CN115396036B - Broadband optical frequency comb generation method based on DPMZM and two IM cascading - Google Patents
Broadband optical frequency comb generation method based on DPMZM and two IM cascading Download PDFInfo
- Publication number
- CN115396036B CN115396036B CN202210995356.8A CN202210995356A CN115396036B CN 115396036 B CN115396036 B CN 115396036B CN 202210995356 A CN202210995356 A CN 202210995356A CN 115396036 B CN115396036 B CN 115396036B
- Authority
- CN
- China
- Prior art keywords
- modulator
- sub
- signal
- order
- dpmzm
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 133
- 238000000034 method Methods 0.000 title claims abstract description 32
- 210000001520 comb Anatomy 0.000 claims abstract description 8
- 230000009977 dual effect Effects 0.000 claims description 29
- 230000005684 electric field Effects 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 claims 1
- 238000001228 spectrum Methods 0.000 abstract description 22
- 230000001629 suppression Effects 0.000 abstract description 22
- 238000005516 engineering process Methods 0.000 abstract description 11
- 238000004088 simulation Methods 0.000 description 17
- 238000004891 communication Methods 0.000 description 16
- 238000010586 diagram Methods 0.000 description 12
- 230000006870 function Effects 0.000 description 11
- 230000003595 spectral effect Effects 0.000 description 10
- 230000008859 change Effects 0.000 description 4
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 230000008033 biological extinction Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000013307 optical fiber Substances 0.000 description 2
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000009022 nonlinear effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/501—Structural aspects
- H04B10/503—Laser transmitters
- H04B10/505—Laser transmitters using external modulation
- H04B10/5051—Laser transmitters using external modulation using a series, i.e. cascade, combination of modulators
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/25—Arrangements specific to fibre transmission
- H04B10/2575—Radio-over-fibre, e.g. radio frequency signal modulated onto an optical carrier
- H04B10/25752—Optical arrangements for wireless networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/501—Structural aspects
- H04B10/503—Laser transmitters
- H04B10/505—Laser transmitters using external modulation
- H04B10/5053—Laser transmitters using external modulation using a parallel, i.e. shunt, combination of modulators
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/516—Details of coding or modulation
- H04B10/5161—Combination of different modulation schemes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/516—Details of coding or modulation
- H04B10/5165—Carrier suppressed; Single sideband; Double sideband or vestigial
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/516—Details of coding or modulation
- H04B10/548—Phase or frequency modulation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/564—Power control
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Optics & Photonics (AREA)
- Optical Communication System (AREA)
Abstract
本发明公开了一种基于DPMZM和两个IM级联的宽带光频梳产生方法,解决了现有技术产生的光频梳的频谱带宽较小和带外抑制比不高的问题。本发明实现的步骤为:产生射频信号;设置调制器的直流偏置电压;输入光载波信号;生成调制光信号;抵消两个子调制器生成的±1阶边带信号;抑制高阶边带信号;产生10线宽带光频梳;产生50线宽带光频梳。本发明通过DPMZM的主调制器,抵消了两个子调制器生成的±1阶边带信号,DPMZM输出±3阶边带,增大了光频梳的频谱带宽,以及在DPMZM后加入一个带通光学滤波器,提高了光频梳的带外抑制比。
The invention discloses a broadband optical frequency comb generation method based on DPMZM and two IM cascades, which solves the problems of small spectrum bandwidth and low out-of-band suppression ratio of optical frequency combs generated by the existing technology. The steps implemented by the invention are: generating radio frequency signals; setting the DC bias voltage of the modulator; inputting optical carrier signals; generating modulated optical signals; offsetting the ±1-order sideband signals generated by the two sub-modulators; and suppressing high-order sideband signals. ; Generate 10-line broadband optical frequency comb; Generate 50-line broadband optical frequency comb. The present invention uses the main modulator of DPMZM to offset the ±1-order sideband signals generated by the two sub-modulators. The DPMZM outputs ±3-order sidebands, increases the spectrum bandwidth of the optical frequency comb, and adds a bandpass after the DPMZM. Optical filter improves the out-of-band suppression ratio of the optical frequency comb.
Description
技术领域Technical field
本发明属于通信技术领域,更进一步涉及一种微波光子技术领域中的一种基于双平行马赫增德尔调制器DPMZM(Dual Parallel Mach-Zehnder Modulator)和两个强度调制器IM(Intensity Modulator)级联的宽带光频梳产生方法。本发明所产生的光学频率梳可作为多载波光源,应用于光通信系统。The invention belongs to the field of communication technology, and further relates to a cascade based on a dual parallel Mach-Zehnder modulator DPMZM (Dual Parallel Mach-Zehnder Modulator) and two intensity modulators IM (Intensity Modulator) in the field of microwave photonic technology. Broadband optical frequency comb generation method. The optical frequency comb generated by the invention can be used as a multi-carrier light source and applied to optical communication systems.
背景技术Background technique
微波光子技术是关于微波信号和光学信号相互作用及影响的一项技术,包括用光学方法对微波进行处理、控制和传输。在通信中,微波无线通信具备灵活的特点,光纤通信具有带宽优势,微波光子技术将两者结合起来,对于高速率的宽带信息传输有着巨大的应用潜力。光学频率梳是指在光谱上的一系列间隔均匀且相位相干的频率分量。随着光通信技术的飞速发展,光学频率梳广泛应用于密集波分复用、光学任意波形产生、多波长超短脉冲产生等领域。为了满足这些光通信领域的应用需求,亟需产生频带宽度大、光梳线数多、谱线间隔可变、平坦度好且带外抑制比高的光学频率梳。目前光学频率梳的产生方法有锁模激光器法,非线性光纤法,电光调制器法等。其中,锁模激光器法需要的锁模条件比较严苛,且产生的光学频率梳的谱线间隔很难改变。采用光纤的非线性效应产生的光学频率梳功率波动较大,平坦度较差。基于电光调制器产生光学频率梳的方法,系统结构简单,谱线间隔可变且平坦度较好,所以电光调制器法被广泛采用。但是,由于电光调制器的带宽限制,目前电光调制器法产生的光学频率梳往往频带宽度较小,光梳线数比较有限。Microwave photonic technology is a technology about the interaction and impact of microwave signals and optical signals, including the use of optical methods to process, control and transmit microwaves. In communications, microwave wireless communication has flexible characteristics, and optical fiber communication has bandwidth advantages. Microwave photonic technology combines the two, which has huge application potential for high-speed broadband information transmission. An optical frequency comb refers to a series of evenly spaced and phase-coherent frequency components in the spectrum. With the rapid development of optical communication technology, optical frequency combs are widely used in fields such as dense wavelength division multiplexing, optical arbitrary waveform generation, and multi-wavelength ultrashort pulse generation. In order to meet the application requirements in the field of optical communications, it is urgent to produce optical frequency combs with large frequency bandwidth, large number of optical comb lines, variable spectral line spacing, good flatness and high out-of-band suppression ratio. At present, the generation methods of optical frequency comb include mode-locked laser method, nonlinear fiber method, electro-optic modulator method, etc. Among them, the mode-locked laser method requires relatively strict mode-locking conditions, and the spectral line spacing of the generated optical frequency comb is difficult to change. The optical frequency comb generated by the nonlinear effect of optical fiber has large power fluctuations and poor flatness. The method of generating optical frequency combs based on electro-optical modulators has a simple system structure, variable spectral line spacing and good flatness, so the electro-optical modulator method is widely used. However, due to the bandwidth limitation of the electro-optical modulator, the current optical frequency comb produced by the electro-optical modulator method often has a small bandwidth and a limited number of optical comb lines.
Shibao Wu等人在其发表的论文“Highly flexible optical Nyquist pulsesgeneration based on dual-parallel Mach-Zehnder modulator and intensitymodulator”(Photonic Network Communications,2018,36(3):361-368)中公开了一种基于双平行马赫增德尔调制器和强度调制器的光学频率梳产生方法。该方法的实现具体步骤是,激光器产生连续的光信号,通过双平行马赫增德尔调制器DPMZM和强度调制器IM级联结构。设置加载在DPMZM上的射频信号频率为18.75GHz,通过调节射频信号的功率和调制器的直流偏压,使得DPMZM产生5线光梳,谱线间隔为37.5GHz。然后级联一个强度调制器IM,通过设置射频信号的功率和调制器的直流偏压,使得IM把每一个DPMZM产生的频率分量调制为3线光梳,该方法最终产生15线光学频率梳,频谱带宽为187.5GHz。该方法存在的不足之处是,DPMZM产生的5线光梳的谱线间隔是所加载射频频率的2倍,频谱带宽较小,且最终产生的光频梳的线数较少,带外抑制比不高,导致将所产生的光频梳应用于光通信系统时,通信容量不足。In their paper "Highly flexible optical Nyquist pulsesgeneration based on dual-parallel Mach-Zehnder modulator and intensitymodulator" (Photonic Network Communications, 2018, 36(3): 361-368), Shibao Wu et al. disclosed a method based on dual-parallel Mach-Zehnder modulator and intensity modulator. Optical frequency comb generation methods for parallel Mach-Zehnder modulators and intensity modulators. The specific steps to implement this method are that the laser generates a continuous optical signal through a cascade structure of a dual parallel Mach-Zehnder modulator DPMZM and an intensity modulator IM. The frequency of the radio frequency signal loaded on the DPMZM is set to 18.75GHz. By adjusting the power of the radio frequency signal and the DC bias of the modulator, the DPMZM generates a 5-line optical comb with a spectral line interval of 37.5GHz. Then an intensity modulator IM is cascaded, and by setting the power of the RF signal and the DC bias of the modulator, the IM modulates the frequency component generated by each DPMZM into a 3-line optical comb. This method ultimately produces a 15-line optical frequency comb. The spectrum bandwidth is 187.5GHz. The shortcomings of this method are that the spectral line spacing of the 5-line optical comb generated by DPMZM is twice the loaded RF frequency, the spectrum bandwidth is small, and the final optical frequency comb has fewer lines and out-of-band suppression. The ratio is not high, resulting in insufficient communication capacity when the generated optical frequency comb is applied to optical communication systems.
西安电子科技大学在其申请的专利文献“一种宽带光学频率梳的产生装置及其方法”(申请号CN201310750920.0,申请日2013.12.30,申请公布号CN 103744249 A)中公开了一种宽带光学频率梳的产生方法。该方法包括:激光器、双平行马赫增德尔调制器DPMZM、两个强度调制器IM、射频信号源、光谱分析仪。设置加载在DPMZM上的射频信号频率为25GHz,通过调节射频信号的功率和调制器的直流偏压,使得DPMZM输出功率相等的±2阶边带。然后级联两个工作状态相同的IM,设置加载在IM上的射频信号功率和直流偏压,可以使得每一个频率分量经过IM时,都会被调制产生5线光梳,所以该方法最终产生50线光学频率梳,谱线间隔为4GHz,频谱带宽为196GHz。该方法存在的不足之处是,对调制器带宽依赖较大,DPMZM产生的±2阶边带的频率间隔是所加载射频频率的4倍,频谱带宽较小,导致将所产生的光频梳应用于光通信系统时,通信容量不足。Xi'an University of Electronic Science and Technology disclosed a broadband optical frequency comb in its patent document "A device and method for generating a broadband optical frequency comb" (application number CN201310750920.0, application date 2013.12.30, application publication number CN 103744249 A) Methods for generating optical frequency combs. The method includes: laser, dual parallel Mach-Zehnder modulator DPMZM, two intensity modulators IM, radio frequency signal source, and spectrum analyzer. Set the frequency of the RF signal loaded on the DPMZM to 25GHz. By adjusting the power of the RF signal and the DC bias of the modulator, the DPMZM outputs ±2nd-order sidebands with equal power. Then cascade two IMs with the same working status, and set the RF signal power and DC bias loaded on the IM so that when each frequency component passes through the IM, it will be modulated to generate a 5-line optical comb, so this method ultimately generates 50 Line optical frequency comb, spectral line spacing is 4GHz, and spectrum bandwidth is 196GHz. The disadvantage of this method is that it relies heavily on the modulator bandwidth. The frequency interval of the ±2nd-order sidebands generated by DPMZM is 4 times the loaded RF frequency, and the spectrum bandwidth is small, resulting in the generated optical frequency comb. When applied to optical communication systems, the communication capacity is insufficient.
发明内容Contents of the invention
本发明的目的在于针对上述现有技术存在的不足,提出了一种基于双平行马赫增德尔调制器DPMZM和两个强度调制器IM级联的宽带光频梳产生方法,用于解决现有基于电光调制器的光学频率梳产生方法中存在的频谱带宽较小,光梳线数较少,带外抑制比不高的技术问题。The purpose of the present invention is to propose a broadband optical frequency comb generation method based on a dual parallel Mach-Zehnder modulator DPMZM and two intensity modulators IM cascaded to solve the existing problems in the existing technology. The optical frequency comb generation method of electro-optical modulators has technical problems such as small spectrum bandwidth, small number of optical comb lines, and low out-of-band suppression ratio.
为实现上述目的,本发明的技术思路是:本发明是在由一个单频激光器、四个射频信号源、包含两个子调制器的一个双平行马赫增德尔调制器DPMZM、一个带通光学滤波器、两个强度调制器IM和一个光谱分析仪组成的链路中实现的。在DPMZM上的两个子调制器上加载射频信号,射频信号的频率为25GHz。让子调制器工作在推挽模式下,且在最小点偏置,使得两个子调制器都输出奇数阶光边带,然后利用主调制器抵消了两个子调制器产生的±1阶边带,最终DPMZM输出±3阶边带,频率间隔是所加载的射频信号频率的6倍。在DPMZM后加入一个带通光学滤波器,可以有效的抑制高阶边带,提高所要生成的光学频率梳的带外抑制比。再级联两个工作状态相同的IM,通过调节加载在IM上的射频信号功率和直流偏压,可以使得IM能够产生5线光频梳,即0阶、±1阶边带和±2阶边带信号的功率相等。该方案中后一级调制器将前一级调制器产生的光边带分别当作光源进行调制,最终产生50线宽带光学频率梳。To achieve the above purpose, the technical idea of the present invention is: the present invention is implemented in a link consisting of a single-frequency laser, four RF signal sources, a dual parallel Mach-Zehnder modulator DPMZM including two sub-modulators, a bandpass optical filter, two intensity modulators IM and a spectrum analyzer. RF signals are loaded on the two sub-modulators on the DPMZM, and the frequency of the RF signal is 25GHz. The sub-modulators are operated in push-pull mode and biased at the minimum point so that both sub-modulators output odd-order optical sidebands, and then the main modulator is used to offset the ±1-order sidebands generated by the two sub-modulators. Finally, the DPMZM outputs ±3-order sidebands, and the frequency interval is 6 times the frequency of the loaded RF signal. Adding a bandpass optical filter after the DPMZM can effectively suppress high-order sidebands and improve the out-of-band suppression ratio of the optical frequency comb to be generated. Then, two IMs with the same working state are cascaded, and by adjusting the RF signal power and DC bias voltage loaded on the IM, the IM can generate a 5-line optical frequency comb, that is, the power of the 0th order, ±1st order sidebands and ±2nd order sideband signals is equal. In this scheme, the latter stage modulator modulates the optical sidebands generated by the previous stage modulator as light sources, and finally generates a 50-line broadband optical frequency comb.
本发明的具体步骤如下:The specific steps of the present invention are as follows:
步骤1,射频信号源产生射频信号;Step 1, the RF signal source generates RF signals;
步骤2,设置调制器的直流偏置电压:Step 2, set the DC bias voltage of the modulator:
将双平行马赫增德尔调制器DPMZM中的每个子调制器的上臂直流偏置电压设置为Vπ/2,下臂直流偏置电压设置为-Vπ/2;将双平行马赫增德尔调制器DPMZM的主调制器的直流偏置电压设置为Vπ,其中,Vπ表示调制器的半波电压;The upper arm DC bias voltage of each sub-modulator in the dual parallel Mach-Zehnder modulator DPMZM is set to V π /2, and the lower arm DC bias voltage is set to -V π /2; the DC bias voltage of the main modulator of the dual parallel Mach-Zehnder modulator DPMZM is set to V π , where V π represents the half-wave voltage of the modulator;
步骤3,输入光载波信号:Step 3, input optical carrier signal:
将单频激光器产生的光载波信号,输入到设置直流偏置电压后的双平行马赫增德尔调制器DPMZM中;Input the optical carrier signal generated by the single-frequency laser into the dual parallel Mach-Zehnder modulator DPMZM after setting the DC bias voltage;
步骤4,生成调制光信号:Step 4, generate modulated light signal:
将射频信号RF1和射频信号RF2分别输入到各自相连接的双平行马赫增德尔调制器DPMZM的子调制器中进行光载波调制,输出由子调制器生成的两个±1阶边带信号,一个±3阶边带信号,共六个边带信号;The radio frequency signal RF1 and the radio frequency signal RF2 are respectively input into the sub-modulators of the respectively connected dual parallel Mach-Zehnder modulator DPMZM for optical carrier modulation, and two ±1-order sideband signals generated by the sub-modulators are output, one ± Third-order sideband signals, six sideband signals in total;
步骤5,抵消两个子调制器生成的±1阶边带信号:Step 5, cancel the ±1st order sideband signals generated by the two sub-modulators:
令两个子调制器生成的±1阶边带信号的功率相等后,再将两个子调制器生成的±1阶边带信号输入到主调制器后相互抵消,得到±3阶边带信号;After making the power of the ±1-order sideband signals generated by the two sub-modulators equal, then input the ±1-order sideband signals generated by the two sub-modulators into the main modulator and cancel each other to obtain the ±3-order sideband signal;
步骤6,抑制高阶边带信号:Step 6, suppress high-order sideband signals:
将双平行马赫增德尔调制器DPMZM输出的±3阶边带信号,输入到双平行马赫增德尔调制器DPMZM后串联的一个带通光学滤波器中,输出抑制高阶边带后的±3阶边带信号;The ±3rd-order sideband signal output by the dual parallel Mach-Zehnder modulator DPMZM is input into a bandpass optical filter connected in series after the dual-parallel Mach-Zehnder modulator DPMZM, and the ±3rd-order sideband signal after suppressing the high-order sidebands is output. sideband signals;
步骤7,产生宽带光频梳:Step 7, generate a broadband optical frequency comb:
将射频信号和抑制高阶边带后的±3阶边带信号,分别输入到带通光学滤波器后串联的n个工作状态相同强度调制器中进行光信号调制;每个强度调制器输出0阶、±1阶、±2阶边带信号的功率均相等,每个强度调制器将1条光梳调制为5条光梳;当满足后一个强度调制器加载的射频信号频率为前一个强度调制器加载的射频信号频率的1/5时,第n个强度调制器会产生2×5n线的宽带光频梳。The radio frequency signal and the ±3-order sideband signal after suppressing the high-order sideband are respectively input into n serially connected intensity modulators in the same working state after the bandpass optical filter for optical signal modulation; each intensity modulator outputs 0 The power of first-order, ±1st-order, and ±2nd-order sideband signals are all equal. Each intensity modulator modulates 1 optical comb into 5 optical combs; when the following intensity modulator is satisfied, the frequency of the RF signal loaded by the latter intensity modulator is the previous intensity. When the frequency of the RF signal loaded by the modulator is 1/5, the nth intensity modulator will generate a 2×5 n -line broadband optical frequency comb.
本发明与现有技术相比具有以下优点:Compared with the prior art, the present invention has the following advantages:
第一,本发明在DPMZM的两个子调制器上加载射频信号,通过设置射频信号的功率和调制器的直流偏压,使得两个子调制器生成的±1阶边带信号输入到DPMZM的主调制器后相互抵消,DPMZM输出±3阶边带,频率间隔是所加载的射频信号频率的6倍,克服了现有技术中光学频率梳频带宽度较小的不足,使得本发明产生的光学频率梳频谱带宽增大,应用于光通信系统时,通信容量增大。First, the present invention loads radio frequency signals on the two sub-modulators of the DPMZM. By setting the power of the radio frequency signal and the DC bias voltage of the modulator, the ±1-order sideband signals generated by the two sub-modulators are input to the main modulation of the DPMZM. After canceling each other out, the DPMZM outputs ±3rd-order sidebands, and the frequency interval is 6 times the frequency of the loaded radio frequency signal, which overcomes the shortcoming of the small bandwidth of the optical frequency comb in the existing technology, making the optical frequency comb produced by the present invention The spectrum bandwidth increases, and when applied to optical communication systems, the communication capacity increases.
第二,由于本发明在DPMZM后加了一个带通光学滤波器,可以有效的抑制±3阶边带信号以外的高阶边带信号,使得本发明产生的光学频率梳应用于光通信系统时,提高了光学频率梳的带外抑制比,信号源的信噪比增大。Second, because the present invention adds a bandpass optical filter after the DPMZM, it can effectively suppress high-order sideband signals other than ±3rd-order sideband signals, making the optical frequency comb generated by the present invention applied to optical communication systems. , the out-of-band suppression ratio of the optical frequency comb is improved, and the signal-to-noise ratio of the signal source is increased.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1是本发明实施例中微波光子的链路图;FIG1 is a microwave photonic link diagram according to an embodiment of the present invention;
图2是本发明的流程图;Figure 2 is a flow chart of the present invention;
图3是本发明仿真实验1的仿真图;Figure 3 is a simulation diagram of simulation experiment 1 of the present invention;
图4是本发明仿真实验2的输出频谱图。Figure 4 is an output spectrum diagram of simulation experiment 2 of the present invention.
具体实施方式Detailed ways
以下结合附图和实施例,对本发明作进一步的详细描述。The present invention will be described in further detail below with reference to the accompanying drawings and examples.
本发明是在微波光子链路中实现的。The invention is implemented in a microwave photonic link.
参照图1,对本发明实施例所使用的微波光子链路作进一步的详细描述。Referring to Figure 1, the microwave photonic link used in the embodiment of the present invention is described in further detail.
本发明实施例的微波光子链路包括:一个单频激光器Laser、四个射频信号源、包含两个子调制器MZ-a和MZ-b的一个双平行马赫增德尔调制器DPMZM、一个带通光学滤波器Filter、两个强度调制器IM1和IM2和一个光谱分析仪OSA。DPMZM的光输入端口连接单频激光器Laser,DPMZM的两个子调制器MZ-a和MZ-b的射频端口分别连接第一射频信号源和第二射频信号源,两个强度调制器IM1和IM2的射频端口分别连接第三射频信号源和第四射频信号源。DPMZM的主调制器上加载的直流偏置电压在DPMZM的下臂上。The microwave photonic link in the embodiment of the present invention includes: a single-frequency laser Laser, four radio frequency signal sources, a dual parallel Mach-Zehnder modulator DPMZM including two sub-modulators MZ-a and MZ-b, and a bandpass optical Filter, two intensity modulators IM1 and IM2 and an optical spectrum analyzer OSA. The optical input port of DPMZM is connected to the single-frequency laser Laser. The RF ports of the two sub-modulators MZ-a and MZ-b of DPMZM are connected to the first RF signal source and the second RF signal source respectively. The two intensity modulators IM1 and IM2 The radio frequency ports are respectively connected to the third radio frequency signal source and the fourth radio frequency signal source. The DC bias voltage loaded on the main modulator of the DPMZM is on the lower arm of the DPMZM.
参照图2和实施例,对本发明的实现步骤作进一步的详细描述。With reference to Figure 2 and the embodiment, the implementation steps of the present invention will be described in further detail.
步骤1,产生射频信号。Step 1. Generate radio frequency signal.
双平行马赫增德尔调制器DPMZM的两个子调制器以及两个强度调制器的射频端口连接的射频信号源,分别产生四个射频信号:RF1、RF2、RF3和RF4,这四个射频信号的频率分别对应:f1、f2、f3和f4,其中,f1=f2。The two sub-modulators of the dual parallel Mach-Zehnder modulator DPMZM and the RF signal sources connected to the RF ports of the two intensity modulators respectively generate four RF signals: RF1, RF2, RF3 and RF4. The frequencies of these four RF signals Corresponding to: f 1 , f 2 , f 3 and f 4 respectively, where f 1 =f 2 .
步骤2,设置调制器的直流偏置电压。Step 2, set the DC bias voltage of the modulator.
将双平行马赫增德尔调制器DPMZM中的每个子调制器的上臂直流偏置电压设置为Vπ/2,下臂直流偏置电压设置为-Vπ/2,由此保证两个子调制器都工作在推挽模式下,且工作在最小传输点状态。其中,Vπ表示子调制器的半波电压,两个子调制器的半波电压相等。The upper arm DC bias voltage of each sub-modulator in the dual parallel Mach-Zehnder modulator DPMZM is set to V π /2, and the lower arm DC bias voltage is set to -V π /2, thereby ensuring that both sub-modulators work in push-pull mode and work in the minimum transmission point state. Among them, V π represents the half-wave voltage of the sub-modulator, and the half-wave voltages of the two sub-modulators are equal.
由于双平行马赫增德尔调制器DPMZM中的主调制器的直流偏置电压,加载在双平行马赫增德尔调制器DPMZM的下臂上,故将双平行马赫增德尔调制器DPMZM的主调制器的直流偏置电压设置为Vπ,由此保证两个子调制器输出信号的相位差为π,以保证两个子调制器输出信号的相位相反。Since the DC bias voltage of the main modulator in the dual parallel Mach-Zehnder modulator DPMZM is loaded on the lower arm of the dual-parallel Mach-Zehnder modulator DPMZM, the main modulator of the dual-parallel Mach-Zehnder modulator DPMZM The DC bias voltage is set to V π , thereby ensuring that the phase difference of the output signals of the two sub-modulators is π to ensure that the phases of the output signals of the two sub-modulators are opposite.
步骤3,输入光载波信号。Step 3: Input an optical carrier signal.
将单频激光器Laser产生的光载波信号,输入到设置直流偏置电压后的双平行马赫增德尔调制器DPMZM中。The optical carrier signal generated by the single-frequency laser Laser is input into the dual parallel Mach-Zehnder modulator DPMZM after setting the DC bias voltage.
步骤4,生成调制光信号。Step 4: Generate a modulated optical signal.
由于双平行马赫增德尔调制器DPMZM的两个子调制器的射频端口,分别与第一射频信号源和第二射频信号源连接。故将两个射频信号RF1和RF2分别输入到各自相连接的双平行马赫增德尔调制器DPMZM的子调制器中进行光载波调制,输出的六个边带信号如下:Because the radio frequency ports of the two sub-modulators of the dual parallel Mach-Zehnder modulator DPMZM are respectively connected to the first radio frequency signal source and the second radio frequency signal source. Therefore, the two radio frequency signals RF1 and RF2 are input into the respective connected sub-modulators of the dual parallel Mach-Zehnder modulator DPMZM for optical carrier modulation. The six sideband signals output are as follows:
其中,Ea,±1(t)表示第t个时刻子调制器MZ-a输出端输出的±1阶边带信号,Ea,±3(t)表示第t个时刻子调制器MZ-a输出端输出的±3阶边带信号,Eb,±1(t)表示第t个时刻子调制器MZ-b输出端输出的±1阶边带信号,E0表示单频激光器Laser输出的光载波信号的电场幅值,exp(·)表示以自然常数e为底的指数操作,j表示虚数单位符号,ωc表示单频激光器Laser输出的光载波信号的中心角频率,ω1表示子调制器MZ-a上加载的射频信号RF1的中心角频率,t表示子调制器输出端输出边带信号时刻的序号,J1(·)表示一阶第一类贝塞尔函数,m1表示子调制器MZ-a上加载的射频信号RF1的调制指数,m1=πVRF1/Vπ,π表示圆周率,VRF1表示子调制器MZ-a上加载的射频信号RF1的幅值,Vπ表示子调制器的半波电压,表示正弦函数,φ1表示子调制器MZ-a上臂直流偏置电压引起的相位差,φ1=π/2,J3(·)表示三阶第一类贝塞尔函数,ω2表示子调制器MZ-b上加载的射频信号RF2的中心角频率,m2表示子调制器MZ-b上加载的射频信号RF2的调制指数,m2=πVRF2/Vπ,VRF2表示子调制器MZ-b上加载的射频信号RF2的幅值,φ2表示子调制器MZ-b上臂直流偏置电压引起的相位差,φ2=π/2。Among them, E a,±1 (t) represents the ±1-order sideband signal output from the output end of the sub-modulator MZ-a at the t time, and E a,±3 (t) represents the sub-modulator MZ-a at the t time. The ±3-order sideband signal output by the output terminal a, E b,±1 (t) represents the ±1-order sideband signal output by the output terminal MZ-b of the sub-modulator at the t time, E 0 represents the output of the single-frequency laser Laser The electric field amplitude of the optical carrier signal, exp(·) represents the exponential operation with the natural constant e as the base, j represents the imaginary unit symbol, ω c represents the central angular frequency of the optical carrier signal output by the single-frequency laser Laser, and ω 1 represents The central angular frequency of the radio frequency signal RF1 loaded on the sub-modulator MZ-a, t represents the sequence number of the moment when the sub-modulator output terminal outputs the sideband signal, J 1 (·) represents the first-order Bessel function of the first kind, m 1 represents the modulation index of the radio frequency signal RF1 loaded on the sub-modulator MZ-a, m 1 =πV RF1 /V π , π represents the pi, V RF1 represents the amplitude of the radio frequency signal RF1 loaded on the sub-modulator MZ-a, V π represents the half-wave voltage of the sub-modulator, represents the sinusoidal function, φ 1 represents the phase difference caused by the DC bias voltage of the upper arm of the sub-modulator MZ-a, φ 1 =π/2, J 3 (·) represents the third-order Bessel function of the first kind, ω 2 represents the sub- The central angular frequency of the radio frequency signal RF2 loaded on the modulator MZ-b, m 2 represents the modulation index of the radio frequency signal RF2 loaded on the sub-modulator MZ-b, m 2 =πV RF2 /V π , V RF2 represents the sub-modulator The amplitude of the radio frequency signal RF2 loaded on MZ-b, φ 2 , represents the phase difference caused by the DC bias voltage of the upper arm of the sub-modulator MZ-b, φ 2 =π/2.
步骤5,抵消两个子调制器生成的±1阶边带信号。Step 5, cancel the ±1-order sideband signals generated by the two sub-modulators.
为了抵消两个子调制器输出的±1阶边带信号,令步骤4得到的两个子调制器输出的±1阶边带信号的功率相等,可得J1(m1)=J1(m2)。因此,两个子调制器生成的±1阶边带信号输入到主调制器后相互抵消,双平行马赫增德尔调制器DPMZM输出±3阶边带信号,该±3阶边带信号的频率间隔是射频信号RF1频率f1的6倍。In order to cancel the ±1-order sideband signals output by the two sub-modulators, make the power of the ±1-order sideband signals output by the two sub-modulators obtained in step 4 equal, we can get J 1 (m 1 ) = J 1 (m 2 ). Therefore, the ±1-order sideband signals generated by the two sub-modulators cancel each other after being input to the main modulator. The dual parallel Mach-Zehnder modulator DPMZM outputs a ±3-order sideband signal. The frequency interval of the ±3-order sideband signal is The radio frequency signal RF1 is 6 times the frequency f 1 .
步骤6,抑制高阶边带信号。Step 6: Suppress high-order sideband signals.
在双平行马赫增德尔调制器DPMZM后串联一个带通光学滤波器Filter,该带通光学滤波器Filter的中心频率与光载波信号频率相等,3dB带宽为±3阶边带之间的频率间隔。当双平行马赫增德尔调制器DPMZM的输出信号输入该带通光学滤波器Filter时,可以有效的抑制±3阶边带信号以外的高阶边带信号,提高所要生成的光学频率梳的带外抑制比。A bandpass optical filter Filter is connected in series after the dual parallel Mach-Zehnder modulator DPMZM, the center frequency of which is equal to the frequency of the optical carrier signal, and the 3dB bandwidth is the frequency interval between the ±3rd order sidebands. When the output signal of the dual parallel Mach-Zehnder modulator DPMZM is input into the bandpass optical filter Filter, the high-order sideband signals other than the ±3rd order sideband signals can be effectively suppressed, thereby improving the out-of-band suppression ratio of the optical frequency comb to be generated.
步骤7,产生10线宽带光频梳。Step 7: Generate a 10-line broadband optical frequency comb.
将带通光学滤波器Filter与强度调制器IM1级联,带通光学滤波器Filter输出的抑制高阶边带后的±3阶边带信号输入到强度调制器IM1中。设置强度调制器IM1加载的直流偏置电压为VDC3,由于强度调制器IM1的射频端口连接第三射频信号源,故将射频信号RF3输入到强度调制器IM1进行光信号调制,射频信号RF3的频率f3和射频信号RF1的频率f1需要满足6f1=5f3。强度调制器IM1输出的0阶、±1阶、±2阶边带信号为The bandpass optical filter Filter is cascaded with the intensity modulator IM1, and the ±3rd-order sideband signal output by the bandpass optical filter Filter after suppressing the high-order sidebands is input to the intensity modulator IM1. Set the DC bias voltage loaded by the intensity modulator IM1 to V DC3 . Since the RF port of the intensity modulator IM1 is connected to the third RF signal source, the RF signal RF3 is input to the intensity modulator IM1 for optical signal modulation. The RF signal RF3 The frequency f 3 and the frequency f 1 of the radio frequency signal RF1 need to satisfy 6f 1 =5f 3 . The 0th-order, ±1st-order, and ±2nd-order sideband signals output by the intensity modulator IM1 are
EIM1,0(t)=ED(t)J0(m3)cosφ3 E IM1,0 (t)= ED (t)J 0 (m 3 )cosφ 3
EIM1,±1(t)=±j·ED(t)exp(±jω3t)J1(m3)sinφ3 E IM1,±1 (t)=±j·E D (t)exp(±jω 3 t)J 1 (m 3 )sinφ 3
EIM1,±2(t)=ED(t)exp(±j2ω3t)J2(m3)cosφ3 E IM1,±2 (t)=E D (t)exp(±j2ω 3 t)J 2 (m 3 )cosφ 3
其中,EIM1,0(t)表示第t个时刻强度调制器IM1输出端输出的0阶边带信号,EIM1,±1(t)表示第t个时刻强度调制器IM1输出端输出的±1阶边带信号,EIM1,±2(t)表示第t个时刻强度调制器IM1输出端输出的±2阶边带信号,ED(t)表示第t个时刻双平行马赫增德尔调制器DPMZM输出端输出的信号,J0(·)表示0阶第一类贝塞尔函数,m3表示强度调制器IM1上加载的射频信号RF3的调制指数,m3=πVRF3/Vπ,VRF3表示强度调制器IM1上加载的射频信号RF3的幅值,Vπ表示强度调制器IM1的半波电压,cos()表示余弦函数,φ3表示强度调制器IM1上臂直流偏置电压引起的相位差,φ3=πVDC3/2Vπ,VDC3表示强度调制器IM1加载的直流偏置电压,ω3表示强度调制器IM1上加载的射频信号RF3的中心角频率,t表示强度调制器IM1输出端输出边带信号时刻的序号,J2(·)表示二阶第一类贝塞尔函数。Among them, E IM1,0 (t) represents the 0th-order sideband signal output by the output terminal of the intensity modulator IM1 at the t time, and E IM1,±1 (t) represents the ± output terminal of the intensity modulator IM1 at the t time. The 1st-order sideband signal, E IM1,±2 (t) represents the ±2nd-order sideband signal output from the output terminal of the intensity modulator IM1 at the tth moment, E D (t) represents the dual parallel Mach-Zehnder modulation at the tth moment The signal output from the output terminal of the DPMZM device, J 0 (·) represents the 0th order Bessel function of the first kind, m 3 represents the modulation index of the radio frequency signal RF3 loaded on the intensity modulator IM1, m 3 =πV RF3 /V π , V RF3 represents the amplitude of the radio frequency signal RF3 loaded on the intensity modulator IM1, V π represents the half-wave voltage of the intensity modulator IM1, cos() represents the cosine function, φ 3 represents the DC bias voltage on the upper arm of the intensity modulator IM1. Phase difference, φ 3 = πV DC3 /2V π , V DC3 represents the DC bias voltage loaded on the intensity modulator IM1, ω 3 represents the central angular frequency of the radio frequency signal RF3 loaded on the intensity modulator IM1, t represents the intensity modulator IM1 The serial number of the moment when the output terminal outputs the sideband signal, J 2 (·) represents the second-order Bessel function of the first kind.
令强度调制器IM1输出的0阶、±1阶、±2阶边带信号的功率相等,可得m3=1.84,φ3≈0.5。由公式m3=πVRF3/Vπ,可得射频信号RF3的幅值VRF3,由公式φ3=πVDC3/2Vπ,可得强度调制器IM1的直流偏置电压VDC3。因此,通过设置射频信号RF3的幅值VRF3和强度调制器IM1的直流偏置电压VDC3,为保证强度调制器IM1将1条光梳调制为5条光梳。当带通光学滤波器Filter输出的信号输入到强度调制器IM1时,将被分别当作光源进行调制,最终强度调制器IM1会产生10线宽带光频梳,该光频梳的谱线间隔为射频信号RF3的频率f3。Assuming the power of the 0th order, ±1st order, and ±2nd order sideband signals output by the intensity modulator IM1 is equal, we can get m 3 =1.84, φ 3 ≈0.5. From the formula m 3 =πV RF3 /V π , we can get the amplitude V RF3 of the RF signal RF3, and from the formula φ 3 =πV DC3 /2V π , we can get the DC bias voltage V DC3 of the intensity modulator IM1. Therefore, by setting the amplitude V RF3 of the RF signal RF3 and the DC bias voltage V DC3 of the intensity modulator IM1, the intensity modulator IM1 modulates 1 optical comb into 5 optical combs. When the signal output by the bandpass optical filter Filter is input to the intensity modulator IM1, it will be modulated as a light source respectively, and finally the intensity modulator IM1 will generate a 10-line broadband optical frequency comb, the spectral line interval of which is the frequency f 3 of the RF signal RF3.
步骤8,产生50线宽带光频梳。Step 8: Generate a 50-line broadband optical frequency comb.
将产生10线光频梳的强度调制器IM1与强度调制器IM2级联,将强度调制器IM1产生的光信号输入到强度调制器IM2中。强度调制器IM2的直流偏置电压VDC4与强度调制器IM1的直流偏置电压VDC3相等。由于强度调制器IM2的射频端口连接第四射频信号源,故将射频信号RF4输入到强度调制器IM2进行光信号调制,射频信号RF4的幅值VRF4与射频信号RF4的幅值VRF3相等,射频信号RF4的频率f4和射频信号RF3的频率f3需要满足f3=5f4。因此,强度调制器IM2的工作状态与强度调制器IM1相同,当强度调制器IM1产生的10线光频梳输入到强度调制器IM2时,将被分别当作光源进行调制,最终强度调制器IM2会产生50线宽带光频梳,该光频梳的谱线间隔为射频信号RF4的频率f4。The intensity modulator IM1 that generates a 10-line optical frequency comb is cascaded with the intensity modulator IM2, and the optical signal generated by the intensity modulator IM1 is input to the intensity modulator IM2. The DC bias voltage V DC4 of the intensity modulator IM2 is equal to the DC bias voltage V DC3 of the intensity modulator IM1. Since the radio frequency port of the intensity modulator IM2 is connected to the fourth radio frequency signal source, the radio frequency signal RF4 is input to the intensity modulator IM2 for optical signal modulation. The amplitude V RF4 of the radio frequency signal RF4 is equal to the amplitude V RF3 of the radio frequency signal RF4. The frequency f 4 of the radio frequency signal RF4 and the frequency f 3 of the radio frequency signal RF3 need to satisfy f 3 =5f 4 . Therefore, the working state of the intensity modulator IM2 is the same as that of the intensity modulator IM1. When the 10-line optical frequency comb generated by the intensity modulator IM1 is input to the intensity modulator IM2, it will be separately treated as a light source for modulation. Finally, the intensity modulator IM2 A 50-line broadband optical frequency comb will be generated, and the spectral line spacing of the optical frequency comb is the frequency f 4 of the radio frequency signal RF4.
本发明的效果可以通过下面的仿真实验得到进一步的证明:The effect of the present invention can be further proved through the following simulation experiments:
1.仿真实验条件。1. Simulation experimental conditions.
本发明的仿真实验的硬件平台为:处理器为Intel i5-1035G1 CPU,内存为8GB的惠普笔记本电脑。The hardware platform of the simulation experiment of the present invention is: a HP notebook computer with an Intel i5-1035G1 CPU as the processor and an 8GB memory.
本发明的仿真实验的软件平台为:Windows 10操作系统和OptiSystem 15。The software platform of the simulation experiment of the present invention is: Windows 10 operating system and OptiSystem 15.
2.仿真内容及其结果分析。2. Analysis of simulation content and results.
本发明的仿真实验有两个。There are two simulation experiments of the present invention.
仿真实验1是采用本发明的方法,采用20组不同的RF1的调制指数m1和RF2的调制指数m2,对DPMZM的输出进行了20次仿真,其结果如图3所示。从仿真结果中找出使得DPMZM输出的±3阶边带信号功率和带外抑制比都较大的m1和m2,为仿真实验2提供m1和m2的参数设置。Simulation experiment 1 uses the method of the present invention, uses 20 groups of different modulation indexes m 1 of RF1 and m 2 of RF2, and simulates the output of DPMZM 20 times, and the results are shown in Figure 3. From the simulation results, find out m 1 and m 2 that make the ±3rd order sideband signal power and out-of-band suppression ratio of DPMZM output larger, and provide parameter settings of m 1 and m 2 for simulation experiment 2.
仿真实验2是采用本发明的方法和现有技术1,对如图1所示的本发明适用的微波光子链路进行仿真,得到的输出频谱图如图4所示,分析最终产生的50线宽带光频梳的频谱带宽、平坦度、带外抑制比等性能。Simulation experiment 2 uses the method of the present invention and prior art 1 to simulate the microwave photonic link applicable to the present invention as shown in Figure 1. The obtained output spectrum diagram is shown in Figure 4. The resulting 50 lines are analyzed. Spectrum bandwidth, flatness, out-of-band suppression ratio and other properties of broadband optical frequency comb.
现有技术1是指,Xin Zhou等人在“All optical arbitrary waveformgeneration by optical frequency comb based on cascading intensity modulation,Optics Communications,284(15):3706-3710,2011”中提出的基于级联强度调制的光频梳生成方法。Existing technology 1 refers to the cascading intensity modulation-based waveform generation by optical frequency comb based on cascading intensity modulation proposed by Xin Zhou et al. in "Optics Communications, 284(15):3706-3710, 2011" Optical frequency comb generation method.
微波光子链路中的参数设置为:单频激光器产生的光载波信号的频率为281.95THz,线宽为10MHz,功率为20dBm,DPMZM的半波电压为3.5V,消光比为35dB,插入损耗为5dB,子调制器MZ-a的直流偏置电压VDC1为3.5V,子调制器MZ-b的直流偏置电压VDC2为3.5V,主调制器的直流偏置电压VDC为3.5V,射频信号RF1和RF2的频率都为25GHz,带通光学滤波器的中心频率为281.95THz,3dB带宽为150GHz,插入损耗为1dB,强度调制器IM1和IM2的半波电压都为3.5V,消光比为35dB,插入损耗为5dB,IM1的直流偏置电压VDC3为3.5V,IM2的直流偏置电压VDC4为3.5V,射频信号RF3的频率为30GHz,RF3的调制指数m3为1.84,射频信号RF4的频率为6GHz,RF4的调制指数m4为1.84。The parameters in the microwave photonic link are set as follows: the frequency of the optical carrier signal generated by the single-frequency laser is 281.95THz, the line width is 10MHz, the power is 20dBm, the half-wave voltage of the DPMZM is 3.5V, the extinction ratio is 35dB, and the insertion loss is 5dB, the DC bias voltage V DC1 of the sub-modulator MZ-a is 3.5V, the DC bias voltage V DC2 of the sub-modulator MZ-b is 3.5V, and the DC bias voltage V DC of the main modulator is 3.5V, The frequencies of the radio frequency signals RF1 and RF2 are both 25GHz, the center frequency of the bandpass optical filter is 281.95THz, the 3dB bandwidth is 150GHz, the insertion loss is 1dB, the half-wave voltages of the intensity modulators IM1 and IM2 are both 3.5V, and the extinction ratio is 35dB, the insertion loss is 5dB, the DC bias voltage V DC3 of IM1 is 3.5V, the DC bias voltage V DC4 of IM2 is 3.5V, the frequency of the radio frequency signal RF3 is 30GHz, the modulation index m3 of RF3 is 1.84, the radio frequency The frequency of signal RF4 is 6GHz, and the modulation index m 4 of RF4 is 1.84.
下面结合图3和图4对本发明的效果做进一步的描述。The effects of the present invention will be further described below with reference to Figures 3 and 4.
图3(a)是一阶和三阶第一类贝塞尔函数曲线图,其中,横坐标表示调制指数m的大小,纵坐标表示第一类贝塞尔函数值,实线曲线是一阶第一类贝塞尔函数曲线,虚线曲线是三阶第一类贝塞尔函数曲线。MZ-a主要生成±1阶和±3阶边带信号,MZ-b主要生成±1阶边带信号,为了抵消DPMZM两个子调制器产生的±1阶边带信号,两个射频信号RF1和RF2的调制指数m1和m2需要满足J1(m1)=J1(m2)且m1>m2。从图3(a)中可以看出,J1(m)的第一个极大值点为(1.85,0.582),第二个零点为3.83,所以设置m1的取值范围为(1.85,3.83),m2的取值范围为(0,1.85),满足条件的m1和m2有无数组,且一一对应。仿真实验1中,在范围[0.05,1]内选取间隔为0.05的20个m2,通过公式J1(m1)=J1(m2),计算出对应的m1的值。由这20组m1和m2的值,通过公式m1=πVRF1/Vπ和m1=πVRF1/Vπ,得到射频信号RF1和RF2的幅值VRF1和VRF2,分别加载到20次仿真实验中,得到DPMZM的输出信号。Figure 3(a) is a graph of the first-order and third-order Bessel functions of the first kind. The abscissa represents the size of the modulation index m, the ordinate represents the value of the first-order Bessel function, and the solid line curve is the first-order Bessel function. Bessel function curve of the first kind, the dotted curve is a third-order Bessel function curve of the first kind. MZ-a mainly generates ±1-order and ±3-order sideband signals, MZ-b mainly generates ±1-order sideband signals. In order to offset the ±1-order sideband signals generated by the two sub-modulators of DPMZM, the two radio frequency signals RF1 and The modulation indices m 1 and m 2 of RF2 need to satisfy J 1 (m 1 )=J 1 (m 2 ) and m 1 >m 2 . As can be seen from Figure 3(a), the first maximum value point of J 1 (m) is (1.85, 0.582), and the second zero point is 3.83, so the value range of m 1 is set to (1.85, 3.83), the value range of m 2 is (0,1.85), there are countless groups of m 1 and m 2 that meet the conditions, and they correspond one to one. In simulation experiment 1, 20 m 2 with an interval of 0.05 are selected in the range [0.05,1], and the corresponding value of m 1 is calculated through the formula J 1 (m 1 )=J 1 (m 2 ). From these 20 sets of m 1 and m 2 values, through the formulas m 1 =πV RF1 /V π and m 1 =πV RF1 /V π , the amplitudes V RF1 and V RF2 of the radio frequency signals RF1 and RF2 are obtained, respectively. In 20 simulation experiments, the output signal of DPMZM was obtained.
图3(b)是DPMZM输出的±3阶边带信号功率和带外抑制比和随m1的变化关系图,其中,横坐标表示调制指数m1的大小,左边纵坐标表示带外抑制比的大小,单位为dB,右边纵坐标表示±3阶边带信号功率的大小,单位为dBm。图3(b)以“○”标注的曲线代表带外抑制比随m1的变化关系曲线,以“*”标注的曲线代表±3阶边带信号功率随m1的变化关系曲线。由图3(b)可以看出,随着调制指数m1的增大,±3阶边带信号功率在增大,但是带外抑制比在减小。在DPMZM后串联一个带通光学滤波器,可以提高光频梳的带外抑制比,所以本发明选择较大的m1,使得±3阶边带信号功率较大。根据图3(b)中的变化关系图,带外抑制比基本上是随m1成比例减小的,而±3阶边带信号功率不是,当m1>3.53时,±3阶边带信号功率值基本不增加,所以选择m1=3.53,m2=0.25。在仿真实验2中,设置m1=3.53,m2=0.25。Figure 3(b) is a diagram showing the relationship between the ±3rd-order sideband signal power output by DPMZM and the out-of-band suppression ratio and its changes with m 1. The abscissa represents the size of the modulation index m 1 , and the ordinate on the left represents the out-of-band suppression ratio. The size, the unit is dB, the ordinate on the right represents the size of the ±3rd order sideband signal power, the unit is dBm. In Figure 3(b), the curve marked with "○" represents the change relationship curve of the out-of-band suppression ratio with m 1 , and the curve marked with "*" represents the change relationship curve of the ±3rd order sideband signal power with m 1 . It can be seen from Figure 3(b) that as the modulation index m 1 increases, the ±3rd-order sideband signal power increases, but the out-of-band suppression ratio decreases. Connecting a bandpass optical filter in series after the DPMZM can improve the out-of-band suppression ratio of the optical frequency comb, so the present invention selects a larger m 1 to make the ±3rd order sideband signal power larger. According to the change diagram in Figure 3(b), the out-of-band suppression ratio basically decreases in proportion to m 1 , but the ±3-order sideband signal power does not. When m 1 >3.53, the ±3-order sideband The signal power value basically does not increase, so m 1 =3.53 and m 2 =0.25 are selected. In simulation experiment 2, set m 1 =3.53 and m 2 =0.25.
图4是仿真实验2的输出频谱图,其中,横坐标表示输出信号的频率,单位为THz,纵坐标表示输出信号的功率,单位为dBm。Figure 4 is the output spectrum diagram of simulation experiment 2, in which the abscissa represents the frequency of the output signal in THz, and the ordinate represents the power of the output signal in dBm.
图4(a)和(b)分别是DPMZM的子调制器MZ-a和MZ-b的输出频谱图,由图4(a)可以看出,MZ-a的输出中,±3阶边带信号的功率最大,其次是±1阶边带信号,由图4(b)可以看出,MZ-b的输出中,±1阶边带信号的功率最大,且与MZ-a输出的±1阶边带信号功率相等。Figure 4(a) and (b) are the output spectrum diagrams of DPMZM sub-modulators MZ-a and MZ-b respectively. As can be seen from Figure 4(a), in the output of MZ-a, the ±3rd order sideband The power of the signal is the largest, followed by the ±1-order sideband signal. As can be seen from Figure 4(b), in the output of MZ-b, the power of the ±1-order sideband signal is the largest, and it is the same as the ±1-order sideband signal output by MZ-a. The sideband signal powers are equal.
图4(c)是DPMZM的输出频谱图,由图4(c)可以看出,DPMZM利用主调制器抵消了两个子调制器生成的±1阶边带信号,最终输出的±3阶边带信号带宽为150GHz,±3阶边带信号的带外抑制比,即±3阶边带信号与±5阶边带信号的抑制比为13.5dB。Figure 4(c) is the output spectrum diagram of DPMZM. It can be seen from Figure 4(c) that DPMZM uses the main modulator to offset the ±1-order sideband signals generated by the two sub-modulators, and the final output ±3-order sideband The signal bandwidth is 150GHz, and the out-of-band suppression ratio of ±3rd-order sideband signals, that is, the suppression ratio of ±3rd-order sideband signals and ±5th-order sideband signals is 13.5dB.
图4(d)是带通光学滤波器的输出频谱图,由图4(d)可以看出,带通光学滤波器有效的抑制了±3阶边带以外的高阶边带,±3阶边带信号的带外抑制比,即±3阶边带信号与0阶边带信号的抑制比为24.2dB。Figure 4(d) is the output spectrum diagram of the bandpass optical filter. It can be seen from Figure 4(d) that the bandpass optical filter effectively suppresses high-order sidebands other than ±3rd-order sidebands. The out-of-band suppression ratio of sideband signals, that is, the suppression ratio of ±3rd-order sideband signals to 0th-order sideband signals, is 24.2dB.
图4(e)和(f)是IM1的输出频谱图,由图4(e)可以看出,IM1将±3阶边带信号调制为10线光频梳,该10线光频梳的谱线间隔为30GHz,带外抑制比为14.8dB,图4(f)是图4(e)中10线光频梳的放大图,可以看出,该10线光频梳的平坦度为0.21dB。Figures 4(e) and (f) are the output spectrum diagrams of IM1. As can be seen from Figure 4(e), IM1 modulates the ±3rd-order sideband signals into a 10-line optical frequency comb with a spectral line spacing of 30 GHz and an out-of-band suppression ratio of 14.8 dB. Figure 4(f) is an enlarged view of the 10-line optical frequency comb in Figure 4(e). It can be seen that the flatness of the 10-line optical frequency comb is 0.21 dB.
图4(g)和(h)是IM2的输出频谱图,由图4(g)可以看出,IM2将10线光频梳调制为50线光频梳,该50线光频梳的谱线间隔为6GHz,带外抑制比为14.6dB,频谱带宽为294GHz,图4(h)是图4(g)中50线光频梳的放大图,可以看出,该50线光频梳的平坦度为0.37dB。Figure 4(g) and (h) are the output spectrum diagrams of IM2. It can be seen from Figure 4(g) that IM2 modulates the 10-line optical frequency comb into a 50-line optical frequency comb. The spectral lines of the 50-line optical frequency comb The spacing is 6GHz, the out-of-band suppression ratio is 14.6dB, and the spectrum bandwidth is 294GHz. Figure 4(h) is an enlarged view of the 50-line optical frequency comb in Figure 4(g). It can be seen that the 50-line optical frequency comb is flat The degree is 0.37dB.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210995356.8A CN115396036B (en) | 2022-08-18 | 2022-08-18 | Broadband optical frequency comb generation method based on DPMZM and two IM cascading |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210995356.8A CN115396036B (en) | 2022-08-18 | 2022-08-18 | Broadband optical frequency comb generation method based on DPMZM and two IM cascading |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115396036A CN115396036A (en) | 2022-11-25 |
CN115396036B true CN115396036B (en) | 2024-03-29 |
Family
ID=84119740
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210995356.8A Active CN115396036B (en) | 2022-08-18 | 2022-08-18 | Broadband optical frequency comb generation method based on DPMZM and two IM cascading |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115396036B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116337777B (en) * | 2023-05-29 | 2023-08-29 | 之江实验室 | A wide-band photoacoustic spectroscopy measurement system and method based on a single optical comb |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103631036A (en) * | 2013-11-14 | 2014-03-12 | 西安电子科技大学 | Production method of adjustable optical frequency combs |
CN103744249A (en) * | 2013-12-30 | 2014-04-23 | 西安电子科技大学 | Device and method for generating broadband OFC (Optical Frequency Comb) |
CN107846254A (en) * | 2017-10-12 | 2018-03-27 | 北京工业大学 | The photonic methodologies and system of microwave down coversion and phase shift are realized using integrated device |
CN108594478A (en) * | 2018-03-22 | 2018-09-28 | 西安电子科技大学 | The generation device and method of super flat optical frequency com based on dual-polarization modulator |
CN108631144A (en) * | 2017-03-21 | 2018-10-09 | 中国移动通信有限公司研究院 | A kind of Semiconductor laser device and method |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7953303B2 (en) * | 2007-06-15 | 2011-05-31 | Thorlabs Quantum Electronics, Inc. | Method and system for generating flat or arbitrary shaped optical frequency combs |
-
2022
- 2022-08-18 CN CN202210995356.8A patent/CN115396036B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103631036A (en) * | 2013-11-14 | 2014-03-12 | 西安电子科技大学 | Production method of adjustable optical frequency combs |
CN103744249A (en) * | 2013-12-30 | 2014-04-23 | 西安电子科技大学 | Device and method for generating broadband OFC (Optical Frequency Comb) |
CN108631144A (en) * | 2017-03-21 | 2018-10-09 | 中国移动通信有限公司研究院 | A kind of Semiconductor laser device and method |
CN107846254A (en) * | 2017-10-12 | 2018-03-27 | 北京工业大学 | The photonic methodologies and system of microwave down coversion and phase shift are realized using integrated device |
CN108594478A (en) * | 2018-03-22 | 2018-09-28 | 西安电子科技大学 | The generation device and method of super flat optical frequency com based on dual-polarization modulator |
Non-Patent Citations (2)
Title |
---|
Jianjun Zhang.Research on Multi-wavelength Optical Frequency Comb Technology Based on Satellite Spectrum Sensing.《 2017 17th IEEE International Conference on Communication Technology (ICCT 2017)》.2017,全文. * |
基于双平行MZM和HNLF四波混频效应的24倍频光生毫米波技术;应祥岳;徐铁峰;刘太君;文化锋;张秀普;;光电子・激光;20160815(08);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN115396036A (en) | 2022-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110113105B (en) | DP-MZM-based novel twelve-frequency multiplication millimeter wave generation device and method | |
CN103744249B (en) | The generator of a kind of Reflection Optical Thin Film frequency comb and method thereof | |
CN111158171B (en) | Large free spectral range reconfigurable optical frequency comb generation device and implementation method | |
CN102929069B (en) | The effective microwave signal collocation method of a kind of power in optical frequency comb generator | |
CN108282229B (en) | A high-order optical carrier suppression single-sideband signal generation unit and implementation method | |
CN103957058A (en) | Device for generating triangular microwave signals based on dual drive Mach-Zehnder modulator | |
CN115396036B (en) | Broadband optical frequency comb generation method based on DPMZM and two IM cascading | |
CN204374553U (en) | A kind of light carrier sideband based on acousto-optic filter compares tunable devices | |
CN103281130B (en) | Based on single multiple frequence millimeter wave generating device that drives Mach zehnder modulators | |
CN107367880A (en) | Microwave photon filter based on double parallel Mach zehnder modulators | |
CN111641460A (en) | Double-frequency triangular wave generation method for cascade connection of intensity modulator and polarization shunt multiplexing Mach-Zehnder modulator | |
CN103368651A (en) | Double parallel MZ modulator-based method for restraining intermodulation distortion in second harmonic generation system | |
CN110198153B (en) | Photonic microwave quarter quadruple frequency method and device | |
JP4991610B2 (en) | Method for measuring half-wave voltage of optical modulator | |
CN118759744A (en) | A method for reducing power consumption of cascaded electro-optical frequency comb generation system | |
Lv et al. | Flat optical frequency comb generation based on polarization modulator with RF frequency multiplication circuit and dual-parallel Mach-Zehnder modulator | |
CN105785687A (en) | Bi-pass band microwave photon filter for high shape factor of wireless local area network | |
CN109473860A (en) | Nyquist pulse generator and method of operation | |
Song et al. | A chirp-rate-tunable microwave photonic pulse compression system for multi-octave linearly chirped microwave waveform | |
Zhang et al. | Optical frequency comb generation based on dual-parallel Mach–Zehnder modulator and intensity modulator with RF frequency multiplication circuit | |
Qian et al. | A reconfigurable optical frequency comb generator with 35 flat comb lines | |
CN114815433B (en) | Optical frequency comb generating device | |
Wu et al. | Generation of flat optical frequency comb based on Mach-Zehnder modulator and recirculating frequency shifter loop | |
JP2012078413A (en) | Optical frequency comb generation device, optical pulse generation device and method for controlling optical pulse generation device | |
CN115378510B (en) | Method and system for generating high linearity signal by silicon-based modulator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |