CN115390512B - Flexible gantry double-drive system and electromechanical combined decoupling motion control method thereof - Google Patents
Flexible gantry double-drive system and electromechanical combined decoupling motion control method thereof Download PDFInfo
- Publication number
- CN115390512B CN115390512B CN202211096635.7A CN202211096635A CN115390512B CN 115390512 B CN115390512 B CN 115390512B CN 202211096635 A CN202211096635 A CN 202211096635A CN 115390512 B CN115390512 B CN 115390512B
- Authority
- CN
- China
- Prior art keywords
- loop
- control
- translational
- disturbance
- angle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 22
- 238000013519 translation Methods 0.000 claims abstract description 38
- 230000008878 coupling Effects 0.000 claims abstract description 6
- 238000010168 coupling process Methods 0.000 claims abstract description 6
- 238000005859 coupling reaction Methods 0.000 claims abstract description 6
- 230000001360 synchronised effect Effects 0.000 claims abstract description 6
- 238000006073 displacement reaction Methods 0.000 claims description 40
- 238000013461 design Methods 0.000 claims description 30
- 230000001133 acceleration Effects 0.000 claims description 28
- 238000004364 calculation method Methods 0.000 claims description 27
- 239000011159 matrix material Substances 0.000 claims description 12
- 230000009977 dual effect Effects 0.000 claims description 5
- 230000004907 flux Effects 0.000 claims description 3
- 238000005259 measurement Methods 0.000 claims description 3
- 230000003068 static effect Effects 0.000 claims 1
- 230000001629 suppression Effects 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 4
- 230000005484 gravity Effects 0.000 description 4
- 230000007547 defect Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000011217 control strategy Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/18—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
- G05B19/19—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q1/00—Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
- B23Q1/25—Movable or adjustable work or tool supports
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/35—Nc in input of data, input till input file format
- G05B2219/35349—Display part, programmed locus and tool path, traject, dynamic locus
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/02—Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Human Computer Interaction (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Linear Motors (AREA)
- Control Of Linear Motors (AREA)
- Control Of Position Or Direction (AREA)
Abstract
本发明涉及电机驱动与运动控制领域,具体的,涉及一种柔性龙门双驱系统及其机电联合解耦运动控制方法,包括柔性支撑装置、直线电机、线性导轨以及横梁,柔性支撑装置包括偏扭柔性铰链和回转柔性铰链,采用柔性铰链装置实现横梁与线性导轨的滑动连接和柔性支撑。本发明基于永磁同步直线电机的龙门双驱运动平台,将龙门双驱的运动分为了平动回路和转动回路,分别控制,解决了具有非对称柔性支撑结构龙门双驱运动控制中的同步问题和耦合问题,提升了双驱运动同步性能和收敛速度,实现了对内部耦合和外部扰动的有效抑制,提高龙门双驱运动平台的定位精度。
The present invention relates to the field of motor drive and motion control, in particular, to a flexible gantry double drive system and its electromechanical combined decoupling motion control method, including a flexible support device, a linear motor, a linear guide rail and a beam. The flexible support device includes a deflector Flexible hinges and rotary flexible hinges use flexible hinge devices to realize sliding connection and flexible support of beams and linear guide rails. The invention is based on the gantry double-drive motion platform of the permanent magnet synchronous linear motor, divides the motion of the gantry double-drive into a translation circuit and a rotation circuit, and controls them separately, and solves the synchronization problem in the motion control of the gantry double-drive with an asymmetric flexible support structure It improves the synchronization performance and convergence speed of the dual-drive motion, realizes effective suppression of internal coupling and external disturbances, and improves the positioning accuracy of the gantry dual-drive motion platform.
Description
技术领域technical field
本发明涉及电机驱动与运动控制领域,具体的,涉及一种柔性龙门双驱系统及其机电联合解耦运动控制方法。The invention relates to the field of motor drive and motion control, in particular to a flexible gantry double drive system and an electromechanical combined decoupling motion control method thereof.
背景技术Background technique
龙门双驱运动平台作为一种工业器件,在精密仪器、高端机床、半导体装备领域均有重要用途。横梁引入的机械耦合使得双驱同步控制变得困难,尤其是系统的耦合问题,会严重影响龙门双驱系统的定位精度,此外,各类未知的外部扰动进一步影响了系统双驱同步性能。As an industrial device, the gantry double-drive motion platform has important uses in the fields of precision instruments, high-end machine tools, and semiconductor equipment. The mechanical coupling introduced by the beam makes the dual-drive synchronous control difficult, especially the coupling problem of the system, which will seriously affect the positioning accuracy of the gantry dual-drive system. In addition, various unknown external disturbances further affect the dual-drive synchronization performance of the system.
现有龙门双驱系统大多数采用刚性支撑结构,依靠系统装调精度和主从轴同步精度控制横梁内力影响,在复杂工况下无法做到完全抑制。《双驱龙门平台局部可置换柔性关节设计与建模研究》公布了一种双侧薄璧梁柔性支撑关节,其缺点在于无法克服横梁在跨度方向的左右振动,横梁在外力作用下,跨度方向存在位移,同时容易产生左右振荡,影响系统整体精度。Most of the existing gantry double-drive systems use rigid support structures, relying on the system adjustment accuracy and master-slave axis synchronization accuracy to control the influence of the internal force of the beam, which cannot be completely suppressed under complex working conditions. "Research on the Design and Modeling of Partially Replaceable Flexible Joints on Double-Drive Gantry Platforms" published a flexible support joint for double-sided thin wall beams. Its disadvantage is that it cannot overcome the left and right vibration of the beam in the span direction. There is displacement, and at the same time, it is easy to generate left and right oscillations, which affects the overall accuracy of the system.
现有的龙门双驱算法,多采用双侧同步思路、抑制不同步干扰作为指导思想,如《基于干扰观测器的龙门机床双驱系统的同步控制》一文,然而双驱完全同步是不可能实现的,双侧异步的出现会导致系统模型快速变化。The existing gantry double-drive algorithm mostly adopts the idea of double-sided synchronization and suppresses asynchronous interference as the guiding ideology, such as the article "Synchronization Control of Double-drive System of Gantry Machine Tool Based on Disturbance Observer". However, it is impossible to realize the complete synchronization of double-drive Yes, the emergence of two-sided asynchrony can lead to rapid changes in the system model.
本发明充分考虑机械模型和电气模型的一致性,通过柔性支撑设计、控制算法设计,实现龙门双驱机电联合解耦,克服现有龙门伺服系统的各种缺陷。The invention fully considers the consistency of the mechanical model and the electrical model, realizes the combined decoupling of the electromechanical combination of the double drive of the gantry through the design of the flexible support and the design of the control algorithm, and overcomes various defects of the existing gantry servo system.
发明内容Contents of the invention
针对现有技术中的缺陷,本发明的目的是提供一种柔性龙门双驱系统及其机电联合解耦运动控制方法。Aiming at the defects in the prior art, the object of the present invention is to provide a flexible gantry double drive system and its electromechanical combined decoupling motion control method.
根据本发明提供的一种柔性龙门双驱系统,包括柔性支撑装置、直线电机、线性导轨以及横梁;A flexible gantry double drive system provided according to the present invention includes a flexible support device, a linear motor, a linear guide rail and a beam;
所述柔性支撑装置包括偏扭柔性铰链和回转柔性铰链,两组所述直线电机分别安装于两条间隔平行设置的所述线性导轨上,所述横梁两端分别通过所述偏扭柔性铰链、所述回转柔性铰链与两组所述直线电机连接,所述偏扭柔性铰链提供所述横梁水平面内的相对回转和沿其跨度方向的相对位移,所述回转柔性铰链提供所述横梁水平面内的相对回转;The flexible supporting device includes a twisted flexible hinge and a rotary flexible hinge. The two sets of linear motors are respectively installed on the two linear guide rails arranged in parallel at intervals. The rotary flexible hinge is connected with two sets of linear motors, the deflection flexible hinge provides relative rotation in the horizontal plane of the beam and relative displacement along its span direction, and the rotary flexible hinge provides relative rotation in the horizontal plane of the beam. relative rotation;
所述横梁与所述偏扭柔性铰链连接的一端的运动控制采用平动回路控制,其中平动回路遵循位置-速度串级控制方式,所述横梁与所述回转柔性铰链连接的一端的运动控制采用转动回路控制,其中转动回路遵循位置单级控制方式,将所述平动回路控制的控制量与所述转动回路控制的控制量进行处理后作为电流环控制给定,电流环控制采用矢量控制框架下的解耦控制。The movement control of the end of the crossbeam connected with the twisted flexible hinge adopts translation loop control, wherein the translation loop follows the position-velocity cascade control mode, and the movement control of the end of the crossbeam connected with the rotary flexible hinge The rotation loop control is adopted, wherein the rotation loop follows the position single-stage control mode, and the control quantity controlled by the translation loop and the control quantity controlled by the rotation loop are processed as the current loop control setting, and the current loop control adopts vector control Decoupled control under the framework.
一些实施方式中,所述偏扭柔性铰链包括第一横梁连接架、第一线轨连接块、第一垂向止动片以及第一纵向止动片;In some embodiments, the torsionally flexible hinge includes a first beam connecting frame, a first line rail connecting block, a first vertical stop piece, and a first longitudinal stop piece;
所述第一横梁连接架为中空结构框,所述第一线轨连接块的上下端面分别通过所述第一垂向止动片与所述第一横梁连接架的上下梁连接,所述第一线轨连接块的左右侧面分别通过所述第一纵向止动片与所述第一横梁连接架的左右梁连接,所述横梁的一端坐落于所述第一横梁连接架的左右梁上;The first beam connecting frame is a hollow structural frame, the upper and lower end surfaces of the first line rail connecting block are respectively connected to the upper and lower beams of the first beam connecting frame through the first vertical stop piece, and the first The left and right sides of the line rail connection block are respectively connected to the left and right beams of the first crossbeam connecting frame through the first longitudinal stop piece, and one end of the crossbeam is located on the left and right beams of the first crossbeam connecting frame;
所述第一垂向止动片限制所述第一横梁连接架与所述第二线轨连接块在上下垂向方向的相对位移,所述第一纵向止动片限制所述第一横梁连接架与所述线轨连接块在所述横梁滑动方向的相对位移。The first vertical stopper restricts the relative displacement between the first beam connecting frame and the second line rail connecting block in the vertical direction, and the first longitudinal stopper restricts the first beam connecting frame The relative displacement of the line rail connection block in the sliding direction of the beam.
一些实施方式中,所述回转柔性铰链包括第二横梁连接架、第二线轨连接块、第二垂向止动片、第二纵向止动片、横向止动片以及横向止动板;In some embodiments, the rotary flexible hinge includes a second beam connecting frame, a second line rail connecting block, a second vertical stop piece, a second longitudinal stop piece, a transverse stop piece and a transverse stop plate;
所述第二横梁连接架为中空结构框,所述第二线轨连接块的上下端面分别通过所述第二垂向止动片与所述第二横梁连接架的上下梁连接,所述第二线轨连接块的左右侧面分别通过所述第二纵向止动片与所述第二横梁连接架的左右梁连接,所述横向止动板通过所述横向止动片分别与所述第二横梁连接架的上下梁以及所述第二线轨连接块连接,The second beam connecting frame is a hollow structural frame, and the upper and lower end faces of the second line rail connecting block are respectively connected to the upper and lower beams of the second beam connecting frame through the second vertical stop piece. The left and right sides of the rail connection block are respectively connected to the left and right beams of the second beam connecting frame through the second longitudinal stop piece, and the transverse stop plate is respectively connected to the second beam through the transverse stop piece The upper and lower beams of the frame and the second line rail connecting block are connected,
所述第二垂向止动片限制所述第二横梁连接架与所述第二线轨连接块在上下垂向方向的相对位移,所述第二纵向止动片限制所述第一横梁连接架与所述第二线轨连接块在所述横梁滑动方向的相对位移,所述横向止动片与所述横向止动板限制所述第一横梁连接架与所述第二线轨连接块前后方向的相对位移。The second vertical stop piece restricts the relative displacement between the second beam connection frame and the second line rail connection block in the vertical direction, and the second longitudinal stop piece restricts the first cross beam connection frame With the relative displacement of the second line rail connecting block in the sliding direction of the crossbeam, the transverse stop piece and the transverse stop plate limit the forward and backward movement of the first crossbeam connecting frame and the second line rail connecting block. Relative displacement.
本发明还提供了一种柔性龙门双驱系统的机电联合解耦运动控制方法,采用所述的柔性龙门双驱系统,包括如下步骤:The present invention also provides an electromechanical combined decoupling motion control method for a flexible gantry double drive system, using the flexible gantry double drive system, including the following steps:
步骤100,控制器给定龙门双驱运动位置;Step 100, the controller sets the movement position of the double drive of the gantry;
步骤200,测量双驱两轴的实际位移量,并计算系统反馈量;Step 200, measure the actual displacements of the two shafts of the dual drive, and calculate the system feedback;
步骤300:将双驱运动控制分为平动回路控制和转动回路控制,平动回路控制为位置-速度串级控制,转动回路控制为角度单级控制;Step 300: Divide the dual-drive motion control into translation loop control and rotation loop control, the translation loop control is position-velocity cascade control, and the rotation loop control is angle single-stage control;
步骤400:利用横梁偏转角和横梁偏转角角速度作为非奇异终端滑模控制器的变量,计算转动回路角度控制量;Step 400: Using the deflection angle of the beam and the angular velocity of the beam deflection angle as variables of the non-singular terminal sliding mode controller, calculate the angle control quantity of the rotation loop;
步骤500:将平动回路控制量和转动回路控制量处理后作为电流环控制给定,电流环控制采用矢量控制框架下的解耦控制;Step 500: Process the translational loop control quantity and the rotational loop control quantity as a current loop control setting, and the current loop control adopts decoupling control under the vector control framework;
一些实施方式中,所述步骤200包括:In some embodiments, the step 200 includes:
两轴位移测量步骤:通过光栅尺测量两轴的实际位移量,取主轴位移量作为平动位移,所述主轴为规定的某一侧直线电机的主轴;The two-axis displacement measurement step: measure the actual displacement of the two axes through the grating ruler, and take the displacement of the main shaft as the translational displacement, and the main shaft is the main shaft of a linear motor on a specified side;
平动速度计算步骤:对主轴位移量做微分计算得到主轴平动速度;Calculation steps of translational velocity: perform differential calculation on the displacement of the main shaft to obtain the translational velocity of the main shaft;
横梁偏转角度计算步骤:通过两轴位移量和两平行轴距离计算得到横梁偏转角度。Calculation steps of the deflection angle of the beam: the deflection angle of the beam is obtained by calculating the displacement of the two axes and the distance between the two parallel axes.
一些实施方式中,包括步骤300包括:In some embodiments, step 300 includes:
平动回路位置环控制步骤:平动回路位置环控制采用比例-微分控制,平动回路位置环接收运动控制器的位置给定指令,控制量输入到速度环回路;The control steps of the position loop of the translation loop: the position loop control of the translation loop adopts proportional-differential control, the position loop of the translation loop receives the position given command of the motion controller, and the control amount is input to the speed loop;
平动回路速度环控制步骤:平动回路速度环设计基于模型补偿二阶线性扩张状态观测器解耦控制回路;The speed loop control steps of the translation loop: the speed loop design of the translation loop is based on the model compensation second-order linear expansion state observer decoupling control loop;
转动回路角度环控制步骤:转动回路角度环设计基于模型补偿三阶线性扩张状态观测器解耦控制回路。Rotational loop angle loop control steps: Rotational loop angle loop design is based on model compensation third-order linear expansion state observer decoupling control loop.
一些实施方式中,所述的平动回路速度环控制步骤包括:In some implementations, the step of controlling the velocity loop of the translation loop includes:
平动回路已知模型动态计算步骤:由平动速度、横梁偏转角角速度两项可测量计算得出;The dynamic calculation steps of the known model of the translational circuit: it is calculated from two measurable calculations: the translational velocity and the deflection angular velocity of the beam;
基于扩张状态观测器的扰动项观测步骤:平动回路速度环设计带有模型补偿的二阶线性扩张状态观测器,状态变量为平动速度,将总扰动项fT扩张为新状态以观测,并设其导数为rt,总扰动项由实际系统中不易测量的动态和控制误差、建模误差、未建模高阶动态和外部扰动组成,则龙门平动状态方程写为:Observation steps of the disturbance term based on the extended state observer: design a second-order linear extended state observer with model compensation for the velocity loop of the translational loop, the state variable is the translational velocity, and expand the total disturbance term f T into a new state for observation, And set its derivative as r t , the total disturbance item is composed of dynamic and control errors, modeling errors, unmodeled high-order dynamics and external disturbances that are not easy to measure in the actual system, then the state equation of the gantry translation is written as:
yT=CTzT y T = C T z T
其中:z1为平动速度,z2为总扰动项fT所作为的新状态,fT0为模型已知部分,uT为平动回路速度环输出,yT为速度环模型输出,bT0反映控制量与被控量导数之间的关系;in: z 1 is the translation velocity, z 2 is the new state made by the total disturbance item f T , f T0 is the known part of the model, u T is the output of the velocity loop of the translation circuit, y T is the output of the velocity loop model, and b T0 reflects The relationship between the control quantity and the derivative of the controlled quantity;
基于将扰动状态扩张为新状态后的二阶速度环模型,设计带有模型补偿的二阶线性扩张状态观测器:Based on the second-order velocity loop model after expanding the disturbed state into a new state, a second-order linear extended state observer with model compensation is designed:
其中:为观测器输出,LT为观测器增益矩阵,设置增益矩阵使观测器具备BIBO稳定性,其BIBO为有界输入-有界输出;in: is the output of the observer, L T is the gain matrix of the observer, setting the gain matrix makes the observer have BIBO stability, and its BIBO is bounded input-bounded output;
控制量计算步骤:位置环控制量输入到速度环作为给定速度VTd,遵循控制律:Calculation steps of the control quantity: the control quantity of the position loop is input to the speed loop as the given speed V Td , following the control law:
计算控制量uT;其中:KT为速度误差增益。Calculate the control quantity u T ; where: K T is the speed error gain.
一些实施方式中,所述的转动回路角度环控制步骤包括:In some implementations, the step of controlling the rotation loop angle loop includes:
已知模型动态计算步骤:转动回路已知模型动态由柔性支撑带来的扰动力矩、平动环加速度和负载位置共同组成的重心干扰与Y轴加速度干扰计算,柔性支撑带来的扰动力矩由横梁偏转角度计算,平动环加速度和负载位置共同组成的重心干扰由X轴加速度给定代替,Y轴加速度干扰由Y轴加速度给定代替;The dynamic calculation steps of the known model: the known model dynamics of the rotation circuit is calculated by the center of gravity interference and the Y-axis acceleration interference composed of the disturbance moment brought by the flexible support, the acceleration of the translation ring and the load position. The disturbance moment brought by the flexible support is determined by the beam For the calculation of deflection angle, the center of gravity disturbance composed of the acceleration of the translation ring and the load position is replaced by the X-axis acceleration reference, and the Y-axis acceleration disturbance is replaced by the Y-axis acceleration reference;
扩张状态观测器步骤;转动回路角度环设计带有模型补偿的三阶线性扩张状态观测器,状态变量为横梁偏转角度和横梁偏转角度角速度,将总扰动项fR扩张为新状态以观测,并设其导数为rR,总扰动项由实际系统中不易测量的动态和建模与控制误差、未建模高阶动态和外部扰动组成,则龙门角度状态方程写为:Expanding the state observer step; the rotation loop angle ring design has a third-order linear extended state observer with model compensation, the state variables are beam deflection angle and beam deflection angle angular velocity, and the total disturbance term f R is expanded into a new state for observation, and Let its derivative be r R , and the total disturbance item is composed of dynamics that are not easy to measure in the actual system, modeling and control errors, unmodeled high-order dynamics, and external disturbances, then the state equation of the gantry angle is written as:
yR=CRzR y R =C R z R
其中: 为偏转角度,/>为偏转角角速度,/>为总扰动项fR所作为的新状态,fR0为模型已知部分,uR为转动回路角度环输出,yR为角度环模型输出,bR0反映控制量与被控量导数之间的关系;in: is the deflection angle, /> is the deflection angular velocity, /> is the new state of the total disturbance item f R , f R0 is the known part of the model, u R is the output of the angle loop of the rotation loop, y R is the output of the angle loop model, b R0 reflects the relationship between the control variable and the derivative of the controlled variable relation;
基于将扰动状态扩张为新状态后的三阶角度环模型,设计带有模型补偿的三阶线性扩张状态观测器:Based on the third-order angle loop model after expanding the disturbed state into a new state, a third-order linear extended state observer with model compensation is designed:
其中:为观测器输出,LR为观测器增益矩阵,设置增益矩阵使得观测器具备BIBO稳定性,扩张状态观测器输出扩张状态变量总扰动项观测结果;in: is the output of the observer, L R is the gain matrix of the observer, the gain matrix is set so that the observer has BIBO stability, and the extended state observer outputs the observation result of the total disturbance item of the expanded state variable;
控制步骤:控制两轴同步运动横梁偏转角给定为0,遵循控制律:Control steps: Control the two-axis synchronous movement beam deflection angle given as 0, follow the control law:
计算控制量uR;其中:KR为角度误差增益,Θgd为给定角度,设定为0,DR为角速度误差增益,为给定角速度,设定为0。Calculate the control quantity u R ; where: K R is the angle error gain, Θ gd is the given angle, set to 0, D R is the angular velocity error gain, For the given angular velocity, set it to 0.
一些实施方式中,所述的转动回路滑模控制步骤包括:In some implementations, the step of sliding mode control of the rotation loop includes:
滑模函数设计步骤:根据系统转动方程,不考虑总扰动状态,则系统的状态空间方程为:Sliding mode function design steps: According to the system rotation equation, regardless of the total disturbance state, the state space equation of the system is:
设计滑模函数:Design the sliding mode function:
其中:s为系统状态的函数,p、q均为正奇数且有 Among them: s is the function of the system state, p and q are both positive odd numbers and have
设计控制规律设计步骤:根据所设计滑模函数设计非线性控制律:Design control law design steps: design nonlinear control law according to the designed sliding mode function:
fRmax为总扰动项上界,η>0。f Rmax is the upper bound of the total disturbance term, η>0.
一些实施方式中,所述的矢量控制框架下电流环控制步骤包括:In some embodiments, the current loop control step under the vector control framework includes:
电流给定步骤:由平动回路速度环和转动回路角度环控制量计算两轴电流给定;Current setting step: calculate the two-axis current setting from the control values of the speed loop of the translation loop and the angle loop of the rotation loop;
电角度计算步骤:在平台上电后寻找电机的初始相位作为记录电角度零点,通过增量式光栅尺测量的位置信息计算电角度;Electrical angle calculation steps: After the platform is powered on, find the initial phase of the motor as the zero point for recording the electrical angle, and calculate the electrical angle through the position information measured by the incremental grating ruler;
电流采集步骤:使用霍尔传感器对电机的两相电流采样测量,根据三相电流的理论关系计算另外一相的电流;Current acquisition step: use the Hall sensor to sample and measure the two-phase current of the motor, and calculate the current of the other phase according to the theoretical relationship of the three-phase current;
两相旋转坐标系电流计算步骤:根据所计算电角度,将三相静止坐标系下的电机三相电流转换为两相旋转坐标系dq轴下表示的电流;The step of calculating the current in the two-phase rotating coordinate system: according to the calculated electrical angle, the three-phase current of the motor in the three-phase stationary coordinate system is converted into the current represented by the dq axis of the two-phase rotating coordinate system;
d轴电压控制步骤:d轴电流给定量为0,采用比例-积分控制,加入前馈补偿消除q轴电流和转速乘积的扰动;d-axis voltage control steps: the d-axis current given value is 0, proportional-integral control is adopted, and feed-forward compensation is added to eliminate the disturbance of the product of q-axis current and rotational speed;
q轴电压控制步骤:q轴电流由平动回路速度环和转动回路角度环给出,采用比例-积分控制,加入前馈补偿消除d轴电流和永磁体磁链的干扰;q-axis voltage control steps: the q-axis current is given by the speed loop of the translation loop and the angle loop of the rotation loop, using proportional-integral control, and adding feed-forward compensation to eliminate the interference of the d-axis current and the flux linkage of the permanent magnet;
两相静止坐标系电压计算步骤:根据所计算电角度,将两相旋转坐标系下的电流环控制量转换为两相静止坐标系αβ轴下表示的电压。The voltage calculation step of the two-phase stationary coordinate system: according to the calculated electrical angle, the current loop control quantity in the two-phase rotating coordinate system is converted into the voltage represented by the αβ axis of the two-phase stationary coordinate system.
与现有技术相比,本发明具有如下的有益效果:Compared with the prior art, the present invention has the following beneficial effects:
1、本发明解决了具有非对称柔性支撑结构龙门双驱运动控制中的同步问题和耦合问题,提升了双驱运动同步性能和收敛速度,实现了对内部耦合和外部扰动的有效抑制,提高龙门双驱运动平台的定位精度。1. The present invention solves the synchronization problem and coupling problem in the double-drive motion control of the gantry with an asymmetric flexible support structure, improves the synchronization performance and convergence speed of the double-drive motion, realizes effective suppression of internal coupling and external disturbance, and improves the gantry The positioning accuracy of the dual-drive motion platform.
2、本发明采用非奇异终端滑模控制策略,提升了系统动态响应性能。2. The present invention adopts a non-singular terminal sliding mode control strategy, which improves the dynamic response performance of the system.
3、本发明采用矢量控制框架下的电流环控制方案,实现了对被控对象电机三相电流的解耦控制。3. The present invention adopts the current loop control scheme under the vector control framework to realize the decoupling control of the three-phase current of the controlled object motor.
附图说明Description of drawings
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:Other characteristics, objects and advantages of the present invention will become more apparent by reading the detailed description of non-limiting embodiments made with reference to the following drawings:
图1为本发明柔性龙门双驱系统整体结构示意图;Fig. 1 is a schematic diagram of the overall structure of the flexible gantry double drive system of the present invention;
图2为本发明偏扭柔性铰链结构示意图;Fig. 2 is a structural schematic diagram of the twisted flexible hinge of the present invention;
图3为本发明回转柔性铰链结构示意图;Fig. 3 is a structural schematic diagram of the rotary flexible hinge of the present invention;
图4为本发明柔性龙门双驱系统的机电联合解耦运动控制方法的流程示意图;Fig. 4 is a schematic flow chart of the electromechanical combined decoupling motion control method of the flexible gantry double drive system of the present invention;
图5为本发明柔性龙门双驱系统的机电联合解耦运动控制方法的控制示意图。Fig. 5 is a control schematic diagram of the electromechanical combined decoupling motion control method of the flexible gantry double drive system of the present invention.
具体实施方式Detailed ways
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变化和改进。这些都属于本发明的保护范围。The present invention will be described in detail below in conjunction with specific embodiments. The following examples will help those skilled in the art to further understand the present invention, but do not limit the present invention in any form. It should be noted that those skilled in the art can make several changes and improvements without departing from the concept of the present invention. These all belong to the protection scope of the present invention.
实施例1Example 1
本发明提供了一种龙门双驱平台的横梁和导轨内应力消除的机械解耦设计方法下形成的一种柔性龙门双驱系统,柔性龙门双驱系统主要包括柔性支撑装置1、直线电机2、线性导轨3以及横梁4,柔性支撑装置1包括偏扭柔性铰链11和回转柔性铰链12,采用柔性铰链装置1实现横梁4与线性导轨3的滑动连接和柔性支撑,横梁4一侧与线性导轨3采用可以实现水平面内相对回转的回转柔性铰链12进行连接支撑,横梁另一侧与线性导轨采用可以实现水平面内相对回转、同时横梁跨度方向相对位移的的偏扭柔性铰链11进行连接支撑,以实现龙门双驱平台的横梁和导轨内力消除、机械解耦。The present invention provides a flexible gantry double drive system formed under the mechanical decoupling design method for eliminating internal stress of the beam and guide rail of the gantry double drive platform. The flexible gantry double drive system mainly includes a
偏扭柔性铰链11主要包括第一横梁连接架111、第一线轨连接块112、第一垂向止动片113以及第一纵向止动片114。第一横梁连接架11由四根梁围城的中空结构框,四根梁为上下左右布置,第一线轨连接块112的上下端面分别通过第一垂向止动片113与第一横梁连接架111的上下两根梁连接,第一垂向止动片113为薄壁结构,其薄壁面位于和线轨滑动方向平行的竖直平面内,第一垂向止动片113限制第一横梁连接架111与第二线轨连接块112在上下垂向方向的相对位移。第一线轨连接块112的左右侧面分别通过第一纵向止动片114与第一横梁连接架111的左右两根梁连接,第一纵向止动片为薄壁结构,其薄壁面位于与线轨滑动方向平行的竖直平面内,第一纵向止动片114限制第一横梁连接架111与线轨连接块112在横梁4滑动方向的相对位移。横梁4的一端坐落于第一横梁连接架111的左右两根梁上,可于第一横梁连接架111的左右两根梁上设置凸台,横梁4的一端坐落于凸台上即可。偏扭柔性铰链11中的第一垂向止动片113与第一纵向止动片114均为成对存在,可为一对,亦可为多对。优选的,偏扭柔性铰链11通过一体化制造形成。The torsion
回转柔性铰链12包括第二横梁连接架121、第二线轨连接块122、第二垂向止动片123、第二纵向止动片124、横向止动片125以及横向止动板126。第二连接架121与第一横梁连接架111为相同结构的中空框架,第二垂向止动片123与第一垂向止动片113以及第二纵向止动片124与第一纵向止动片114均为结构相同的薄壁片,横向止动片125同样为薄壁片体结构。第二线轨连接块122的上下端面分别通过第二垂向止动片123与第二横梁连接架121的上下梁连接,第二垂向止动片123的薄壁面位于和线轨滑动方向平行的竖直平面内,第二垂向止动片123限制第二横梁连接架121与第二线轨连接块122在上下垂向方向的相对位移。第二线轨连接块122的左右侧面分别通过第二纵向止动片124与第二横梁连接架121的左右梁连接,第二纵向止动片124的薄壁面位于与线轨滑动方向平行的竖直平面内,第二纵向止动片124限制第一横梁连接架121与第二线轨连接块122在横梁4滑动方向的相对位移。横向止动板126通过横向止动片125分别与第二横梁连接架12的上下梁以及第二线轨连接块122连接,横向止动片125的薄壁面位于和线轨滑动方向垂直的竖直平面内,横向止动片125与横向止动板126限制第一横梁连接架121与第二线轨连接块122前后方向的相对位移。回转柔性铰链12中的第二垂向止动片123、第二纵向止动片124以及横向止动片125的数量优选为成对存在,可为一对或多对。优选的,回转柔性铰链12通过一体化制造形成。The rotary
实施例2Example 2
本实施例2在实施例1的基础上形成的一种柔性龙门双驱系统的机电联合解耦运动控制方法,采用实施例1的柔性龙门双驱系统,基于永磁同步直线电机的龙门双驱运动平台,将龙门双驱的运动分为了平动回路和转动回路,分别控制,实现了双驱的同步和解耦问题,即横梁4与偏扭柔性铰链11连接的一端的运动控制采用平动回路控制,其中平动回路遵循位置-速度串级控制方式,横梁4与回转柔性铰链12连接的一端的运动控制采用转动回路控制,其中转动回路遵循位置单级控制方式,将平动回路控制的控制量与转动回路控制的控制量进行处理后作为电流环控制给定,电流环控制采用矢量控制框架下的解耦控制。具体步骤包括如下:In this
步骤100,控制器给定龙门双驱运动位置。In step 100, the controller specifies the movement position of the double-drive gantry.
步骤200,测量双驱两轴的实际位移量,并计算系统反馈量,包括如下步骤:Step 200, measuring the actual displacement of the two shafts of the dual drive, and calculating the system feedback, including the following steps:
两轴位移测量步骤:通过光栅尺测量两轴的实际位移量,规定某一侧直线电机位主轴,取主轴位移量作为平动位移;Two-axis displacement measurement step: measure the actual displacement of the two axes through the grating ruler, specify the position of the main axis of the linear motor on one side, and take the displacement of the main axis as the translational displacement;
平动速度计算步骤:对主轴位移量做微分计算得到主轴平动速度;Calculation steps of translational velocity: perform differential calculation on the displacement of the main shaft to obtain the translational velocity of the main shaft;
横梁偏转角度计算步骤:通过两轴位移量和两平行轴距离计算得到横梁偏转角度。Calculation steps of the deflection angle of the beam: the deflection angle of the beam is obtained by calculating the displacement of the two axes and the distance between the two parallel axes.
步骤300:将双驱运动控制分为平动回路控制和转动回路控制,平动回路控制为位置-速度串级控制,转动回路控制为位置单级控制,包括如下步骤:Step 300: Divide the dual-drive motion control into translation loop control and rotation loop control, the translation loop control is position-speed cascade control, and the rotation loop control is position single-stage control, including the following steps:
平动回路位置环控制步骤:平动回路位置环控制采用比例-微分控制,平动回路位置环接收运动控制器的位置给定指令,控制量输入到速度环回路;The control steps of the position loop of the translation loop: the position loop control of the translation loop adopts proportional-differential control, the position loop of the translation loop receives the position given command of the motion controller, and the control amount is input to the speed loop;
平动回路速度环控制步骤:平动回路速度环设计基于模型补偿二阶线性扩张状态观测器解耦控制回路,包括如下:The speed loop control steps of the translational loop: the speed loop design of the translational loop is based on the model compensation second-order linear expansion state observer decoupling control loop, including the following:
平动回路已知模型动态计算步骤:由平动速度、横梁偏转角角速度两项可测量计算得出;The dynamic calculation steps of the known model of the translational circuit: it is calculated from two measurable calculations: the translational velocity and the deflection angular velocity of the beam;
基于扩张状态观测器的扰动项观测步骤:平动回路速度环设计带有模型补偿的二阶线性扩张状态观测器,状态变量为平动速度,将总扰动项fT扩张为新状态以观测,并设其导数为rt,总扰动项由实际系统中不易测量的动态和控制误差、建模误差、未建模高阶动态和外部扰动组成,则龙门平动状态方程写为:Observation steps of the disturbance term based on the extended state observer: design a second-order linear extended state observer with model compensation for the velocity loop of the translational loop, the state variable is the translational velocity, and expand the total disturbance term f T into a new state for observation, And set its derivative as r t , the total disturbance item is composed of dynamic and control errors, modeling errors, unmodeled high-order dynamics and external disturbances that are not easy to measure in the actual system, then the state equation of the gantry translation is written as:
yT=CTzT y T = C T z T
其中:z1为平动速度,z2为总扰动项fT所作为的新状态,fT0为模型已知部分,uT为平动回路速度环输出,yT为速度环模型输出,bT0反映控制量与被控量导数之间的关系;in: z 1 is the translation velocity, z 2 is the new state made by the total disturbance item f T , f T0 is the known part of the model, u T is the output of the velocity loop of the translation circuit, y T is the output of the velocity loop model, and b T0 reflects The relationship between the control quantity and the derivative of the controlled quantity;
基于将扰动状态扩张为新状态后的二阶速度环模型,设计带有模型补偿的二阶线性扩张状态观测器:Based on the second-order velocity loop model after expanding the disturbed state into a new state, a second-order linear extended state observer with model compensation is designed:
其中:为观测器输出,LT为观测器增益矩阵,另外,l1和l2为根据实际条件计算的增益值,是无量纲的比例,设置增益矩阵使观测器具备BIBO稳定性,其BIBO为有界输入-有界输出;in: is the output of the observer, L T is the gain matrix of the observer, in addition, l 1 and l 2 are the gain values calculated according to the actual conditions, which are dimensionless ratios, setting the gain matrix makes the observer have BIBO stability, and its BIBO is bounded input - bounded output;
控制量计算步骤:位置环控制量输入到速度环作为给定速度VTd,遵循控制律:Calculation steps of the control quantity: the control quantity of the position loop is input to the speed loop as the given speed V Td , following the control law:
计算控制量uT;其中:KT为速度误差增益。Calculate the control quantity u T ; where: K T is the speed error gain.
转动回路角度环控制步骤:转动回路角度环设计基于模型补偿三阶线性扩张状态观测器解耦控制回路。Rotational loop angle loop control steps: Rotational loop angle loop design is based on model compensation third-order linear expansion state observer decoupling control loop.
已知模型动态计算步骤:转动回路已知模型动态由柔性支撑带来的扰动力矩、平动环加速度和负载位置共同组成的重心干扰与Y轴加速度干扰计算,柔性支撑带来的扰动力矩由横梁偏转角度计算,平动环加速度和负载位置共同组成的重心干扰由X轴加速度给定代替,Y轴加速度干扰由Y轴加速度给定代替;The dynamic calculation steps of the known model: the known model dynamics of the rotation circuit is calculated by the center of gravity interference and the Y-axis acceleration interference composed of the disturbance moment brought by the flexible support, the acceleration of the translation ring and the load position. The disturbance moment brought by the flexible support is determined by the beam For the calculation of deflection angle, the center of gravity disturbance composed of the acceleration of the translation ring and the load position is replaced by the X-axis acceleration reference, and the Y-axis acceleration disturbance is replaced by the Y-axis acceleration reference;
扩张状态观测器步骤;转动回路角度环设计带有模型补偿的三阶线性扩张状态观测器,状态变量为横梁偏转角度和横梁偏转角度角速度,将总扰动项fR扩张为新状态以观测,并设其导数为rR,总扰动项由实际系统中不易测量的动态和建模与控制误差、未建模高阶动态和外部扰动组成,则龙门角度状态方程写为:Expanding the state observer step; the rotation loop angle ring design has a third-order linear extended state observer with model compensation, the state variables are beam deflection angle and beam deflection angle angular velocity, and the total disturbance term f R is expanded into a new state for observation, and Let its derivative be r R , and the total disturbance item is composed of dynamics that are not easy to measure in the actual system, modeling and control errors, unmodeled high-order dynamics, and external disturbances, then the state equation of the gantry angle is written as:
yR=CRzR y R = C R z R
其中: 为偏转角度,/>为偏转角角速度,/>为总扰动项fR所作为的新状态,fR0为模型已知部分,uR为转动回路角度环输出,yR为角度环模型输出,bR0反映控制量与被控量导数之间的关系;in: is the deflection angle, /> is the deflection angular velocity, /> is the new state of the total disturbance item f R , f R0 is the known part of the model, u R is the output of the angle loop of the rotation loop, y R is the output of the angle loop model, b R0 reflects the relationship between the control variable and the derivative of the controlled variable relation;
基于将扰动状态扩张为新状态后的三阶角度环模型,设计带有模型补偿的三阶线性扩张状态观测器:Based on the third-order angle loop model after expanding the disturbed state into a new state, a third-order linear extended state observer with model compensation is designed:
其中:为观测器输出,LR为观测器增益矩阵,设置增益矩阵使得观测器具备BIBO稳定性,扩张状态观测器输出扩张状态变量总扰动项观测结果;in: is the output of the observer, L R is the gain matrix of the observer, the gain matrix is set so that the observer has BIBO stability, and the extended state observer outputs the observation result of the total disturbance item of the expanded state variable;
控制步骤:控制两轴同步运动横梁偏转角给定为0,遵循控制律:Control steps: Control the two-axis synchronous movement beam deflection angle given as 0, follow the control law:
计算控制量uR;其中:KR为角度误差增益,Θgd为给定角度,设定为0,DR为角速度误差增益,为给定角速度,设定为0。Calculate the control quantity u R ; where: K R is the angle error gain, Θ gd is the given angle, set to 0, D R is the angular velocity error gain, For the given angular velocity, set it to 0.
步骤400:利用横梁偏转角和横梁偏转角角速度作为非奇异终端滑模控制器的变量,计算转动回路位置控制量;Step 400: Using beam deflection angle and beam deflection angular velocity as variables of the non-singular terminal sliding mode controller to calculate the position control quantity of the rotation loop;
滑模函数设计步骤:根据系统转动方程,不考虑总扰动状态,则系统的状态空间方程为:Sliding mode function design steps: According to the system rotation equation, regardless of the total disturbance state, the state space equation of the system is:
设计滑模函数:Design the sliding mode function:
其中:s为系统状态的函数,p、q均为正奇数且有 Among them: s is the function of the system state, p and q are both positive odd numbers and have
设计控制规律设计步骤:根据所设计滑模函数设计非线性控制律:Design control law design steps: design nonlinear control law according to the designed sliding mode function:
fRmax为总扰动项上界,η>0,n和β均为比例系数。f Rmax is the upper bound of the total disturbance item, η>0, n and β are proportional coefficients.
步骤500:将平动回路控制量和转动回路控制量处理后作为电流环控制给定,电流环控制采用矢量控制框架下的解耦控制;Step 500: Process the translational loop control quantity and the rotational loop control quantity as a current loop control setting, and the current loop control adopts decoupling control under the vector control framework;
电流给定步骤:由平动回路速度环和转动回路角度环控制量计算两轴电流给定;Current setting step: calculate the two-axis current setting from the control values of the speed loop of the translation loop and the angle loop of the rotation loop;
电角度计算步骤:在平台上电后寻找电机的初始相位作为记录电角度零点,通过增量式光栅尺测量的位置信息计算电角度;Electrical angle calculation steps: After the platform is powered on, find the initial phase of the motor as the zero point for recording the electrical angle, and calculate the electrical angle through the position information measured by the incremental grating ruler;
电流采集步骤:使用霍尔传感器对电机的两相电流采样测量,根据三相电流的理论关系计算另外一相的电流;Current acquisition step: use the Hall sensor to sample and measure the two-phase current of the motor, and calculate the current of the other phase according to the theoretical relationship of the three-phase current;
两相旋转坐标系电流计算步骤:根据所计算电角度,将三相静止坐标系下的电机三相电流转换为两相旋转坐标系dq轴下表示的电流;The step of calculating the current in the two-phase rotating coordinate system: according to the calculated electrical angle, the three-phase current of the motor in the three-phase stationary coordinate system is converted into the current represented by the dq axis of the two-phase rotating coordinate system;
d轴电压控制步骤:d轴电流给定量为0,采用比例-积分控制,加入前馈补偿消除q轴电流和转速乘积的扰动;d-axis voltage control steps: the d-axis current given value is 0, proportional-integral control is adopted, and feed-forward compensation is added to eliminate the disturbance of the product of q-axis current and rotational speed;
q轴电压控制步骤:q轴电流由平动回路速度环和转动回路角度环给出,采用比例-积分控制,加入前馈补偿消除d轴电流和永磁体磁链的干扰;q-axis voltage control steps: the q-axis current is given by the speed loop of the translation loop and the angle loop of the rotation loop, using proportional-integral control, and adding feed-forward compensation to eliminate the interference of the d-axis current and the flux linkage of the permanent magnet;
两相静止坐标系电压计算步骤:根据所计算电角度,将两相旋转坐标系下的电流环控制量转换为两相静止坐标系αβ轴下表示的电压。The voltage calculation step of the two-phase stationary coordinate system: according to the calculated electrical angle, the current loop control quantity in the two-phase rotating coordinate system is converted into the voltage represented by the αβ axis of the two-phase stationary coordinate system.
在本申请的描述中,需要理解的是,术语“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。In the description of this application, it should be understood that the terms "upper", "lower", "front", "rear", "left", "right", "vertical", "horizontal", "top", The orientation or positional relationship indicated by "bottom", "inner", "outer", etc. is based on the orientation or positional relationship shown in the drawings, and is only for the convenience of describing the application and simplifying the description, rather than indicating or implying the referred device Or elements must have a certain orientation, be constructed and operate in a certain orientation, and thus should not be construed as limiting the application.
本领域技术人员知道,除了以纯计算机可读程序代码方式实现本发明提供的系统、装置及其各个模块以外,完全可以通过将方法步骤进行逻辑编程来使得本发明提供的系统、装置及其各个模块以逻辑门、开关、专用集成电路、可编程逻辑控制器以及嵌入式微控制器等的形式来实现相同程序。所以,本发明提供的系统、装置及其各个模块可以被认为是一种硬件部件,而对其内包括的用于实现各种程序的模块也可以视为硬件部件内的结构;也可以将用于实现各种功能的模块视为既可以是实现方法的软件程序又可以是硬件部件内的结构。Those skilled in the art know that, in addition to realizing the system, device and each module thereof provided by the present invention in a purely computer-readable program code mode, the system, device and each module thereof provided by the present invention can be completely programmed by logically programming the method steps. The same program is implemented in the form of logic gates, switches, application specific integrated circuits, programmable logic controllers, and embedded microcontrollers, among others. Therefore, the system, device and each module provided by the present invention can be regarded as a hardware component, and the modules included in it for realizing various programs can also be regarded as the structure in the hardware component; A module for realizing various functions can be regarded as either a software program realizing a method or a structure within a hardware component.
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变化或修改,这并不影响本发明的实质内容。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。Specific embodiments of the present invention have been described above. It should be understood that the present invention is not limited to the specific embodiments described above, and those skilled in the art may make various changes or modifications within the scope of the claims, which do not affect the essence of the present invention. In the case of no conflict, the embodiments of the present application and the features in the embodiments can be combined with each other arbitrarily.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211096635.7A CN115390512B (en) | 2022-09-08 | 2022-09-08 | Flexible gantry double-drive system and electromechanical combined decoupling motion control method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211096635.7A CN115390512B (en) | 2022-09-08 | 2022-09-08 | Flexible gantry double-drive system and electromechanical combined decoupling motion control method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115390512A CN115390512A (en) | 2022-11-25 |
CN115390512B true CN115390512B (en) | 2023-05-30 |
Family
ID=84126926
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211096635.7A Active CN115390512B (en) | 2022-09-08 | 2022-09-08 | Flexible gantry double-drive system and electromechanical combined decoupling motion control method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115390512B (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997020260A1 (en) * | 1995-11-28 | 1997-06-05 | Fanuc Ltd | Method of estimating disturbance load on servomotors |
US6119804A (en) * | 1999-05-13 | 2000-09-19 | Owen; Thomas E. | Horizontally polarized shear-wave vibrator seismic source |
CN101578584A (en) * | 2005-09-19 | 2009-11-11 | 克利夫兰州立大学 | Controllers, observers, and applications thereof |
CN103869701A (en) * | 2014-02-27 | 2014-06-18 | 天津大学 | Attitude sequence resolving-based air vehicle novel real-time guide method |
CN110531777A (en) * | 2019-08-13 | 2019-12-03 | 北京理工大学 | Quadrotor attitude control method and system based on Auto Disturbances Rejection Control Technique |
CN113334096A (en) * | 2021-07-16 | 2021-09-03 | 上海交通大学 | Gantry sliding table flexible hinge support assembly and gantry double-drive device thereof |
CN113806871A (en) * | 2021-11-18 | 2021-12-17 | 北京航空航天大学 | A Flexible Flight Dynamics Modeling Method Considering Structural Nonlinearities |
CN114637202A (en) * | 2022-03-14 | 2022-06-17 | 浙江大学 | The same-frequency vibration suppression method of electromagnetic bearing flexible rotor system based on disturbance compensation |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8978796B2 (en) * | 2012-01-06 | 2015-03-17 | Silvio Gallazzini | Tractor having dual hydrostatic drive with single hand control and attachment adapter for powered attachments |
-
2022
- 2022-09-08 CN CN202211096635.7A patent/CN115390512B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997020260A1 (en) * | 1995-11-28 | 1997-06-05 | Fanuc Ltd | Method of estimating disturbance load on servomotors |
US6119804A (en) * | 1999-05-13 | 2000-09-19 | Owen; Thomas E. | Horizontally polarized shear-wave vibrator seismic source |
CN101578584A (en) * | 2005-09-19 | 2009-11-11 | 克利夫兰州立大学 | Controllers, observers, and applications thereof |
CN103869701A (en) * | 2014-02-27 | 2014-06-18 | 天津大学 | Attitude sequence resolving-based air vehicle novel real-time guide method |
CN110531777A (en) * | 2019-08-13 | 2019-12-03 | 北京理工大学 | Quadrotor attitude control method and system based on Auto Disturbances Rejection Control Technique |
CN113334096A (en) * | 2021-07-16 | 2021-09-03 | 上海交通大学 | Gantry sliding table flexible hinge support assembly and gantry double-drive device thereof |
CN113806871A (en) * | 2021-11-18 | 2021-12-17 | 北京航空航天大学 | A Flexible Flight Dynamics Modeling Method Considering Structural Nonlinearities |
CN114637202A (en) * | 2022-03-14 | 2022-06-17 | 浙江大学 | The same-frequency vibration suppression method of electromagnetic bearing flexible rotor system based on disturbance compensation |
Non-Patent Citations (1)
Title |
---|
《轧机接轴系统扭振动力学模型研究》;王坤;《工程科技I辑》;全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN115390512A (en) | 2022-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104166372B (en) | A kind of disturbance rejection control device of feed system Double position loop feedback | |
Kamalzadeh et al. | Accurate tracking controller design for high-speed drives | |
Becedas et al. | Adaptive controller for single-link flexible manipulators based on algebraic identification and generalized proportional integral control | |
WO2024037394A1 (en) | Gantry machine tool moving beam cross coupling control method | |
CN110936374B (en) | A command filtering backstepping control method for a flexible double-joint manipulator | |
CN108681239B (en) | Decoupling servo control loop system and method for two-axis integrated gyro accelerometer | |
CN110132517A (en) | A multi-flexible piezoelectric beam coupling vibration analysis control device and method | |
Hsieh et al. | Modeling and synchronous control of a single-axis stage driven by dual mechanically-coupled parallel ball screws | |
CN110649845B (en) | Position Tracking Control Method of Photoelectric Turntable Based on Robust Generalized Predictive Control | |
Wang et al. | A new synchronous error control method for CNC machine tools with dual-driving systems | |
CN115390512B (en) | Flexible gantry double-drive system and electromechanical combined decoupling motion control method thereof | |
Richard et al. | Concept of modular flexure-based mechanisms for ultra-high precision robot design | |
CN113131814B (en) | Asynchronous motor load torque observation method for low-precision encoder occasion | |
CN110011583B (en) | Permanent magnet synchronous motor sliding mode control system based on singular perturbation theory and modeling method | |
CN110504884A (en) | A Radial Force Suspension Control System of Bearingless Asynchronous Motor Based on Differential Geometry Decoupling Control | |
CN112787551A (en) | Method for improving robustness and contour performance of double-shaft or three-shaft feed driving system | |
Zhou et al. | A study on the dynamic characteristics of the drive at center of gravity (DCG) feed drives | |
Huang et al. | Notch-filter-based repetitive control of fast tool servos for high-performance tracking of periodic trajectories | |
Chang et al. | An evaluation of several controller synthesis methodologies using a rotating flexible beam as a test bed | |
Rassudov et al. | FPGA implementation of servodrive control system | |
JP5246328B2 (en) | Motor control device | |
CN116088425A (en) | Servo control method, device and equipment for numerical control machining and storage medium | |
Peukert et al. | Flexible coupling of drive and guide elements for parallel-driven feed axes to increase dynamics and accuracy of motion | |
CN110631580B (en) | Uniaxial inertial platform system based on atomic spin gyroscope | |
Krishnamurthy et al. | Control design and implementation for sawyer motors used in manufacturing systems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |