajectory determination or predictive tracking, e.g. Kalman filtering
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/38—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
- G01S19/39—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/396—Determining accuracy or reliability of position or pseudorange measurements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/38—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
- G01S19/39—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/42—Determining position
- G01S19/45—Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement
- G01S19/47—Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement the supplementary measurement being an inertial measurement, e.g. tightly coupled inertial
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/16—Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
Landscapes
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Radar, Positioning & Navigation (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Mathematical Optimization (AREA)
- Computational Mathematics (AREA)
- Pure & Applied Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Data Mining & Analysis (AREA)
- Mathematical Analysis (AREA)
- Theoretical Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Software Systems (AREA)
- Databases & Information Systems (AREA)
- Algebra (AREA)
- Operations Research (AREA)
- Computing Systems (AREA)
- Automation & Control Theory (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
Abstract
Description
技术领域technical field
本发明属于组合导航技术领域,具体涉及一种基于截断误差估计的EKF组合导航保护级确定方法。The invention belongs to the technical field of integrated navigation, and in particular relates to an EKF integrated navigation protection level determination method based on truncation error estimation.
背景技术Background technique
单导航系统已无法满足无人机在复杂环境中精准、可信、可靠飞行的需求,GNSS/INS组合导航具有GNSS全天候长期稳定导航和INS短时精度高的优点,可作为复杂环境中无人机飞行的导航手段。为保证飞行安全,GNSS/INS组合导航必须满足给定的完好性需求,可实时计算指定风险概率下定位误差的置信上限,即保护级,当保护级超过告警限时,说明此时的导航系统不可用,需要及时向用户报警。A single navigation system can no longer meet the precise, credible, and reliable flight requirements of UAVs in complex environments. GNSS/INS integrated navigation has the advantages of GNSS all-weather long-term stable navigation and INS short-term high accuracy, and can be used as an unmanned aerial vehicle in complex environments. means of navigation for aircraft. In order to ensure flight safety, GNSS/INS integrated navigation must meet the given integrity requirements, and can calculate the upper confidence limit of positioning error under the specified risk probability in real time, that is, the protection level. When the protection level exceeds the warning limit, it means that the navigation system at this time cannot It is necessary to notify the user in time.
采用EKF(ExtendedKalmanFilter,扩展卡尔曼滤波器)解算非线性问题时,需要利用泰勒级数对非线性系统进行线性化处理,但线性化需要舍弃泰勒展开式中高阶分量。GNSS/INS组合导航系统完好性监测的核心是对各因素导致的定位误差的统计特性进行估计,从而计算保护级。在将EKF方法运用于GNSS/INS组合导航时,人为产生了舍去泰勒展开式中高阶项的计算误差,称为截断误差。When using EKF (Extended Kalman Filter, Extended Kalman Filter) to solve nonlinear problems, it is necessary to use Taylor series to linearize the nonlinear system, but the linearization needs to discard the high-order components in the Taylor expansion. The core of GNSS/INS integrated navigation system integrity monitoring is to estimate the statistical characteristics of positioning errors caused by various factors, so as to calculate the protection level. When the EKF method is applied to GNSS/INS integrated navigation, the calculation error of discarding the high-order items in the Taylor expansion is artificially generated, which is called the truncation error.
在系统非线性较强的时候,截断误差使计算出的定位误差协方差不准确,导致保护级计算不够准确,无法满足完好性需求。因此需在滤波过程中把截断误差考虑进来。When the nonlinearity of the system is strong, the truncation error makes the calculated positioning error covariance inaccurate, which leads to the inaccurate calculation of the protection level and cannot meet the integrity requirements. Therefore, the truncation error needs to be taken into account in the filtering process.
另外,目前组合导航保护级的相关研究中,均假设误差服从零均值高斯分布,而实际中如伪距、伪距率误差是非高斯非零均值分布的,导致计算的保护级不能包络实际误差尾部,可能会造成潜在的完好性风险。In addition, in the current research on the protection level of integrated navigation, it is assumed that the error obeys the zero-mean Gaussian distribution, but in practice, such as pseudo-range and pseudo-range rate errors are non-Gaussian and non-zero-mean distribution, resulting in the calculated protection level cannot envelop the actual error Tail, may pose a potential integrity risk.
发明内容Contents of the invention
鉴于上述的分析,本发明旨在公开了一种基于截断误差估计的EKF组合导航保护级确定方法,用于解决EKF线性化过程中产生的截断误差使保护级计算不够准确的问题。In view of the above analysis, the present invention aims to disclose a method for determining the protection level of EKF integrated navigation based on truncation error estimation, which is used to solve the problem that the truncation error generated in the EKF linearization process makes the protection level calculation not accurate enough.
本发明公开了一种基于截断误差估计的EKF组合导航保护级计算方法,包括以下步骤:The invention discloses an EKF integrated navigation protection level calculation method based on truncation error estimation, comprising the following steps:
建立考虑截断误差的GNSS/INS紧组合导航系统状态空间模型,估计截断误差值和其协方差;Establish the state space model of GNSS/INS compact integrated navigation system considering the truncation error, and estimate the truncation error value and its covariance;
用估计的截断误差和其协方差修正所述模型;并考虑截断误差残余量,计算修正后的定位误差统计特性,得到包括截断误差的保护级表达式;Using the estimated truncation error and its covariance to modify the model; and considering the residual amount of truncation error, calculating the statistical characteristics of the corrected positioning error to obtain a protection level expression including the truncation error;
获取实际的伪距、伪距率观测量样本以及对应的残余截断误差样本数据;Obtain the actual pseudorange, pseudorange rate observation samples and corresponding residual truncation error sample data;
基于极值理论分别包络伪距、伪距率观测误差和残余截断误差样本数据,得到对应的放大因子;Based on the extreme value theory, the sample data of pseudorange, pseudorange rate observation error and residual truncation error are respectively enveloped to obtain the corresponding amplification factor;
将放大因子代入所述保护级表达式得出GNSS/INS紧组合导航系统的保护级。The protection level of the GNSS/INS compact integrated navigation system is obtained by substituting the amplification factor into the protection level expression.
进一步地,所述考虑截断误差的GNSS/INS紧组合导航系统状态空间模型为:Further, the state space model of the GNSS/INS compact integrated navigation system considering the truncation error is:
; ;
其中,k为时刻,是n维的状态向量;是m维的量测向量;为n阶的状态一步转移矩阵,为m×n阶的量测矩阵;为截断误差向量;为n维的系统噪声向量,为m维的量测噪声向量。Among them, k is the moment, is an n -dimensional state vector; is the m -dimensional measurement vector; is the n -order state one-step transition matrix, is a measurement matrix of order m × n ; is the truncation error vector; is the n -dimensional system noise vector, is the m -dimensional measurement noise vector.
进一步地,GNSS/INS紧组合导航系统状态空间模型的状态向量为17维的误差状态向量:Furthermore, the state vector of the GNSS/INS compact integrated navigation system state space model is a 17-dimensional error state vector:
其中,是三维速度误差;是三维姿态角误差;是三维位置误差;是三维加速度计误差;是三维陀螺仪误差;为一维接收机始终偏差;为一维接收机时钟漂移。in, is the three-dimensional velocity error; is the three-dimensional attitude angle error; is the three-dimensional position error; is the three-dimensional accelerometer error; is the three-dimensional gyroscope error; is the constant bias of the one-dimensional receiver; is the one-dimensional receiver clock drift.
进一步地,GNSS/INS紧组合导航系统状态空间模型的量测量为GNSS观测伪距、伪距率与INS预测的伪距、伪距率之差;Furthermore, the quantity measurement of the state space model of the GNSS/INS compact integrated navigation system is the GNSS observation pseudorange , pseudorange rate Pseudoranges from INS predictions , pseudorange rate Difference;
量测噪声向量包括GNSS观测伪距和伪距率噪声向量。measurement noise vector Includes GNSS observed pseudoranges and pseudorange rate noise vectors.
进一步地,采用NPF方法,估计截断误差值和其协方差,具体包括:Further, the NPF method is used to estimate the truncation error value and its covariance, including:
1)获取当前时刻观测量与上一时刻观测量的估计的残差;1) Obtain the estimated residual of the observed quantity at the current moment and the observed quantity at the previous moment;
残差;residual ;
其中,为k时刻第i颗星的伪距观测量,为k时刻第i颗星的伪距率观测量;和为k-1时刻第i颗星的观测量的估计值,等于函数在k-1时刻估计的定位解处泰勒展开后省略高阶项的值;i=1,…,p,p为可见星数目;in, is the pseudo-range observation of the i -th star at time k , is the pseudorange rate observation of the i -th star at time k ; and is the estimated value of the observed quantity of the i -th star at time k -1, which is equal to the function The value of the high-order item is omitted after Taylor expansion at the estimated positioning solution at time k -1; i= 1,..., p , p is the number of visible stars;
2)利用残差估计截断误差的估计量和其协方差:2) Use the residual to estimate the estimator of the truncation error and its covariance :
估计量;Estimator ;
协方差;Covariance ;
其中,为半正定的权矩阵,为量测噪声矩阵。in, is a positive semi-definite weight matrix, is the measurement noise matrix.
进一步地,用截断误差的估计值和其协方差修正后的GNSS/INS紧组合导航系统状态空间模型为:Furthermore, the state space model of the GNSS/INS compact integrated navigation system corrected by the estimated value of the truncation error and its covariance is:
; ;
式中,为截断误差经NPF方法估计后截断误差残余量,。In the formula, is the truncation error residual after the truncation error is estimated by the NPF method, .
进一步地,包括截断误差的保护级表达式的确定过程包括:Further, the process of determining the protection level expression including the truncation error includes:
1)根据卡尔曼滤波的误差传播,确定出定位误差;1) According to the error propagation of Kalman filter, the positioning error is determined;
2)进行完好性的假设分配,得到H0假设下,GNSS/INS紧组合导航系统垂直定位误差表达式;2) Carry out the hypothesis assignment of integrity, and obtain the vertical positioning error expression of the GNSS/INS compact integrated navigation system under the H0 assumption;
3)根据垂直定位误差表达式,确定出垂直定位误差分布特性;3) According to the vertical positioning error expression, the distribution characteristics of the vertical positioning error are determined;
4)根据误差分布特性,得到H0假设下包括截断误差的保护级表达式。4) According to the error distribution characteristics, the protection level expression including the truncation error under the H0 assumption is obtained.
进一步地,H0假设下,所述垂直定位误差表达式:Further, under the H0 assumption, the vertical positioning error expression:
; ;
其中,;为卡尔曼增益;v为误差状态向量X中与高度信息所对应的行号;in, ; is the Kalman gain; v is the line number corresponding to the height information in the error state vector X ;
为矩阵中与高度信息对应的行中的元素,为矩阵中与高度信息对应的行中的元素,为矩阵中与高度信息对应的行中的元素; for the element in the row corresponding to the height information in the matrix, for the element in the row corresponding to the height information in the matrix, for elements in the row corresponding to the height information in the matrix;
垂直定位误差服从高斯分布特性;vertical positioning error Obey the characteristics of Gaussian distribution;
; ;
H0假设下,包括截断误差的保护级表达式:Under the H0 assumption, the protection level expression including the truncation error is:
; ;
其中为无故障漏检系数。in is the error-free missed detection coefficient.
进一步地,基于极值理论包络伪距样本数据得到对应的放大因子的方法,包括:Further, the method of obtaining the corresponding amplification factor based on the extreme value theory envelope pseudorange sample data includes:
1)将获取的实际伪距样本取绝对值后从小到大排列,并计算出样本的标准差;1) Arrange the obtained actual pseudorange samples in ascending order after taking the absolute value, and calculate the standard deviation of the samples;
2)用平均超出量函数图法选取出一个伪距样本作为阈值;2) Select a pseudo-range sample as the threshold using the average excess amount function graph method;
3)用Bootstrap法将伪距样本有放回地重采样B次,得到B组样本;3) Use the Bootstrap method to resample the pseudorange samples B times with replacement to obtain group B samples;
3)根据极值理论,对每组样本进行参数估计,确定出参数置信限值;3) According to the extreme value theory, estimate the parameters of each group of samples, and determine the parameter confidence limits;
4)将参数置信限值带入样本分布,根据组合导航伪距误差的概率分布的完好性确定出伪距误差放大因子。4) The parameter confidence limit is brought into the sample distribution, and the pseudo-range error amplification factor is determined according to the integrity of the probability distribution of the integrated navigation pseudo-range error.
进一步地,将放大因子代入所述保护级表达式得出GNSS/INS紧组合导航系统的保护级;其中,Further, the protection level of the GNSS/INS tight integrated navigation system is obtained by substituting the amplification factor into the protection level expression ;in,
; ;
其中,为第i颗可见星的伪距误差放大因子,为第i颗可见星的伪距率误差放大因子,为第i颗可见星的伪距残余截断误差放大因子,为第i颗可见星的伪距率残余截断误差放大因子。in, is the pseudorange error amplification factor of the i -th visible star, is the pseudorange rate error amplification factor of the i -th visible star, is the pseudorange residual truncation error amplification factor of the i -th visible star, is the pseudorange rate residual truncation error amplification factor of the i -th visible star.
本发明可实现以下有益效果之一:The present invention can realize one of the following beneficial effects:
本发明的基于截断误差估计的EKF组合导航保护级确定方法,针对EKF线性化过程中产生的截断误差使保护级计算不够准确的问题,通过估计出的截断误差的大小和其协方差,减小了截断误差的不确定性,修正定位误差及其分布,从而得到更准确的保护级,使其满足给定的完好性风险;通过采用极值理论包络实际采样的伪距、伪距率等误差、截断残余误差分布,定位出更准确的误差尾部概率分布。结合更准确的保护级和更准确的误差尾部概率分布,保证了保护级的可靠性。The EKF integrated navigation protection level determination method based on truncation error estimation of the present invention aims at the problem that the truncation error generated in the EKF linearization process makes the calculation of the protection level inaccurate, through the estimated truncation error size and its covariance, reduce The uncertainty of the truncation error is corrected, and the positioning error and its distribution are corrected to obtain a more accurate protection level to meet the given integrity risk; by using the extreme value theory to envelop the actual sampling pseudo-range, pseudo-range rate, etc. Error, truncate the residual error distribution, and locate a more accurate error tail probability distribution. Combined with a more accurate protection level and a more accurate error tail probability distribution, the reliability of the protection level is guaranteed.
附图说明Description of drawings
附图仅用于示出具体实施例的目的,而并不认为是对本发明的限制,在整个附图中,相同的参考符号表示相同的部件;The accompanying drawings are only for the purpose of illustrating specific embodiments, and are not considered to limit the present invention. Throughout the accompanying drawings, the same reference symbols represent the same components;
图1为本发明实施例中的基于截断误差估计的EKF组合导航保护级确定方法流程图。Fig. 1 is a flowchart of a method for determining protection levels of EKF integrated navigation based on truncation error estimation in an embodiment of the present invention.
具体实施方式Detailed ways
下面结合附图来具体描述本发明的优选实施例,其中,附图构成本申请一部分,并与本发明的实施例一起用于阐释本发明的原理。Preferred embodiments of the present invention will be specifically described below in conjunction with the accompanying drawings, wherein the accompanying drawings constitute a part of the application and are used together with the embodiments of the present invention to explain the principles of the present invention.
本发明的一个实施例公开一种基于截断误差估计的EKF组合导航保护级确定方法,如图1所示,包括以下步骤:One embodiment of the present invention discloses a method for determining the protection level of EKF integrated navigation based on truncation error estimation, as shown in Figure 1, comprising the following steps:
步骤S1、建立考虑截断误差的GNSS/INS紧组合导航系统状态空间模型,估计截断误差值和其协方差;Step S1, establishing a GNSS/INS compact integrated navigation system state space model considering the truncation error, and estimating the truncation error value and its covariance;
步骤S2、用估计的截断误差和其协方差修正所述模型;并考虑截断误差残余量,计算修正后的定位误差统计特性,得到包括截断误差的保护级表达式;Step S2, using the estimated truncation error and its covariance to modify the model; and considering the truncation error residual, calculating the statistical characteristics of the corrected positioning error, and obtaining a protection level expression including the truncation error;
步骤S3、获取实际的伪距、伪距率观测量样本以及对应的残余截断误差样本数据;Step S3, obtaining actual pseudoranges, pseudorange rate observation samples and corresponding residual truncation error sample data;
所述残余截断误差样本数据包括伪距残余截断误差样本数据和伪距率残余截断误差样本数据;The residual truncation error sample data includes pseudorange residual truncation error sample data and pseudorange rate residual truncation error sample data;
步骤S4、基于极值理论分别包络伪距、伪距率观测误差和残余截断误差数据,得到对应的放大因子;Step S4, respectively enveloping the pseudorange, pseudorange rate observation error and residual truncation error data based on the extremum theory to obtain the corresponding amplification factor;
步骤S5、将放大因子代入所述保护级表达式得出GNSS/INS紧组合导航系统的保护级。Step S5, substituting the amplification factor into the protection level expression to obtain the protection level of the GNSS/INS compact integrated navigation system.
在步骤S1中,建立的考虑截断误差的GNSS/INS紧组合导航系统状态空间模型为:In step S1, the established state-space model of the GNSS/INS compact integrated navigation system considering the truncation error is:
; ;
其中,k为时刻,是n维的状态向量;是m维的量测向量;和是已知的系统结构参数,分别称为n阶的状态一步转移矩阵、m×n阶的量测矩阵;为截断误差向量;是n维的系统噪声向量,是m维的量测噪声向量,两者都是零均值的高斯白噪声向量序列(服从正态分布),且它们之间互不相关。Among them, k is the moment, is an n -dimensional state vector; is the m -dimensional measurement vector; and are the known system structure parameters, which are respectively called the n -order state one-step transition matrix and the m × n -order measurement matrix; is the truncation error vector; is the n -dimensional system noise vector, is the m -dimensional measurement noise vector, both of which are zero-mean Gaussian white noise vector sequences (subject to normal distribution), and they are not correlated with each other.
即:which is:
。 .
为系统噪声矩阵;为量测噪声矩阵。 is the system noise matrix; is the measurement noise matrix.
优选的,在本实施例中,GNSS/INS紧组合导航系统状态空间模型的状态向量为17维的误差状态向量:Preferably, in this embodiment, the state vector of the GNSS/INS compact integrated navigation system state space model is a 17-dimensional error state vector:
其中,in,
是在ENU导航坐标系下的三维速度误差(东、北、高); is the three-dimensional velocity error (east, north, height) in the ENU navigation coordinate system;
是三维姿态角误差(俯仰角、横滚角、航向角); is the three-dimensional attitude angle error (pitch angle, roll angle, heading angle);
是在大地坐标系下的三维位置误差(纬度、经度、高度); is the three-dimensional position error (latitude, longitude, height) in the geodetic coordinate system;
是三维加速度计误差(含零偏); is the three-dimensional accelerometer error (including zero bias);
是三维陀螺仪误差(含零偏); is the three-dimensional gyroscope error (including zero bias);
为接收机始终偏差; is the receiver always bias;
为接收机时钟漂移。 is the receiver clock drift.
优选的,在本实施例中,GNSS/INS紧组合导航系统状态空间模型的量测量为GNSS观测伪距、伪距率与INS预测的伪距、伪距率之差;Preferably, in this embodiment, the quantity measurement of the state space model of the GNSS/INS compact integrated navigation system is the GNSS observation pseudorange , pseudorange rate Pseudoranges from INS predictions , pseudorange rate Difference;
量测噪声向量包括GNSS观测伪距和伪距率噪声向量。measurement noise vector Includes GNSS observed pseudoranges and pseudorange rate noise vectors.
在步骤S1中,采样NPF(非线性预测滤波)方法,估计截断误差的大小和其协方差。In step S1, the NPF (non-linear predictive filtering) method is sampled to estimate the magnitude of the truncation error and its covariance.
具体包括:Specifically include:
1)获取当前时刻观测量与上一时刻观测量的估计的残差;1) Obtain the estimated residual of the observed quantity at the current moment and the observed quantity at the previous moment;
残差;residual ;
其中,为k时刻第i颗星的伪距观测量,为k时刻第i颗星的伪距率观测量;和为k-1时刻第i颗星的观测量的估计值,等于函数在k-1时刻估计的定位解处泰勒展开后省略高阶项的值;i=1,…,p,p为可见星数目。in, is the pseudo-range observation of the i -th star at time k , is the pseudorange rate observation of the i -th star at time k ; and is the estimated value of the observed quantity of the i -th star at time k -1, which is equal to the function The value of the high-order term is omitted after Taylor expansion at the estimated positioning solution at time k -1; i= 1,…, p , p is the number of visible stars.
2)利用残差估计截断误差的估计量和其协方差:2) Use the residual to estimate the estimator of the truncation error and its covariance :
估计量;Estimator ;
协方差;Covariance ;
其中,为半正定的权矩阵上标“-1”代表矩阵的逆,上标“T”代表矩阵的转置。in, The superscript "-1" of the semi-positive definite weight matrix represents the inverse of the matrix, and the superscript " T " represents the transposition of the matrix.
在步骤S2中,用截断误差的估计值和其协方差修正原模型的过程包括:In step S2, the process of modifying the original model with the estimated value of the truncation error and its covariance includes:
1)将当前时刻的残差估计截断误差的估计量值代入,修正EKF的一步预测方程;1) Estimate the truncation error of the residual error at the current moment Substituting the value to modify the one-step prediction equation of EKF;
; ;
2)得到修正后的一步预测的协方差阵;2) Obtain the covariance matrix of the revised one-step forecast;
; ;
3)修正模型后截断误差还会留有一定的残余,考虑这些残余截断误差,假设服从零均值高斯分布,;重写状态方程得到用截断误差的估计值和其协方差修正后的GNSS/INS紧组合导航系统状态空间模型为:3) After correcting the model, the truncation error will still leave a certain amount of residue. Consider these residual truncation errors , assuming Follow a Gaussian distribution with zero mean , ; Rewrite the state equation to obtain the state-space model of the GNSS/INS compact integrated navigation system corrected by the estimated value of the truncation error and its covariance:
。 .
在步骤S2中,考虑截断误差残余量,对定位误差的统计特性进行修正后,确定出包括截断误差的保护级表达式的过程包括:In step S2, the process of determining the protection level expression including the truncation error includes:
1)根据卡尔曼滤波的误差传播,确定出定位误差;1) According to the error propagation of Kalman filter, the positioning error is determined;
其中,卡尔曼滤波的误差传播过程包括:Among them, the error propagation process of Kalman filtering includes:
依据Kalman滤波公式,有状态后验估计值:According to the Kalman filter formula, there is a state posterior estimate:
; ;
将量测方程代入上式:Substitute the measurement equation into the above formula:
; ;
令,两边同时减去,并代入预测方程进行推导:make , subtracting both sides , and substitute into the prediction equation Do the derivation:
; ;
得到k时刻状态误差,其中定位误差为状态误差中的位置分量,下面都将定位误差简单写成。Get the state error at time k , where the positioning error is the position component in the state error, and the positioning error is simply written as .
由定位误差表达式可知,k时刻定位误差表示为k-1时刻状态误差、k-1时刻的过程噪声、k时刻的截断误差估计量、k时刻的截断误差残余、k时刻的GNSS量测噪声五部分的递归函数。By the positioning error expression It can be seen that the positioning error at time k is expressed as a recursive function of five parts: state error at time k -1, process noise at time k-1, truncation error estimate at time k , truncation error residual at time k , and GNSS measurement noise at time k .
2)进行完好性的假设分配,得到H0假设下,GNSS/INS紧组合导航系统垂直定位误差表达式;2) Carry out the hypothesis assignment of integrity, and obtain the vertical positioning error expression of the GNSS/INS compact integrated navigation system under the H0 assumption;
具体的,在两类假设:Specifically, there are two types of assumptions:
H0假设:无卫星故障发生;H0 assumption: no satellite failure occurs;
H1假设:卫星发生故障的情况。Hypothesis H1: The situation where the satellite fails.
完好性在两类假设间分配:Integrity is distributed between two types of assumptions:
H0假设下系统完好性由保护级完好性保证。H1假设下通过完好性故障监测算法检测卫星故障,实现故障监测完好性。Under the H0 assumption, the system integrity is guaranteed by the protection level integrity. Under the assumption of H1, satellite faults are detected through the integrity fault monitoring algorithm, and the integrity of fault monitoring is realized.
其中,保护级是定位误差的置信上限,是无故障漏检概率。Among them, the protection level is the upper confidence limit of the positioning error, is the probability of failure-free missed detection.
具体的,在H0假设下,所述垂直定位误差表达式可表示为:Specifically, under the assumption of H0, the expression of the vertical positioning error can be expressed as:
; ;
其中,,为卡尔曼增益;为矩阵中与大地坐标系下高度信息对应的行中的元素,为与大地坐标系下高度信息对应的行中的元素,为与大地坐标系下高度信息对应的行中的元素;in, , Gain for Kalman; for The elements in the row corresponding to the height information in the geodetic coordinate system in the matrix, for The elements in the row corresponding to the height information in the geodetic coordinate system, for The elements in the row corresponding to the height information in the geodetic coordinate system;
由于,在本实施例中,建立的17维的误差状态向量中高度误差为第9维;因此,为矩阵中第9行元素;为中第9行元素;为中第9行元素。Because, in the present embodiment, the height error is the 9th dimension in the 17-dimensional error state vector established; therefore, for The 9th row element in the matrix; for element in line 9; for element in line 9.
3)根据垂直定位误差表达式,确定出垂直定位误差分布特性;3) According to the vertical positioning error expression, the distribution characteristics of the vertical positioning error are determined;
、、、、中各分量相互独立,垂直定位误差服从高斯分布特性: , , , , Each component in is independent of each other, and the vertical positioning error Obey the Gaussian distribution characteristics:
; ;
4)根据误差分布特性,得到H0假设下包括截断误差的保护级表达式:4) According to the error distribution characteristics, the protection level expression including the truncation error under the H0 assumption is obtained:
; ;
其中,为无故障漏检系数。,函数定义为:in, is the error-free missed detection coefficient. , the function is defined as:
; ;
该保护级考虑了非线性系统线性化过程产生的截断误差对定位误差的影响,从而使保护级更加严谨、准确。This protection level considers the impact of the truncation error generated by the linearization process of the nonlinear system on the positioning error, so that the protection level is more rigorous and accurate.
在步骤S3中,伪距、伪距率观测量样本和残余截断误差样本数据从实际接收机的观测数据中获取。In step S3, the pseudorange, pseudorange rate observation sample data and residual truncation error sample data are obtained from the actual receiver observation data.
为保证样本数据的独立性,数据采集的时间跨度尽量大、接收机位置分散,例如在北京、上海、拉萨3地对同一星座进行1个月的观测,按30s的时间间隔对全部的伪距、伪距率误差样本进行采样,收集每一颗卫星的伪距、伪距率误差样本各约40000个。In order to ensure the independence of the sample data, the time span of data collection should be as large as possible, and the locations of the receivers should be dispersed. For example, the observation of the same constellation in Beijing, Shanghai, and Lhasa for one month should be carried out at a time interval of 30s for all pseudoranges. , Pseudo-range rate error samples are sampled, and about 40,000 pseudo-range and pseudo-range rate error samples are collected for each satellite.
其中,残余截断误差样本根据实际定位结果计算获取。将每一时刻GNSS/INS组合导航的组合定位解和惯导定位解代入EKF观测方程,用原始观测量减去泰勒展开保留的一阶项,得到该时刻的残余截断误差。收集至少40000个样本。Wherein, the residual truncation error samples are calculated and obtained according to the actual positioning results. Substitute the combined positioning solution of GNSS/INS integrated navigation and inertial navigation positioning solution into the EKF observation equation at each moment, and subtract the first-order item retained by Taylor expansion from the original observations to obtain the residual truncation error at that moment. Collect at least 40000 samples.
在步骤S4中,采用相同的过程,基于极值理论分别包络伪距误差、伪距率误差和残余截断误差,得到伪距误差放大因子、伪距率误差放大因子和残余截断误差放大因子。In step S4, the same process is adopted to respectively envelope the pseudorange error, pseudorange rate error and residual truncation error based on the extremum theory to obtain the pseudorange error amplification factor, pseudorange rate error amplification factor and residual truncation error amplification factor.
其中,残余截断误差放大因子包括伪距残余截断误差放大因子和伪距率残余截断误差放大因子。Wherein, the residual truncation error amplification factor includes a pseudorange residual truncation error amplification factor and a pseudorange rate residual truncation error amplification factor.
具体的,基于极值理论包络伪距误差得到伪距误差放大因子的过程,包括:Specifically, the process of obtaining the pseudorange error amplification factor based on the envelope pseudorange error of the extreme value theory includes:
1)将获取的实际伪距样本取绝对值后从小到大排列,并计算出样本的标准差;1) Arrange the obtained actual pseudorange samples from small to large after taking the absolute value, and calculate the standard deviation of the samples ;
将获取的实际伪距样本取绝对值后从小到大排列后,构成样本序列;N为获取的样本总数。并计算出样本的标准差。Take the absolute value of the obtained actual pseudorange samples and arrange them from small to large to form a sample sequence ; N is the total number of samples obtained. and calculate the standard deviation of the sample .
2)用平均超出量函数图法选取出一个伪距样本作为阈值;2) Select a pseudo-range sample as the threshold using the average excess amount function graph method;
具体的,平均超出量函数为:,即对样本中大于阈值T的超出量求均值,得到阈值取T时的点,不断地从小到大以等间距小步长取T值,并在二维坐标上画出这些点连接的曲线,阈值可选取为曲线中接近线性且斜率为正的部分中的某一个T值。Specifically, the average excess function is: , that is, the average value of the excess amount greater than the threshold T in the sample is obtained, and the point when the threshold is T is obtained , continuously take T values from small to large with equal intervals and small steps, and draw the curve connecting these points on the two-dimensional coordinates. The threshold can be selected as a certain T value in the part of the curve that is close to linear and has a positive slope .
3)用Bootstrap法将伪距样本有放回地重采样B次,得到B组样本;,;3) Use the Bootstrap method to resample the pseudorange samples B times with replacement, and obtain the B group samples ; , ;
3)根据极值理论,对每组样本进行参数估计,确定出参数置信限值;3) According to the extreme value theory, estimate the parameters of each group of samples, and determine the parameter confidence limits;
超出量为每组样本中大于阈值T的样本与T的差,即,,,为每组样本中大于阈值T的样本的个数,的分布可以用样本的分布表示:The excess amount is the difference between the samples greater than the threshold T in each group of samples and T , that is , , , is the number of samples greater than the threshold T in each group of samples, Distribution The distribution of samples that can be used express:
; ;
因此可得样本分布。Therefore, the sample distribution .
令每组样本中大于阈值样本的概率为,。Let the probability of samples greater than the threshold in each group of samples be , .
极值理论指出,的极大值分布服从Gumbel分布,则超出量服从I型广义Pareto分布:Extreme value theory states that, The distribution of the maximum value of obeys the Gumbel distribution, then the excess Obey the type I generalized Pareto distribution:
; ;
为了得到样本分布,则需要估计两个参数和。In order to obtain the sample distribution, two parameters need to be estimated and .
每个重采样样本中样本超出阈值的概率,同理可得总体样本中样本超出阈值的概率。记自助统计量。The probability of a sample exceeding the threshold in each resampled sample , in the same way, the probability of the sample exceeding the threshold in the overall sample can be obtained . Record self-service statistics .
可进行极大似然估计得到。的概率密度函数为: It can be estimated by maximum likelihood. The probability density function of is:
; ;
; ;
I型广义Pareto分布的对数似然函数为:The log-likelihood function of the type I generalized Pareto distribution is:
; ;
令,解得:;make ,Solutions have to: ;
即第b组重采样样本的最大似然估计值为。同理可得总体样本的参数估计。记自助统计量。That is, the b group of resampled samples The maximum likelihood estimate is . In the same way, the parameter estimation of the population sample can be obtained . Record self-service statistics .
这样可得B组重采样样本估计的参数值和。In this way, the parameter values estimated by group B resampling samples can be obtained and .
用Bootstrap法,依据规定的置信度,确定参数置信限值和。Using the Bootstrap method, according to the specified confidence , to determine the parameter confidence limits and .
4)将参数置信限值带入样本分布,根据组合导航伪距误差的概率分布的完好性确定出伪距误差放大因子。4) The parameter confidence limit is brought into the sample distribution, and the pseudo-range error amplification factor is determined according to the integrity of the probability distribution of the integrated navigation pseudo-range error.
将和值代入样本分布:Will and Substitute the values into the sample distribution:
; ;
得到GNSS/INS组合导航伪距误差的概率分布:Get the probability distribution of GNSS/INS integrated navigation pseudorange error:
; ;
并令,为指定的完好性风险。可解得的分位数:and order , is the specified integrity risk. Solvable Quantile of :
; ;
确定放大因子:Determine the magnification factor :
。 .
对伪距误差、伪距率误差和残余截断误差分别进行误差包络,得到伪距误差放大因子,伪距率放大因子,伪距残余截断误差放大因子,伪距率残余截断误差放大因子。The pseudorange error, pseudorange rate error and residual truncation error are respectively enveloped to obtain the pseudorange error amplification factor , Pseudorange rate magnification factor , pseudorange residual truncation error amplification factor , pseudorange rate residual truncation error amplification factor .
在步骤S5中,计算保护级中,In step S5, in calculating the protection level,
由Kalman滤波量测噪声,量测噪声向量中每一分量的方差为k时刻的量测噪声矩阵对角线值,其中,第i颗可见星的伪距量测噪声方差等于k时刻的量测噪声矩阵第2i-1行第2i-1列值,即,第i颗可见星的伪距率量测噪声方差等于k时刻的量测噪声矩阵第2i行第2i列值,即。第i颗可见星伪距的残余截断误差方差等于k时刻的截断误差矩阵第2i-1行第2i-1列值,即;第i颗可见星伪距率的残余截断误差方差等于k时刻的截断误差矩阵第2i行第2i列值,即。The measurement noise is filtered by Kalman, the measurement noise vector The variance of each component in is the measurement noise matrix at time k Diagonal values, where the pseudorange measurement noise variance of the i -th visible star is equal to the measurement noise matrix at time k Row 2 i -1, column 2 i -1 value, ie , the measurement noise variance of the pseudorange rate of the i-th visible star is equal to the value of the measurement noise matrix at the second i row and the second i column of the measurement noise matrix at time k , that is . The residual truncation error variance of the i -th visible star pseudorange is equal to the truncation error matrix at time k Row 2 i -1, column 2 i -1 value, ie ; The residual truncation error variance of the i -th visible star pseudorange rate is equal to the truncation error matrix at time k The value of row 2i , column 2i , i.e. .
根据伪距误差放大因子,伪距率放大因子和残余截断误差放大因子;放大伪距误差方差、伪距率误差方差和残余截断误差方差后,伪距量测噪声、伪距率量测噪声和残余截断误差的分布为:According to the pseudorange error amplification factor, pseudorange rate amplification factor and residual truncation error amplification factor; after amplifying the pseudorange error variance, pseudorange rate error variance and residual truncation error variance, the pseudorange measurement noise, pseudorange rate measurement noise and The distribution of the residual truncation error is:
; ;
; ;
; ;
; ;
为第i颗可见星的伪距误差放大因子,为第i颗可见星的伪距率误差放大因子,为第i颗可见星的伪距残余截断误差放大因子,为第i颗可见星的伪距率残余截断误差放大因子。 is the pseudorange error amplification factor of the i -th visible star, is the pseudorange rate error amplification factor of the i -th visible star, is the pseudorange residual truncation error amplification factor of the i -th visible star, is the pseudorange rate residual truncation error amplification factor of the i -th visible star.
将各方差代入计算,得最终保护级:Substituting the variances into the calculation, the final protection level is obtained:
; ;
其中,in,
。 .
在本实施例中,建立的17维的误差状态向量中高度误差为第9维;对应的最终保护级;即v=9。In this embodiment, the altitude error in the established 17-dimensional error state vector is the ninth dimension; the corresponding final protection level ; that is, v= 9.
综上所述,通过本实施例基于截断误差估计的EKF组合导航保护级确定方法,针对EKF线性化过程中产生的截断误差使保护级计算不够准确的问题,通过估计出的截断误差的大小和其协方差,减小了截断误差的不确定性,修正定位误差及其分布,从而得到更准确的保护级,使其满足给定的完好性风险;通过采用极值理论包络实际采样的伪距、伪距率等误差、截断残余误差分布,定位出更准确的误差尾部概率分布。结合更准确的保护级和更准确的误差尾部概率分布,保证了保护级的可靠性。进而保障了非线性GNSS/INS组合导航系统的完好性。To sum up, through the method for determining the protection level of EKF integrated navigation based on truncation error estimation in this embodiment, in view of the problem that the truncation error generated during the EKF linearization process makes the calculation of the protection level not accurate enough, through the estimated size of the truncation error and Its covariance reduces the uncertainty of the truncation error, corrects the positioning error and its distribution, and obtains a more accurate protection level to meet the given integrity risk; Errors such as range and pseudorange rate, and truncated residual error distribution, locate a more accurate error tail probability distribution. Combined with a more accurate protection level and a more accurate error tail probability distribution, the reliability of the protection level is guaranteed. Thus, the integrity of the nonlinear GNSS/INS integrated navigation system is guaranteed.
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。The above is only a preferred embodiment of the present invention, but the scope of protection of the present invention is not limited thereto. Any person skilled in the art within the technical scope disclosed in the present invention can easily think of changes or Replacement should be covered within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211341296.4A CN115408652B (en) | 2022-10-31 | 2022-10-31 | EKF (extended Kalman Filter) integrated navigation protection level determination method based on truncation error estimation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211341296.4A CN115408652B (en) | 2022-10-31 | 2022-10-31 | EKF (extended Kalman Filter) integrated navigation protection level determination method based on truncation error estimation |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115408652A true CN115408652A (en) | 2022-11-29 |
CN115408652B CN115408652B (en) | 2023-02-03 |
Family
ID=84167738
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211341296.4A Active CN115408652B (en) | 2022-10-31 | 2022-10-31 | EKF (extended Kalman Filter) integrated navigation protection level determination method based on truncation error estimation |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115408652B (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104898140A (en) * | 2015-05-28 | 2015-09-09 | 北京航空航天大学 | Extreme value theory-based error envelope method of satellite navigation ground-based augmentation system |
EP3009860A1 (en) * | 2014-10-16 | 2016-04-20 | GMV Aerospace and Defence S.A. | Method for computing an error bound of a Kalman filter based GNSS position solution |
CN105806339A (en) * | 2016-05-14 | 2016-07-27 | 中卫物联成都科技有限公司 | Integrated navigation method and device based on GNSS, INS and time keeping systems |
CN108646277A (en) * | 2018-05-03 | 2018-10-12 | 山东省计算中心(国家超级计算济南中心) | The Beidou navigation method adaptively merged with Extended Kalman filter based on robust |
CN112034491A (en) * | 2020-08-31 | 2020-12-04 | 中国电子科技集团公司第五十四研究所 | Integrity protection level calculation method based on error core distribution |
US20210072407A1 (en) * | 2019-09-10 | 2021-03-11 | Trimble Inc. | Protection level generation methods and systems for applications using navigation satellite system (nss) observations |
CN113483759A (en) * | 2021-06-29 | 2021-10-08 | 北京航空航天大学 | Integrity protection level calculation method for GNSS, INS and Vision integrated navigation system |
CN114721017A (en) * | 2022-03-04 | 2022-07-08 | 北京理工大学 | GNSS/INS integrated navigation autonomous integrity monitoring method |
-
2022
- 2022-10-31 CN CN202211341296.4A patent/CN115408652B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3009860A1 (en) * | 2014-10-16 | 2016-04-20 | GMV Aerospace and Defence S.A. | Method for computing an error bound of a Kalman filter based GNSS position solution |
CN104898140A (en) * | 2015-05-28 | 2015-09-09 | 北京航空航天大学 | Extreme value theory-based error envelope method of satellite navigation ground-based augmentation system |
CN105806339A (en) * | 2016-05-14 | 2016-07-27 | 中卫物联成都科技有限公司 | Integrated navigation method and device based on GNSS, INS and time keeping systems |
CN108646277A (en) * | 2018-05-03 | 2018-10-12 | 山东省计算中心(国家超级计算济南中心) | The Beidou navigation method adaptively merged with Extended Kalman filter based on robust |
US20210072407A1 (en) * | 2019-09-10 | 2021-03-11 | Trimble Inc. | Protection level generation methods and systems for applications using navigation satellite system (nss) observations |
CN112034491A (en) * | 2020-08-31 | 2020-12-04 | 中国电子科技集团公司第五十四研究所 | Integrity protection level calculation method based on error core distribution |
CN113483759A (en) * | 2021-06-29 | 2021-10-08 | 北京航空航天大学 | Integrity protection level calculation method for GNSS, INS and Vision integrated navigation system |
CN114721017A (en) * | 2022-03-04 | 2022-07-08 | 北京理工大学 | GNSS/INS integrated navigation autonomous integrity monitoring method |
Non-Patent Citations (5)
Title |
---|
HAITAO JIANG ETC.: "An Effective Integrity Monitoring Scheme for GNSS/INS/Vision Integration Based on Error State EKF Model", 《IEEE SENSORS JOURNAL》 * |
NI ZHU ETC.: "Extended Kalman Filter (EKF) Innovation-based Integrity Monitoring Scheme with C/N0 Weighting", 《IEEE》 * |
丛丽等: "基于INS辅助CLAMBDA与AFM的GPS/INS组合导航测姿方法", 《系统工程与电子技术》 * |
于耕等: "基于卡尔曼滤波的卫星地基增强系统位置域完好性监测分析", 《科学技术与工程》 * |
周召发等: "考虑里程计截断误差的SINS/OD组合导航算法", 《中国惯性技术学报》 * |
Also Published As
Publication number | Publication date |
---|---|
CN115408652B (en) | 2023-02-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110196443B (en) | Fault-tolerant integrated navigation method and system of aircraft | |
CN108519615B (en) | Mobile robot autonomous navigation method based on combined navigation and feature point matching | |
US7711482B2 (en) | Hybrid INS/GNSS system with integrity monitoring and method for integrity monitoring | |
CN110715659A (en) | Zero-speed detection method, pedestrian inertial navigation method, device and storage medium | |
US20240402361A1 (en) | System and method for computing positioning protection levels | |
US8082099B2 (en) | Aircraft navigation using the global positioning system and an attitude and heading reference system | |
CN110140065A (en) | GNSS receiver protection class | |
CN113670337A (en) | Method for detecting slow-changing fault of GNSS/INS combined navigation satellite | |
CN114384569A (en) | Terminal positioning method, apparatus, device and medium | |
CN115291253B (en) | A vehicle positioning integrity monitoring method and system based on residual detection | |
CN114179825A (en) | Method for obtaining confidence of measurement value through multi-sensor fusion and automatic driving vehicle | |
Anbu et al. | Integration of inertial navigation system with global positioning system using extended Kalman filter | |
CN116358566B (en) | Coarse detection combined navigation method based on robust adaptive factor | |
US20240094415A1 (en) | System and method for detecting outliers in gnss observations | |
WO2021236454A1 (en) | Multi-inertial measurement unit fusion for fine-resolution position estimation | |
CN116399351A (en) | Vehicle position estimation method | |
CN115408652B (en) | EKF (extended Kalman Filter) integrated navigation protection level determination method based on truncation error estimation | |
US11788842B2 (en) | Hybrid AHRS system comprising a device for measuring the integrity of the calculated attitude | |
CN114199236A (en) | Positioning data processing method and device, electronic equipment and automatic driving vehicle | |
CN118031951A (en) | Multisource fusion positioning method, multisource fusion positioning device, electronic equipment and storage medium | |
JP5058594B2 (en) | POSITIONING POINT ESTIMATION DEVICE, POSITIONING POINT ESTIMATION METHOD, PROGRAM THEREOF, AND RECORDING MEDIUM | |
CN112985456B (en) | Navigation positioning correction method integrating airborne height measurement data and topographic data | |
CN115597594A (en) | Mileage correction factor-based satellite-inertial navigation method and system | |
CN115327587A (en) | Method and system for orbit error correction of low-orbit satellites based on GNSS positioning information | |
Chu et al. | Performance comparison of tight and loose INS-Camera integration |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |