CN115399017A - 终端 - Google Patents

终端 Download PDF

Info

Publication number
CN115399017A
CN115399017A CN202080099475.4A CN202080099475A CN115399017A CN 115399017 A CN115399017 A CN 115399017A CN 202080099475 A CN202080099475 A CN 202080099475A CN 115399017 A CN115399017 A CN 115399017A
Authority
CN
China
Prior art keywords
dmrs
channel
mapping
reference signal
tti
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202080099475.4A
Other languages
English (en)
Inventor
栗田大辅
原田浩树
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Docomo Inc
Original Assignee
NTT Docomo Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Docomo Inc filed Critical NTT Docomo Inc
Publication of CN115399017A publication Critical patent/CN115399017A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

终端收发物理共享信道,在与第一状态不同的第二状态的情况下,设想频率方向和时间方向的至少任意一方的配置密度被提高的解调用参考信号。

Description

终端
技术领域
本公开涉及一种收发物理共享信道的终端。
背景技术
第三代合作伙伴计划(3rd Generation Partnership Project:3GPP)对第五代移动通信系统(也称为5G、新空口(New Radio:NR)或者下一代(Next Generation:NG))进行了规范化,另外,也推进了被称为Beyond 5G、5G Evolution或者6G的下一代的规范化。
例如,在3GPP版本17(Release-17)中,商定了针对NR中的覆盖增强(CE:CoverageEnhancement)进行研究(非专利文献1)。
现有技术文献
非专利文献
非专利文献1:"New SID on NR coverage enhancement",RP-193240,3GPP TSGRAN Meeting#86,3GPP,2019年12月
发明内容
为了实现NR中的覆盖增强,对物理信道(PDSCH(Physical Downlink SharedChannel:物理下行链路共享信道)、PUSCH(Physical Uplink Shared Channel:物理上行链路共享信道)、PDCCH(Physical Downlink Control Channel:物理下行链路控制信道)以及PUCCH(Physical Uplink Control Channel:物理上行链路控制信道)的最大衰减量(MCL:Maximum Coupling Loss)进行了评价,其结果是,发现至少针对PDSCH和PUSCH(物理共享信道)还具有改善的余地。
具体而言,可以考虑提高终端位于小区末端的情况下的无线信道的信道估计精度。
由此,下述的公开是鉴于上述情况而完成的,目的在于提供一种终端,能够提高小区末端的无线信道的信道估计精度,并支持覆盖增强。
本公开的一个方式是一种终端(UE 200),该终端具有:收发部(无线信号收发部210),其收发物理共享信道;以及控制部(控制部270),其在与第一状态不同的第二状态的情况下,设想频率方向和时间方向的至少任意一方的配置密度被提高的解调用参考信号。
附图说明
图1是无线通信系统10的整体概略结构图。
图2是示出在无线通信系统10中使用的无线帧、子帧以及时隙的结构例的图。
图3是UE 200的功能块结构图。
图4是示出FR1中的物理信道的MCL评价结果的图。
图5是示出FR2中的物理信道的MCL评价结果的图。
图6A是示出3GPP Release-15中规定的DMRS的映射例(其1)的图。
图6B是示出3GPP Release-15中规定的DMRS的映射例(其2)的图。
图6C是示出3GPP Release-15中规定的DMRS的映射例(其3)的图。
图6D是示出3GPP Release-15中规定的DMRS的映射例(其4)的图。
图6E是示出3GPP Release-15中规定的DMRS的映射例(其5)的图。
图6F是示出3GPP Release-15中规定的DMRS的映射例(其6)的图。
图7是示出PUSCH的BLER特性的示例的图。
图8是示出与动作例1有关的DMRS configuration Type(DMRS配置类型)的结构例的图。
图9A是示出依据DMRS configuration Type=1的DMRS的映射例(其1)的图。
图9B是示出依据DMRS configuration Type=1的DMRS的映射例(其2)的图。
图10A是示出依据DMRS configuration Type=2的DMRS的映射例(其1)的图。
图10B是示出依据DMRS configuration Type=2的DMRS的映射例(其2)的图。
图11A是示出与动作例2有关的DMRS的映射例(其1)的图。
图11B是示出与动作例2有关的DMRS的映射例(其2)的图。
图11C是示出与动作例2有关的DMRS的映射例(其3)的图。
图11D是示出与动作例2有关的DMRS的映射例(其4)的图。
图12A是示出与动作例3有关的DMRS的映射例(其1)的图。
图12B是示出与动作例3有关的DMRS的映射例(其2)的图。
图12C是示出与动作例3有关的DMRS的映射例(其3)的图。
图12D是示出与动作例3有关的DMRS的映射例(其4)的图。
图13是示出与动作例4有关的DMRS-DownlinkConfig的结构例的图。
图14是示出变更了DMRS被映射的码元数的情况下的BLER特性的图。
图15是示出UE 200的硬件结构的一例的图。
具体实施方式
以下,基于附图说明实施方式。另外,对相同的功能、结构赋予相同或者类似的标号,适当省略其说明。
(1)无线通信系统的整体概略结构
图1是本实施方式所涉及的无线通信系统10的整体概略结构图。无线通信系统10是遵循5G新空口(New Radio:NR)的无线通信系统,包括下一代无线接入网络20(NextGeneration-Radio Access Network 20,以下称为NG-RAN 20)、以及终端200(UserEquipment 200,以下称为UE 200,)。
另外,无线通信系统10也可以是遵循被称为Beyond 5G、5G Evolution或者6G的方式的无线通信系统。
NG-RAN 20包括无线基站100A(以下称为gNB 100A)和无线基站100B(以下称为gNB100B)。另外,包含gNB以及UE的数量在内的无线通信系统10的具体结构不限于图1所示的示例。
NG-RAN 20实际上包括多个NG-RAN节点,具体而言,包括gNB,与遵循5G的核心网络(5GC、未图示)连接。另外,NG-RAN 20和5GC可以简单表述为“网络”。
gNB 100A和gNB 100B是遵循5G的无线基站,与UE 200执行遵循5G的无线通信。gNB100A、gNB 100B和UE 200能够支持通过控制从多个天线元件发送的无线信号而生成具有更高的指向性的波束的Massive MIMO、捆绑使用多个分量载波(CC)的载波聚合(CA)、以及在UE与两个NG-RAN节点之间分别同时进行通信的双重连接(DC)等。
无线通信系统10支持FR1以及FR2。各FR的频带如下所述。
·FR1:410MHz~7.125GHz
·FR2:24.25GHz~52.6GHz
在FR1中,使用15、30或者60kHz的子载波间隔(Sub-Carrier Spacing:SCS),且使用5~100MHz的带宽(BW)。FR2可以具有比FR1更高的频率,使用60、或者120kHz(可以包含240kHz)的SCS,且使用50~400MHz的带宽(BW)。
另外,无线通信系统10也可以支持比FR2的频带更高的频带。具体而言,无线通信系统10支持超过52.6GHz、直至114.25GHz为止的频带。
此外,可以应用具有更大的子载波间隔(Sub-Carrier Spacing:SCS)的循环前缀-正交频分复用(Cyclic Prefix-Orthogonal Frequency Division Multiplexing:CP-OFDM)/离散傅里叶变换-扩展(Discrete Fourier Transform–Spread:DFT-S-OFDM)。另外,DFT-S-OFDM不仅可以应用于上行链路(UL),也可以应用于下行链路(DL)。
图2示出在无线通信系统10中使用的无线帧、子帧以及时隙的结构例。
如图2所示,1时隙由14码元构成,SCS越大(越宽),码元期间(以及时隙期间)越短。另外,构成1时隙的码元数可以不一定是14码元(例如,28、56码元)。此外,每一子帧的时隙数可以按照SCS而不同。
另外,图2所示的时间方向(t)可以被称为时域、码元期间或者码元时间等。此外,频率方向也可以被称为频域、资源块、子载波、BWP(Bandwidth part:带宽部分)等。
此外,无线通信系统10能够支持扩大由gNB 100A(以及gNB 100B、以下相同)形成的小区的覆盖的覆盖增强(CE:Coverage Enhancement)。在覆盖增强中,可以提供用于提高各种物理信道的接收成功率的机制。
在本实施方式中,由于支持覆盖增强,因此无线通信系统10能够支持预定的物理信道的资源(频率方向和/或时间方向)分配变更、功率密度(PSD:Power SpectrumDensity)的改善、以及信道估计精度的提高等。
(2)无线通信系统的功能块结构
接着,对无线通信系统10的功能块结构进行说明。具体而言,对UE 200的功能块结构进行说明。
图3是UE 200的功能块结构图。如图3所示,UE 200具有无线信号收发部210、放大器部220、调制解调部230、控制信号·参考信号处理部240、编码/解码部250、数据收发部260以及控制部270。
无线信号收发部210收发遵循NR的无线信号。无线信号收发部210支持MassiveMIMO、捆绑使用多个CC的CA、以及在UE与两个NG-RAN Node之间分别同时进行通信的DC等。
具体而言,无线信号收发部210经由各种的物理信道收发无线信号。尤其是,在本实施方式中,无线信号收发部210构成收发物理共享信道的收发部。
此外,无线信号收发部210可以向网络发送与该各种的物理信道的收发有关的UE200的能力信息。具体而言,无线信号收发部210能够向网络发送与解调用参考信号(DMRS:Demodulation Reference Signal)的接收有关的UE 200的能力信息。
UE 200的能力信息可以被解释为3GPP TS38.331等中规定的UE capabilityinformation。
无线信号收发部210能够经由预定的上行物理信道发送UE capabilityinformation。另外,关于与该物理信道的收发有关的UE capability information的内容,在后面将进一步叙述。
放大器部220由PA(Power Amplifier:功率放大器)/LNA(Low Noise Amplifier:低噪声放大器)等构成。放大器部220将从调制解调部230输出的信号放大到预定的功率等级。此外,放大器部220将从无线信号收发部210输出的RF信号放大。
调制解调部230按照每个预定的通信目的地(gNB 100A等)执行数据调制/解调、发送功率设定以及资源块分配等。在调制解调部230中,可以应用Cyclic Prefix-OrthogonalFrequency Division Multiplexing(CP-OFDM)/Discrete Fourier Transform-Spread(DFT-S-OFDM)。此外,DFT-S-OFDM不仅可以应用于上行链路(UL),也可以应用于下行链路(DL)。
控制信号·参考信号处理部240执行与UE 200所收发的各种的控制信号有关的处理、以及与UE 200所收发的各种的参考信号有关的处理。
具体而言,控制信号·参考信号处理部240接收从gNB 100A(或者gNB 100B、以下相同)经由预定的控制信道发送的各种的控制信号(例如,无线资源控制层(RRC)的控制信号)。此外,控制信号·参考信号处理部240经由预定的控制信道朝向gNB 100A发送各种的控制信号。
控制信号·参考信号处理部240执行使用了解调参考信号(Demodulationreference signal:DMRS)、以及相位跟踪参考信号(Phase Tracking Reference Signal:PTRS)等的参考信号(RS)的处理。
DMRS是用于估计数据解调中使用的衰落信道的终端专用的在基站~终端间已知的参考信号(导频信号)。PTRS是以在高频带中成为课题的相位噪声的估计为目的终端专用的参考信号。
另外,除了DMRS和PTRS以外,参考信号还可以包含信道状态信息-参考信号(Channel State Information-Reference Signal:CSI-RS)、探测参考信号(SoundingReference Signal:SRS)以及位置信息用的定位参考信号(Positioning ReferenceSignal:PRS)等。
此外,信道包含控制信道以及数据信道。控制信道包含PDCCH(Physical DownlinkControl Channel:物理下行链路控制信道)、PUCCH(Physical Uplink Control Channel:物理上行链路控制信道)、RACH(Random Access Channel(随机接入信道)、包括随机接入无线网络临时标识符(Random Access Radio Network Temporary Identifier:RA-RNT)的下行链路控制信息(Downlink Control Information:DCI))、以及物理广播信道(PhysicalBroadcast Channel:PBCH)等。
此外,数据信道包含PDSCH(Physical Downlink Shared Channel:物理下行链路共享信道)、以及PUSCH(Physical Uplink Shared Channel:物理上行链路共享信道)等。数据是指经由数据信道发送的数据。
此外,物理信道中至少可以包含PDCCH、PUCCH、PUSCH以及PDSCH。
编码/解码部250按照每个预定的通信目的地(gNB 100A等)执行数据的分割/连结以及信道编码/解码等。
具体而言,编码/解码部250将从数据收发部260输出的数据分割为预定的尺寸,并对分割后的数据执行信道编码。此外,编码/解码部250将从调制解调部230输出的数据解码,并将解码后的数据连结。
数据收发部260执行协议数据单元(Protocol Data Unit:PDU)以及服务数据单位(Service Data Unit:SDU)的收发。具体而言,数据收发部260执行多个层(介质接入控制层(MAC)、无线链路控制层(RLC)、以及分组数据汇聚协议层(PDCP)等)中的PDU/SDU的组装/分解等。此外,数据收发部260根据混合ARQ(Hybrid automatic repeat request:混合自动重发请求),执行数据的纠错以及重发控制。
控制部270控制构成UE 200的各功能块。尤其是,在本实施方式中,控制部270支持覆盖增强(CE),因此能够执行与物理信道有关的各种控制。
具体而言,控制部270在与通常的状态(可以称为第一状态)不同的、支持覆盖增强的状态(可以称为第二状态)的情况下,可以设想频率方向和时间方向的至少任意一方的配置密度被提高的DMRS。
更具体而言,控制部270在支持覆盖增强的状态的情况下,可以设想在时间方向上码元期间(symbol duration)增加的DMRS。
此外,控制部270在支持覆盖增强的状态的情况下,可以设想在频率方向上子载波(可以替换为资源块)增加的DMRS。
另外,关于在支持覆盖增强的状态的情况下使用的DMRS的具体的结构例,在后面进一步叙述。
控制部270在支持覆盖增强的状态的情况下,可以设想DMRS被分配的频率方向的位置(子载波)按照DMRS被分配的时间方向的每个位置(码元)而不同。
具体而言,当在时间方向的位置(例如,pos 2)处,DMRS被映射到子载波0、2、4……这样的偶数的子载波的情况下,可以设想为在DMRS被映射的下一个时间方向的位置(pos11)处,DMRS被映射到1、3、5……这样的奇数的子载波,而不是偶数的子载波0。另外,关于这种DMRS的映射的具体例,在后面将进一步叙述。
此外,控制部270可以根据高层的信令,设想应用于支持覆盖增强的状态的DMRS的配置。
具体而言,控制部270能够根据RRC层中规定的信息元素(IE),设想应用于支持覆盖增强的状态的DMRS的配置。该IE例如通过预定的下行物理信道被从网络朝向UE 200发送。
(3)无线通信系统的动作
接着,对无线通信系统10的动作进行说明。具体而言,对由支持覆盖增强(CE)的物理共享信道(PDSCH以及PUSCH)的UE 200进行的与收发有关的动作进行说明。
(3.1)前提
在3GPP设定的学习项目(Study Item)(参照RP-193240)中,设想了实现FR1和FR2双方的频带中的覆盖增强。
作为对象的情景包含从室外(O)的gNB向室内(I)的UE提供服务(FR1的情况)、从室内的gNB向屋内的UE提供服务(FR2的情况)。此外,都市部、郊外以及地方(乡村)的覆盖增强(包括构成长距离通信的地方)被作为对象。
此外,主要的对象服务是VoIP(Voice over IP:IP语音)和eMBB(enhanced MobileBroadband:增强型移动宽带)。
根据这种情景以及对象服务,对物理信道(具体而言,PDSCH、PUSCH、PDCCH、PUCCH)的最大衰减量(MCL:Maximum Coupling Loss)进行了评价,其结果是,如下所示,认为存在改善的必要性。
(FR1)
·PUSCH:约10dB(VoIP)、约15dB(eMBB)
·PDCCH:约5dB(VoIP)
(FR2)
·PUSCH:约5dB(eMBB)
·PDCCH:约10dB(VoIP)
·PUCCH:约5dB(VoIP)
图4示出FR1中的物理信道的MCL评价结果。图5示出FR2中的物理信道的MCL评价结果。
以下,对与用于支持覆盖增强的PDSCH和PUSCH的改善有关的动作进行说明。
为了提高位于由gNB 100A(或者gNB 100B、以下相同)形成的小区的边缘(小区末端)的UE 200中的无线信道(可以解释为包含PDSCH和PUSCH)的信道估计精度,可以考虑增加DMRS的密度,即,增加在频率方向和/或时间方向上DMRS被映射的量。
图6A~图6F示出3GPP Release-15中规定的DMRS的映射例(其1~其6)。
另外,关于PUSCH,仅在不需要预编码、且码元数(OFDM码元数)为两个以下的情况下,DMRS和PUSCH被频分复用(FDM)。
图7示出PUSCH的BLER特性的示例。具体而言,图7示出如图6D(其4)所示,高密度地映射DMRS的情况下的PUSCH的BLER特性。
如图7所示,当与进行了理想的信道估计的情况相比时,能够确认产生5dB左右的差。
以下,对为了提高无线信道的信道估计精度而能够提高DMRS朝向频率方向和/或时间方向上的资源的配置密度(可以替换为映射量)的动作进行说明。
(3.2)动作概要
为了提高DMRS朝向频率方向和/或时间方向上的资源的配置密度、且提高无线信道的信道估计精度,以下对动作例1~5进行说明。动作例1~5的概要如下所述。
(动作例1):提高时间方向上的DMRS配置密度
即使在DMRS码元期间(DMRS symbol duration)为2码元的情况下,也能够进行追加的DMRS(Additional DMRS symbol positions的pos2、pos3)设定。
具体而言,可以对3GPP TS38.211的Table 6.4.1.1.3-4追加该设定。或者,可以规定为新的DMRS配置类型(DMRS configuration Type)(例如,Type 3)。
(动作例2):提高频率方向上的DMRS配置密度
也可以追加提高了频率方向上的配置密度的新的DMRS configuration Type。
(动作例3):时间方向和频率方向上的DMRS的映射
可以按照DMRS被映射的每个码元,变更频率方向上的映射位置。具体而言,当在时间方向的位置(例如,pos 2)处,DMRS被映射到子载波0、2、4……这样的偶数的子载波的情况下,在DMRS被映射的下一个时间方向的位置(pos 11)处,DMRS被映射到1、3、5……这样奇数的子载波,而不是偶数的子载波0。
(动作例4):DMRS的设定方法
与3GPP Release-15同样地,可以使用RRC层的IE(具体而言,DMRS-DownlinkConfig,DMRS-UplinkConfig)设定DMRS。
具体而言,在UE 200报告了表示“能够进行DMRS symbol duration=2、以及Additional DMRS symbol positions的pos2、pos3的设定”的UE capability的情况下,可以能够进行maxLength=len2、以及dmrs-Additional Position=pos2(default值)、pos3的设定。
此外,dmrs-Type中可以追加新的DMRS configuration Type(例如,Type 3)。
(动作例5):UE Capability的报告
关于DMRS的设定,UE 200例如报告下述这样的UE 200的能力(Capability)
·DMRS symbol duration=2、以及Additional DMRS symbol positions的pos2、pos3的设定的支持可否
·新的DMRS configuration Type的支持可否
(3.3)动作例
以下,对动作例1~5的详细进行说明。
(3.3.1)动作例1
在本动作例中,为了实现时间方向上的DMRS配置密度提高,即使在DMRSsymbolduration为2码元的情况下,也能够进行追加的DMRS(Additional DMRS symbol positions的pos2、pos3)设定。
图8示出与动作例1有关的DMRS configuration Type的结构例。具体而言,图8包含对3GPP TS38.211的Table 6.4.1.1.3-4追加的内容。更具体而言,可以追加dmrs-Additional Position的2、3的部分的内容。
或者,如上所述,图8所示的内容(表格)可以被规定为新的DMRS configurationType(例如,Type 3)。在该情况下,Additional DMRS symbol positions的pos 1的设定的一部可以被变更(参照图中的下划线部分)。
图9A、图9B、图10A以及图10B示出提高时间方向上的DMRS配置密度的DMRS的映射例。
具体而言,图9A和图9B示出依据DMRS配置类型=1(DMRS configuration Type=1)的DMRS的映射例。如图9A和图9B所示,在频率方向上,DMRS被空出1子载波的间隔地映射。此外,在时间方向上,由于DMRS symbol duration=2,因此DMRS被连续映射到两个码元(ODM码元)。
图10A和图10B示出依据DMRS配置类型=2(DMRS configuration Type=2)的DMRS的映射例。如图10A和图10B所示,在频率方向上,DMRS被映射在两个连续的子载波中的两处位置。
此外,在时间方向上,由于DMRS symbol duration=2,因此DMRS被连续映射到两个码元(ODM码元)。
另外,在图9B和图10B中,由于追加的DM-RS码元位置=pos 3(Additional DMRSsymbol positions=pos 3),因此与图9A和图10A相比,DMRS被映射的码元的位置(11)不同(偏移)(也参照图8所示的DMRS configuration Type的结构例)。
(3.3.2)动作例2
在本动作例中,追加提高了频率方向上的DMRS配置密度的DMRS configurationType(例如,Type 3)。
图11A~图11D示出与动作例2有关的DMRS的映射例。如图11A~图11D所示,在频率方向上,DMRS可以被映射到全部子载波(具体而言,0~11的12个子载波)。
在图11A~图11D中,Additional DMRS symbol positions不同,在时间方向上被映射的DMRS的量也能够控制。
(3.3.3)动作例3
在本动作例中,频率方向上的映射位置按照DMRS被映射的每个码元而被变更。
具体而言,可以按照DMRS被映射的每个码元(OFDM码元),追加频率方向上的映射不同的DMRS configuration Type(例如,Type 3)。
或者,例如,可以对DMRS-DownlinkConfig和/或DMRS-UplinkConfig追加映射模式的字段,并设定每个OFDM码元的频率方向上的DMRS的映射位置。
例如,可以将mapping pattern=0设为依据3GPP Release-15、16的映射,将mapping pattern=1设为本动作例这样的频率方向上的映射位置按照每个OFDM码元而被变更的映射模式。
图12A~图12D示出与动作例3有关的DMRS的映射例。如图12A~图12D所示,在OFDM码元的编号(位置)是偶数的情况下,DMRS被映射到偶数的子载波,在OFDM码元的编号(位置)是奇数的情况下,DMRS被映射到奇数的子载波。
即,当在时间方向的位置(例如,pos 2)处,DMRS被映射到子载波0、2、4……这样的偶数的子载波的情况下,在DMRS被映射的下一个时间方向的位置(pos 11)处,DMRS可以被映射到1、3、5……这样的奇数的子载波,而不是偶数的子载波0。
在图12A~图12D中,追加的DM-RS码元位置(Additional DMRS symbolpositions)不同,在时间方向上被映射的DMRS的量也能够控制。另外,在图12A中,在时间方向上DMRS仅被映射到一个OFDM码元,频率方向上的映射位置未按照DMRS被映射的每个码元而被变更,但构成DMRS configuration Type=3。
(3.3.4)动作例4
本动作例与DMRS的设定方法有关。如上所述,对于被映射的DMRS的设定,与3GPPRelease-15同样地,可以使用DMRS-DownlinkConfig和/或DMRS-UplinkConfig而被设定。
图13示出与动作例4有关的DMRS-DownlinkConfig的结构例。如图13所示,作为DMRS-DownlinkConfig的dmrs-Type的字段,除了type2以外,可以追加与上述这样的新的DMRS configuration Type对应的type3。
如上所述,在UE 200报告了“表示能够进行DMRS symbol duration=2、以及Additional DMRS symbol positions的pos2、pos3的设定”的UE capability的情况下,能够进行maxLength=len2、以及dmrs-Additional Position=pos2(default值)、pos3的设定。
(3.3.5)动作例5
在本动作例中,UE 200可以向网络发送与PDSCH和PUSCH的收发有关的UE200的能力信息(UE capability information)。
具体而言,关于DMRS,例如UE 200能够报告下述这样的UE 200的能力(Capability)。
·DMRSsymbol duration=2、以及Additional DMRS symbol positions的pos2、pos3的设定的支持可否
·新的DMRS configuration Type的支持可否
具体而言,对于UE capability的报告(可以替换为UE capability information的发送),关于UE 200所支持的频带(可以是FR或者Band),可以遵循下述任意一个。
·针对全部频率报告统一的支持可否(作为UE 200支持可否)
·按照每个频率报告支持可否
·按照每个频率范围(例如,FR1、FR2)报告支持可否
此外,对于UE 200所支持的双工方式的报告,可以遵循下述任意一个。
·报告作为UE 200的支持可否
·按照每个双工方式(时分双工(TDD)、频率频分双工(FDD))报告
(4)作用·效果
接着,对由支持与上述的覆盖增强有关的动作的无线通信系统10得到的作用和效果进行说明。
图14示出变更了DMRS被映射的码元数的情况下的BLER特性。如图14所示,针对达成块错误率(BLER)(例如,1%)所需的所需信号干扰加噪声功率比(Signal-to-Interference plus Noise power Ratio:SINR),能够改善约1.0dB。
由此,根据上述的实施方式,UE 200在与通常的状态(可以称为第一状态)不同的、支持覆盖增强的状态(可以称为第二状态)的情况下,能够设想频率方向和时间方向的至少任意一方的配置密度被提高的DMRS。
UE 200通过设想这种DMRS,即使在UE 200位于小区末端的情况下,也能够提高无线信道的信道估计精度,UE 200可以支持覆盖增强。
在本实施方式中,UE 200在支持覆盖增强的状态的情况下,设想为DMRS被分配的频率方向的位置(子载波)按照DMRS被分配的时间方向的每个位置(码元)而不同。
由此,由于DMRS被映射到频率方向上的较宽的范围,因此能够进一步提高信道估计精度。
在本实施方式中,UE 200可以根据高层(RRC)的信令,设想应用于支持覆盖增强的状态的DMRS的结构。因此,UE 200能够容易且迅速地设想与覆盖增强时等的状态对应的适当的结构的DMRS。
在本实施方式中,能够向网络发送与DMRS的接收有关的UE 200的能力信息。因此,网络能够发送与UE 200的能力对应的适当的DMRS。
(5)其他的实施方式
以上,对实施方式进行了说明,但不限于该实施方式的记载,能够进行各种变形和改良,这对于本领域技术人员来说是显而易见的。
例如,在上述的实施方式中,以在覆盖增强时与DMRS有关的设定被变更为前提进行了说明,但不一定必须限定为覆盖增强时。例如,第二状态可以被解释为与DMRS有关的至少任意一个的设定与第一状态不同的状态。
在上述的实施方式中,对解调用参考信号(DMRS)进行了说明,但针对其他的参考信号也可以进行同样的变更。
此外,在上述的实施方式的说明中使用的框图(图3)示出了以功能为单位的块。这些功能块(结构部)通过硬件和软件中的至少一方的任意组合来实现。此外,对各功能块的实现方法没有特别限定。即,各功能块可以使用物理地或逻辑地结合而成的一个装置来实现,也可以将物理地或逻辑地分开的两个以上的装置直接或间接地(例如,使用有线、无线等)连接,使用这些多个装置来实现。功能块也可以通过将软件与上述一个装置或上述多个装置组合来实现。
在功能上具有判断、决定、判定、计算、算出、处理、导出、调查、搜索、确认、接收、发送、输出、接入、解决、选择、选定、建立、比较、设想、期待、视作、广播(broadcasting)、通知(notifying)、通信(communicating)、转发(forwarding)、配置(configuring)、重新配置(reconfiguring)、分配(allocating、mapping)、分派(assigning)等,但是不限于这些。例如,使发送发挥功能的功能块(结构部)称为发送部(transmitting unit)或发送机(transmitter)。总之,如上所述,对实现方法没有特别限定。
另外,上述的UE 200也可以作为进行本公开的无线通信方法的处理的计算机发挥功能。图15是示出UE 200的硬件结构的一例的图。如图15所示,UE 200也可以构成为包含处理器1001、内存1002(memory)、存储器1003(storage)、通信装置1004、输入装置1005、输出装置1006和总线1007等的计算机装置。
另外,在下面的说明中,“装置”这一措辞可以替换为“电路”、“设备(device)”、“单元(unit)”等。该装置的硬件结构既可以构成为包含一个或者多个图示的各装置,也可以构成为不包含一部分的装置。
UE 200的各功能块(参照图3)通过该计算机装置的任意的硬件要素或该硬件要素的组合来实现。
此外,UE 200中的各功能通过如下方法实现:在处理器1001、内存1002等硬件上读入预定的软件(程序),从而处理器1001进行运算,并控制通信装置1004的通信或者控制内存1002和存储器1003中的数据的读出和写入中的至少一方。
处理器1001例如使操作系统工作而对计算机整体进行控制。处理器1001也可以由包含与周边装置的接口、控制装置、运算装置、寄存器等的中央处理装置(CPU)构成。
此外,处理器1001从存储器1003和通信装置1004中的至少一方向内存1002读出程序(程序代码)、软件模块或数据等,并据此执行各种处理。作为程序,使用使计算机执行在上述的实施方式中所说明的动作的至少一部分的程序。另外,关于上述的各种处理,虽然说明了通过一个处理器1001执行上述的各种处理,但也可以通过两个以上的处理器1001同时或依次执行上述的各种处理。处理器1001也可以通过一个以上的芯片来安装。另外,程序也可以经由电信线路从网络发送。
内存1002是计算机可读取的记录介质,例如也可以由只读存储器(Read OnlyMemory:ROM)、可擦除可编程ROM(Erasable Programmable ROM:EPROM)、电可擦可编程ROM(Electrically Erasable Programmable ROM:EEPROM)、随机存取存储器(Random AccessMemory:RAM)等中的至少一个构成。内存1002也可以称为寄存器、缓存、主存储器(主存储装置)等。内存1002能够保存能够执行本公开的一个实施方式所涉及的方法的程序(程序代码)、软件模块等。
存储器1003是计算机可读取的记录介质,例如可以由CD-ROM(Compact Disc ROM)等光盘、硬盘驱动器、软盘、磁光盘(例如,压缩盘、数字多用途盘、Blu-ray(注册商标)盘、智能卡、闪存(例如,卡、棒、键驱动(Key drive))、Floppy(注册商标)盘、磁条等中的至少一种构成。存储器1003也可以被称为辅助存储装置。上述的记录介质例如可以是包含内存1002和存储器1003中的至少一方的数据库、服务器等其他适当的介质。
通信装置1004是用于经由有线网络和无线网络中的至少一方进行计算机之间的通信的硬件(收发设备),例如,也可以称为网络设备、网络控制器、网卡、通信模块等。
通信装置1004例如为了实现频分双工(Frequency Division Duplex:FDD)和时分双工(Time Division Duplex:TDD)中的至少一方,也可以构成为包含高频开关、双工器、滤波器、频率合成器等。
输入装置1005是受理来自外部的输入的输入设备(例如,键盘、鼠标、麦克风、开关、按键、传感器等)。输出装置1006是实施向外部的输出的输出设备(例如,显示器、扬声器、LED灯等)。另外,输入装置1005和输出装置1006也可以一体地构成(例如,触摸面板)。
此外,处理器1001和内存1002等各装置通过用于对信息进行通信的总线1007来连接。总线1007可以使用单一的总线来构成,也可以按照每个装置间使用不同的总线来构成。
此外,该装置可以构成为包含微处理器、数字信号处理器(Digital SignalProcessor:DSP)、专有集成电路(Application Specific Integrated Circuit:ASIC)、可编程逻辑器件(Programmable Logic Device:PLD)、现场可编程门阵列(FieldProgrammable Gate Array:FPGA)等硬件,也可以通过该硬件来实现各功能块的一部分或全部。例如,处理器1001也可以使用这些硬件中的至少一个硬件来安装。
此外,信息的通知不限于本公开中所说明的形式/实施方式,也可以使用其他方法进行。例如,信息的通知可以通过物理层信令(例如,下行链路控制信息(Downlink ControlInformation:DCI)、上行链路控制信息(Uplink Control Information:UCI))、高层信令(例如,RRC信令、介质接入控制(Medium Access Control:MAC)信令、广播信息(主信息块(Master Information Block:MIB)、系统信息块(System Information Block:SIB))、其他信号或它们的组合来实施。此外,RRC信令也可以称为RRC消息,例如,也可以是RRC连接创建(RRC Connection Setup)消息、RRC连接重新配置(RRC Connection Reconfiguration)消息等。
本公开中所说明的各形式/实施方式也可以应用于长期演进(Long TermEvolution:LTE)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、第四代移动通信系统(4th generation mobile communication system:4G)、第五代移动通信系统(5thgeneration mobile communication system:5G)、未来的无线接入(Future RadioAccess:FRA)、新空口(New Radio:NR)、W-CDMA(注册商标)、GSM(注册商标)、CDMA 2000、超移动宽带(Ultra Mobile Broadband:UMB)、IEEE 802.11(Wi-Fi(注册商标))、IEEE 802.16(WiMAX(注册商标))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(注册商标)、使用其他适当系统的系统和据此扩展的下一代系统中的至少一个。此外,也可以组合多个系统(例如,LTE和LTE-A中的至少一方与5G的组合等)来应用。
对于本公开中所说明的各形式/实施方式的处理过程、时序、流程等,在不矛盾的情况下,可以更换顺序。例如,对于本公开中所说明的方法,使用例示的顺序提示各种步骤的要素,但不限于所提示的特定的顺序。
在本公开中由基站进行的特定动作有时根据情况而通过其上位节点(uppernode)来进行。在由具有基站的一个或者多个网络节点(network nodes)构成的网络中,为了与终端进行通信而进行的各种动作可以通过基站和基站以外的其他网络节点(例如,考虑有MME或者S-GW等,但不限于这些)中的至少一个来进行,这是显而易见的。在上述中,例示了基站以外的其他网络节点为一个的情况,但其他网络节点也可以是多个其他网络节点的组合(例如,MME和S-GW)。
信息、信号(信息等)能够从高层(或者低层)向低层(或者高层)输出。也可以经由多个网络节点输入或输出。
所输入或输出的信息可以保存在特定的位置(例如,内存),也可以使用管理表来管理。输入或输出的信息可以重写、更新或追记。所输出的信息也可以被删除。所输入的信息还可以向其他装置发送。
判定可以通过1比特所表示的值(0或1)进行,也可以通过布尔值(Boolean:true或false)进行,还可以通过数值的比较(例如,与预定值的比较)进行。
本公开中说明的各形式/实施方式可以单独使用,也可以组合使用,还可以根据执行来切换使用。此外,预定信息的通知不限于显式地(例如,“是X”的通知)进行,也可以隐式地(例如,不进行该预定信息的通知)进行。
对于软件,无论被称为软件、固件、中间件、微码、硬件描述语言、还是以其他名称来称呼,均应当广泛地解释为是指命令、命令集、代码、代码段、程序代码、程序(program)、子程序、软件模块、应用、软件应用、软件包、例行程序(routine)、子程序(subroutine)、对象、可执行文件、执行线程、过程、功能等。
此外,软件、命令、信息等可以经由传输介质进行收发。例如,在使用有线技术(同轴缆线、光纤缆线、双绞线、数字订户线路(Digital Subscriber Line:DSL)等)和无线技术(红外线、微波等)中的至少一方来从网页、服务器或者其他远程源发送软件的情况下,这些有线技术和无线技术中的至少一方包含在传输介质的定义内。
在本公开中说明的信息、信号等也可以使用各种不同的技术中的任意一种技术来表示。例如,可以通过电压、电流、电磁波、磁场或磁性颗粒、光场或光子、或者这些的任意组合来表示上述说明整体所可能涉及的数据、命令、指令(command)、信息、信号、比特、码元(symbol)、码片(chip)等。
另外,对于本公开中所说明的用语和理解本公开所需的用语,可以与具有相同或类似的意思的用语进行置换。例如,信道和码元中的至少一方也可以是信号(信令)。此外,信号也可以是消息。此外,分量载波(Component Carrier:CC)可以称为载波频率、小区、频率载波等。
本公开中使用的“系统”和“网络”这样的用语可以互换地使用。
此外,本公开中所说明的信息、参数等可以使用绝对值表示,也可以使用与预定值的相对值表示,还可以使用对应的其他信息表示。例如,无线资源也可以通过索引来指示。
上述参数所使用的名称在任何方面都是非限制性的。进而,使用这些参数的数式等有时也与本公开中明示地公开的内容不同。可以通过适当的名称来识别各种各样的信道(例如,PUCCH、PDCCH等)及信息元素,因此分配给这些各种各样的信道及信息元素的各种各样的名称在任何方面都是非限制性的。
在本公开中,“基站(Base Station:BS)”、“无线基站”、“固定站(fixedstation)”、“NodeB”、“eNodeB(eNB)”、“gNodeB(gNB)”、“接入点(access point)”、“发送点(transmission point)”、“接收点(reception point)”、“收发点(transmission/reception point)”、“小区”、“扇区”、“小区组”、“载波”、“分量载波”等用语可以互换地使用。有时也用宏小区、小型小区、毫微微小区、微微小区等来称呼基站。
基站能够容纳一个或者多个(例如,三个)小区(也称为扇区)。在基站容纳多个小区的情况下,基站的覆盖区域整体能够划分为多个更小的区域,各个更小的区域也能够通过基站子系统(例如,室内用的小型基站(Remote Radio Head(远程无线头):RRH)提供通信服务。
“小区”或者“扇区”这样的用语是指在该覆盖范围内进行通信服务的基站和基站子系统中的至少一方的覆盖区域的一部分或者整体。
在本公开中,“移动站(Mobile Station:MS)”、“用户终端(user terminal)”、“用户装置(User Equipment:UE)”、“终端”等用语可以互换地使用。
对于移动站,本领域技术人员有时也用下述用语来称呼:订户站、移动单元(mobile unit)、订户单元、无线单元、远程单元、移动设备、无线设备、无线通信设备、远程设备、移动订户站、接入终端、移动终端、无线终端、远程终端、手持机、用户代理(useragent)、移动客户端、客户端、或一些其他适当的用语。
基站和移动站中的至少一方也可以称为发送装置、接收装置、通信装置等。另外,基站和移动站中的至少一方可以是搭载于移动体的设备、移动体本身等。该移动体可以是交通工具(例如,汽车、飞机等),也可以是以无人的方式运动的移动体(例如,无人机、自动驾驶汽车等),还可以是机器人(有人型或者无人型)。另外,基站和移动站中的至少一方也包含在通信动作时不一定移动的装置。例如,基站和移动站中的至少一方可以是传感器等的物联网(Internet of Things:IoT)设备。
此外,本公开中的基站也可以替换为移动站(用户终端,以下相同)。例如,关于将基站和移动站之间的通信置换为多个移动站之间的通信(例如,也可以称为装置到装置(Device-to-Device:D2D)、车辆到一切系统(Vehicle-to-Everything:V2X)等)的结构,也可以应用本公开的各形式/实施方式。在该情况下,也可以设为移动站具有基站所具有的功能的结构。另外,“上行”以及“下行”等措辞也可以替换为与终端间通信对应的措辞(例如“侧(side)”)。例如,上行信道、下行信道等也可以替换为侧信道。
同样地,本公开中的移动站可以替换为基站。在该情况下,可以设为基站具有移动站所具有的功能的结构。
无线帧在时域中可以由一个或者多个帧构成。在时域中,一个或者多个各帧可以称为子帧。子帧在时域中还可以由一个或者多个时隙构成。子帧可以是不依赖于参数集(numerology)的固定的时间长度(例如,1ms)。
参数集可以是应用于某个信号或者信道的发送和接收中的至少一方的通信参数。参数集例如可以表示子载波间隔(SubCarrier Spacing:SCS)、带宽、码元长度、循环前缀长度、发送时间间隔(Transmission Time Interval:TTI)、每TTI的码元数、无线帧结构、收发器在频域中进行的特定的滤波处理、收发器在时域中进行的特定的加窗处理等的至少一个。
时隙在时域中可以由一个或者多个码元(正交频分复用(Orthogonal FrequencyDivision Multiplexing:OFDM)码元、单载波频分多址(Single Carrier FrequencyDivision Multiple Access:SC-FDMA)码元等)构成。时隙可以是基于参数集的时间单位。
时隙可以包含多个迷你时隙。各迷你时隙在时域中可以由一个或者多个码元构成。此外,迷你时隙也可以称为子时隙。迷你时隙可以由比时隙更少的数量的码元构成。以比迷你时隙大的时间为单位发送的PDSCH(或者PUSCH)可以称为PDSCH(或者PUSCH)映射类型(type)A。使用迷你时隙发送的PDSCH(或者PUSCH)可以称为PDSCH(或者PUSCH)映射类型(type)B。
无线帧、子帧、时隙、迷你时隙以及码元均表示传输信号时的时间单位。无线帧、子帧、时隙、迷你时隙以及码元可以分别使用对应的其他称呼。
例如,1子帧可以称为发送时间间隔(TTI),多个连续的子帧也可以称为TTI,1时隙或者1迷你时隙也可以称为TTI。即,子帧和TTI中的至少一方可以是现有的LTE中的子帧(1ms),也可以是比1ms短的期间(例如,1-13码元),还可以是比1ms长的期间。另外,表示TTI的单位可以不是子帧,而是时隙、迷你时隙等。
在此,TTI例如是指无线通信中的调度的最小时间单位。例如,在LTE系统中,基站进行以TTI为单位对各用户终端分配无线资源(能够在各用户终端中使用的频带宽度、发送功率等)的调度。另外,TTI的定义不限于此。
TTI可以是信道编码后的数据分组(传输块)、码块、码字等的发送时间单位,也可以是调度、链路自适应等的处理单位。另外,在赋予了TTI时,传输块、码块、码字等实际被映射的时间区间(例如,码元数)可以比该TTI短。
另外,在1时隙或者1迷你时隙被称为TTI的情况下,一个以上的TTI(即,一个以上的时隙或者一个以上的迷你时隙)可以构成调度的最小时间单位。此外,构成该调度的最小时间单位的时隙数(迷你时隙数)可以被控制。
具有1ms的时间长度的TTI也被称为通常TTI(LTE Rel.8-12中的TTI)、正常TTI(normal TTI)、长TTI(long TTI)、通常子帧、正常子帧(normal subframe)、长(long)子帧、时隙等。比通常TTI短的TTI可以称为缩短TTI、短TTI(short TTI)、部分TTI(partial或者fractional TTI)、缩短子帧、短(short)子帧、迷你时隙、子时隙、时隙等。
另外,对于长TTI(long TTI)(例如,通常TTI、子帧等),可以用具有超过1ms的时间长度的TTI进行替换,对于短TTI(short TTI)(例如,缩短TTI等),可以用小于长TTI(longTTI)的TTI长度并且具有1ms以上的TTI长度TTI来替换。
资源块(RB)是时域和频域的资源分配单位,在频域中,可以包含一个或者多个连续的子载波(subcarrier)。RB中所包含的子载波的数量可以是相同的而与参数集无关,例如可以是12个。RB中所包含的子载波的数量也可以根据参数集来决定。
此外,RB的时域可以包含一个或者多个码元,可以是1时隙、1迷你时隙、1子帧、或者1TTI的长度。1TTI、1子帧等可以分别由一个或者多个资源块构成。
另外,一个或者多个RB可以称为物理资源块(Physical RB:PRB)、子载波组(Sub-Carrier Group:SCG)、资源元素组(Resource Element Group:REG)、PRB对、RB对等。
此外,资源块可以由一个或者多个资源元素(Resource Element:RE)构成。例如,1RE可以是1子载波以及1码元的无线资源区域。
带宽部分(Bandwidth Part:BWP)(也可称为部分带宽等)表示在某个载波中某个参数集用的连续的公共RB(common resource blocks:公共资源块)的子集。在此,公共RB可以通过以该载波的公共参考点为基准的RB的索引来确定。PRB在某个BWP中定义并在该BWP内进行编号。
BWP可以包含UL用的BWP(UL BWP)以及DL用的BWP(DL BWP)。在1载波内可以对UE设定一个或者多个BWP。
所设定的BWP的至少一个可以是激活的(active),可以不设想UE在激活的BWP之外收发预定的信号/信道的情况。另外,本公开中的“小区”、“载波”等可以用“BWP”来替换。
上述的无线帧、子帧、时隙、迷你时隙以及码元等的结构仅是例示。例如,无线帧中所包含的子帧的数量、每子帧或者无线帧的时隙的数量、时隙中所包含的迷你时隙的数量、时隙或者迷你时隙中所包含的码元以及RB的数量、RB中所包含的子载波的数量、以及TTI内的码元数、码元长度、循环前缀(Cyclic Prefix:CP)长度等的结构可以进行各种各样的变更。
“连接(connected)”、“结合(coupled)”这样的用语或者这些用语的一切变形意在表示两个或者两个以上的要素之间的一切直接或间接的连接或结合,可以包括在相互“连接”或“结合”的两个要素之间存在一个或者一个以上的中间要素的情况。要素间的结合或连接可以是物理上的结合或连接,也可以是逻辑上的结合或连接,或者也可以是这些的组合。例如,可以用“接入(access)”来替换“连接”。在本公开中使用的情况下,对于两个要素,可以认为通过使用一个或者一个以上的电线、电缆和印刷电连接中的至少一方,以及作为一些非限制性且非包括性的示例通过使用具有无线频域、微波区域以及光(包括可视及不可视双方)区域的波长的电磁能量等,来进行相互“连接”或“结合”。
参考信号可以简称为Reference Signal(RS),也可以根据所应用的标准,称为导频(Pilot)。
本公开中使用的“根据”这样的记载,除非另有明确记载,否则不是“仅根据”的意思。换而言之,“根据”这样的记载的意思是“仅根据”和“至少根据”双方。
上述各装置的结构中的“单元”可以置换为“部”、“电路”、“设备(device)”等。
针对使用了本公开中使用的“第一”、“第二”等称呼的要素的任何参照,也并非全部限定这些要素的数量和顺序。这些称呼作为区分两个以上的要素之间简便的方法而在本公开中被使用。因此,针对第一和第二要素的参照不表示在此仅能采取两个要素或者在任何形态下第一要素必须先于第二要素。
当在本公开使用了“包括(include)”、“包含(including)”和它们的变形的情况下,这些用语与用语“具有(comprising)”同样意味着包括性的。并且,在本公开中使用的用语“或者(or)”意味着不是异或。
在本公开中,例如,如英语中的a、an以及the这样,通过翻译而增加了冠词的情况下,本公开也包括接在这些冠词之后的名词是复数形式的情况。
本公开中使用的“判断(determining)”、“决定(determining)”这样的用语有时也包含多种多样的动作的情况。“判断”、“决定”例如可以包含将进行了判定(judging)、计算(calculating)、算出(computing)、处理(processing)、导出(deriving)、调查(investigating)、搜索(looking up)(例如,在表格、数据库或其他数据结构中的搜索)、确认(ascertaining)的事项视为进行了“判断”、“决定”的事项等。此外,“判断”、“决定”可以包括将进行了接收(receiving)(例如,接收信息)、发送(transmitting)(例如,发送信息)、输入(input)、输出(output)、接入(accessing)(例如,接入内存中的数据)的事项视为“判断”、“决定”的事项等。此外,“判断”、“决定”可以包括将进行了解决(resolving)、选择(selecting)、选定(choosing)、建立(establishing)、比较(comparing)等的事项视为“判断”、“决定”的事项。即,“判断”、“决定”可以包括“判断”、“决定”了任意动作的事项。此外,“判断(决定)”也可以通过“设想(assuming)”、“期待(expecting)”、“视为(considering)”等来替换。
在本公开中,“A和B不同”这样的用语也可以表示“A与B相互不同”。另外,该用语也可以表示“A和B分别与C不同”。“分离”、“结合”等用语也可以与“不同”同样地进行解释。
以上,对本公开详细地进行了说明,但对于本领域技术人员而言,应清楚本公开不限于在本公开中说明的实施方式。本公开能够在不脱离由权利要求确定的本公开的主旨和范围的情况下,作为修改和变更方式来实施。因此,本公开的记载目的在于例示说明,对本公开不具有任何限制意义。
标号说明:
10 无线通信系统
20 NG-RAN
100A,100B gNB
UE 200
210 无线信号收发部
220 放大器部
230 调制解调部
240 控制信号·参考信号处理部
250 编码/解码部
260 数据收发部
270 控制部
1001 处理器
1002 内存
1003 存储器
1004 通信装置
1005 输入装置
1006 输出装置
1007 总线

Claims (4)

1.一种终端,其中,所述终端具有:
收发部,其收发物理共享信道;以及
控制部,其在与第一状态不同的第二状态的情况下,设想频率方向和时间方向的至少任意一方的配置密度被提高的解调用参考信号。
2.根据权利要求1所述的终端,其中,
所述控制部在所述第二状态的情况下,设想为所述解调用参考信号被分配的所述频率方向的位置按照所述解调用参考信号被分配的所述时间方向的每个位置而不同。
3.根据权利要求1所述的终端,其中,
所述控制部根据高层的信令,设想应用于所述第二状态的所述解调用参考信号的配置。
4.根据权利要求1所述的终端,其中,
所述收发部向网络发送与所述解调用参考信号的接收有关的所述终端的能力信息。
CN202080099475.4A 2020-05-14 2020-05-14 终端 Pending CN115399017A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/019364 WO2021229778A1 (ja) 2020-05-14 2020-05-14 端末

Publications (1)

Publication Number Publication Date
CN115399017A true CN115399017A (zh) 2022-11-25

Family

ID=78525154

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080099475.4A Pending CN115399017A (zh) 2020-05-14 2020-05-14 终端

Country Status (2)

Country Link
CN (1) CN115399017A (zh)
WO (1) WO2021229778A1 (zh)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9893853B2 (en) * 2012-11-01 2018-02-13 Lg Electronics Inc. Method and apparatus for transceiving reference signal in wireless communication system
US11581999B2 (en) * 2014-10-08 2023-02-14 Qualcomm Incorporated Reference signal design for wireless communications

Also Published As

Publication number Publication date
WO2021229778A1 (ja) 2021-11-18

Similar Documents

Publication Publication Date Title
WO2020053978A1 (ja) ユーザ端末及び無線通信方法
CN112055943A (zh) 用户终端以及无线通信方法
JP7499384B2 (ja) 端末
US20230292150A1 (en) Radio communication node
KR20210023971A (ko) 유저단말
CN110582946A (zh) 用户终端以及无线通信方法
US20230163915A1 (en) Terminal
CN116711346A (zh) 无线基站及终端
CN115336308A (zh) 终端
CN115399017A (zh) 终端
WO2021214919A1 (ja) 端末
US20240080810A1 (en) Radio communication node and radio communication method
WO2022195787A1 (ja) 端末、無線通信システム及び無線通信方法
WO2022190377A1 (ja) 端末、無線通信システム及び無線通信方法
WO2023026968A1 (ja) 端末、無線通信システム及び無線通信方法
US20230388932A1 (en) Radio communication node
WO2022168662A1 (ja) 無線通信ノード、無線通信システム及び無線通信方法
WO2021229777A1 (ja) 端末
WO2022244097A1 (ja) 端末及び無線通信方法
WO2022029972A1 (ja) 端末
WO2022079861A1 (ja) 端末
US20230171048A1 (en) Terminal
CN115336357A (zh) 终端
CN116746251A (zh) 终端和无线基站
CN117859371A (zh) 终端、无线通信系统以及无线通信方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination