CN115386487A - Single cell puncture system based on hammer type micro-nano robot - Google Patents
Single cell puncture system based on hammer type micro-nano robot Download PDFInfo
- Publication number
- CN115386487A CN115386487A CN202210974703.9A CN202210974703A CN115386487A CN 115386487 A CN115386487 A CN 115386487A CN 202210974703 A CN202210974703 A CN 202210974703A CN 115386487 A CN115386487 A CN 115386487A
- Authority
- CN
- China
- Prior art keywords
- hammer
- type micro
- nano robot
- nano
- single cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 claims abstract description 8
- 238000005516 engineering process Methods 0.000 claims abstract description 6
- 230000005408 paramagnetism Effects 0.000 claims abstract description 5
- 238000000034 method Methods 0.000 claims description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 9
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims description 9
- 239000000758 substrate Substances 0.000 claims description 8
- 230000008569 process Effects 0.000 claims description 7
- 230000009471 action Effects 0.000 claims description 5
- 238000009388 chemical precipitation Methods 0.000 claims description 5
- 239000000377 silicon dioxide Substances 0.000 claims description 4
- 235000012239 silicon dioxide Nutrition 0.000 claims description 4
- 239000004205 dimethyl polysiloxane Substances 0.000 claims description 3
- 239000012530 fluid Substances 0.000 claims description 3
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 claims description 3
- -1 polydimethylsiloxane Polymers 0.000 claims description 3
- 238000012545 processing Methods 0.000 claims description 3
- 238000003980 solgel method Methods 0.000 claims description 3
- 230000006399 behavior Effects 0.000 claims 2
- NDLPOXTZKUMGOV-UHFFFAOYSA-N oxo(oxoferriooxy)iron hydrate Chemical compound O.O=[Fe]O[Fe]=O NDLPOXTZKUMGOV-UHFFFAOYSA-N 0.000 claims 1
- 210000000170 cell membrane Anatomy 0.000 abstract description 7
- 230000008878 coupling Effects 0.000 abstract description 2
- 238000010168 coupling process Methods 0.000 abstract description 2
- 238000005859 coupling reaction Methods 0.000 abstract description 2
- 210000004027 cell Anatomy 0.000 description 14
- 238000010586 diagram Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 239000000592 Artificial Cell Substances 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 238000003759 clinical diagnosis Methods 0.000 description 1
- 238000012398 clinical drug development Methods 0.000 description 1
- 230000001808 coupling effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 210000003743 erythrocyte Anatomy 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000008384 membrane barrier Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M35/00—Means for application of stress for stimulating the growth of microorganisms or the generation of fermentation or metabolic products; Means for electroporation or cell fusion
- C12M35/02—Electrical or electromagnetic means, e.g. for electroporation or for cell fusion
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M23/00—Constructional details, e.g. recesses, hinges
- C12M23/02—Form or structure of the vessel
- C12M23/16—Microfluidic devices; Capillary tubes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M27/00—Means for mixing, agitating or circulating fluids in the vessel
- C12M27/10—Rotating vessel
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M35/00—Means for application of stress for stimulating the growth of microorganisms or the generation of fermentation or metabolic products; Means for electroporation or cell fusion
- C12M35/04—Mechanical means, e.g. sonic waves, stretching forces, pressure or shear stimuli
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Zoology (AREA)
- Biotechnology (AREA)
- Genetics & Genomics (AREA)
- Microbiology (AREA)
- Sustainable Development (AREA)
- Biomedical Technology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Cell Biology (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Mechanical Engineering (AREA)
- Dispersion Chemistry (AREA)
- Clinical Laboratory Science (AREA)
- Manipulator (AREA)
Abstract
本发明涉及单细胞穿刺技术,更具体的说是一种基于锤型微纳机器人的单细胞穿刺系统,包括锤型微纳机器人,还设置有驱动锤型微纳机器人进行旋转的磁场发生装置和驱动锤型微纳机器人进行运动的超声场发生装置,锤型微纳机器人包括锤头和锤柄,锤头具有顺磁性,磁场发生装置为三维亥姆霍兹线圈,亥姆霍兹线圈提供旋转的磁场,驱动锤型微纳机器人表现出自转运动行为,所述超声场发生装置为以铌酸锂为基底的叉指换能器,利用信号发生器产生高频正弦波信号,作为信号源输入到叉指换能器中,叉指换能器提供水平的超声场,驱动锤型微纳机器人表现出水平运动行为;两种物理场耦合作用可以实现对于单一细胞细胞膜的有效穿刺突破。
The present invention relates to single-cell puncture technology, more specifically, a single-cell puncture system based on a hammer-type micro-nano robot, including a hammer-type micro-nano robot, and a magnetic field generating device for driving the hammer-type micro-nano robot to rotate and The ultrasonic field generating device that drives the hammer-type micro-nano robot to move. The hammer-type micro-nano robot includes a hammer head and a hammer handle. The hammer head has paramagnetism. The magnetic field generating device is a three-dimensional Helmholtz coil, which provides rotation The magnetic field drives the hammer-type micro-nano robot to exhibit self-rotation motion behavior. The ultrasonic field generating device is an interdigital transducer based on lithium niobate, and a signal generator is used to generate a high-frequency sine wave signal, which is input as a signal source In the interdigital transducer, the interdigital transducer provides a horizontal ultrasonic field to drive the hammer-type micro-nano robot to exhibit horizontal motion behavior; the coupling of the two physical fields can achieve an effective puncture breakthrough for a single cell membrane.
Description
技术领域technical field
本发明涉及单细胞穿刺技术,更具体地说是一种基于锤型微纳机器人的单细胞穿刺系统。The invention relates to a single-cell puncture technology, more specifically a single-cell puncture system based on a hammer-type micro-nano robot.
背景技术Background technique
单细胞穿刺技术是临床诊断、药物研发、基因工程等研究与应用的关键技术前提。目前,针对单细胞穿刺大多仍停留在手动操作层面,利用机械夹持器、微吸管、穿刺针等实现。现有方法较大程度上依赖于操作人员的经验和熟练程度,操作精度低、失败率高且效率低,难以满足针对单一细胞的精准穿刺需求。微纳机器人是一种尺度小、可控性好、推重比大的微纳米执行器,能够实现在微小环境内的精准运动控制及复杂功能,尤其在生物医学领域有着广阔的应用前景。利用微纳机器人的高效驱动能力和灵活的可控性,作为微纳米尺度的穿刺针,作用于单一细胞的细胞膜,能够实现对单一细胞细胞膜的有效穿刺突破。然而,现有微纳机器人大多利用化学燃料或单一外物理场作为能量输入进行驱动,多依赖有毒有害燃料、寿命短、驱动能力弱、控制手段单一且可扩展功能有限,难以满足针对单一细胞细胞膜的穿刺需求。因此,如何提出一种基于微纳机器人的单一细胞穿刺方法,克服现有微纳机器人在单细胞穿刺方面的限制,同时针对该微纳机器人特征参数搭建其驱动控制系统是亟需解决的关键问题。Single-cell puncture technology is a key technical prerequisite for the research and application of clinical diagnosis, drug development, and genetic engineering. At present, most single-cell punctures still remain at the level of manual operation, using mechanical grippers, micropipettes, puncture needles, etc. to achieve. Existing methods largely rely on the experience and proficiency of operators, have low operating precision, high failure rate, and low efficiency, and are difficult to meet the precise puncture requirements for a single cell. A micro-nano robot is a micro-nano actuator with small scale, good controllability and high thrust-to-weight ratio, which can realize precise motion control and complex functions in a tiny environment, especially in the field of biomedicine, which has broad application prospects. Utilizing the high-efficiency driving ability and flexible controllability of the micro-nano robot, as a micro-nano-scale puncture needle, acting on the cell membrane of a single cell, it can achieve an effective puncture breakthrough on the cell membrane of a single cell. However, most of the existing micro-nano robots are driven by chemical fuel or a single external physical field as energy input, relying on toxic and harmful fuels, short lifespan, weak driving ability, single control means and limited expandable functions, which are difficult to meet the needs of single-cell membranes. puncture needs. Therefore, how to propose a single-cell puncture method based on micro-nano robots, overcome the limitations of existing micro-nano robots in single-cell puncture, and build its drive control system according to the characteristic parameters of the micro-nano robot is a key problem that needs to be solved urgently .
发明内容Contents of the invention
本发明的目的是提供一种基于锤型微纳机器人的单细胞穿刺系统,可以实现对于单一细胞细胞膜的有效穿刺突破。The purpose of the present invention is to provide a single-cell puncture system based on a hammer-type micro-nano robot, which can achieve an effective puncture breakthrough on the cell membrane of a single cell.
本发明的目的通过以下技术方案来实现:The purpose of the present invention is achieved through the following technical solutions:
一种基于锤型微纳机器人的单细胞穿刺系统,包括锤型微纳机器人,还设置有驱动锤型微纳机器人进行旋转的磁场发生装置和驱动锤型微纳机器人进行运动的超声场发生装置;A single-cell puncture system based on a hammer-type micro-nano robot, including a hammer-type micro-nano robot, a magnetic field generator that drives the hammer-type micro-nano robot to rotate, and an ultrasonic field generator that drives the hammer-type micro-nano robot to move ;
所述锤型微纳机器人包括锤头和锤柄,锤头具有顺磁性;The hammer-type micro-nano robot includes a hammer head and a hammer handle, and the hammer head has paramagnetism;
所述锤头由氧化铁构成,锤柄由二氧化硅构成;The hammer head is made of iron oxide, and the hammer handle is made of silicon dioxide;
所述锤型微纳机器人由溶胶-凝胶工艺及化学沉淀工艺制备而成;The hammer-type micro-nano robot is prepared by a sol-gel process and a chemical precipitation process;
所述锤型微纳机器人自身结构具有非对称性;The structure of the hammer-type micro-nano robot itself is asymmetric;
所述磁场发生装置为三维亥姆霍兹线圈;The magnetic field generator is a three-dimensional Helmholtz coil;
利用信号发生器产生正弦波信号,经功率放大器对信号进行放大后,作为信号源输入到亥姆霍兹线圈中,亥姆霍兹线圈提供旋转的磁场,驱动锤型微纳机器人表现出自转运动行为;A signal generator is used to generate a sine wave signal, and after the signal is amplified by a power amplifier, it is input into the Helmholtz coil as a signal source, and the Helmholtz coil provides a rotating magnetic field to drive the hammer-type micro-nano robot to exhibit self-rotation motion Behavior;
所述超声场发生装置为以铌酸锂为基底的叉指换能器,利用信号发生器产生高频正弦波信号,作为信号源输入到叉指换能器中;The ultrasonic field generating device is an interdigital transducer based on lithium niobate, and a signal generator is used to generate a high-frequency sine wave signal, which is input into the interdigital transducer as a signal source;
所述叉指换能器将输入的高频正弦波信号转化为机械振动,并以平面超声波的形式沿基底传播,锤型微纳机器人在叉指换能器提供的平面超声场作用下表现出水平运动行为;The interdigital transducer converts the input high-frequency sine wave signal into mechanical vibration, and propagates along the substrate in the form of planar ultrasonic waves. The hammer-type micro-nano robot exhibits horizontal movement behavior;
采用微流道加工工艺加工聚二甲基硅氧烷微流道并与铌酸锂基底键合,为锤型微纳机器人细胞穿刺提供流体环境;Polydimethylsiloxane micro-channels are processed by micro-channel processing technology and bonded with lithium niobate substrates to provide a fluid environment for cell puncture by hammer-type micro-nano robots;
本发明的有益效果为:The beneficial effects of the present invention are:
通过溶胶-凝胶及化学沉淀工艺制备的锤型微纳机器人的锤柄部较细,使得微纳机器人在突破细胞膜过程中可获得更高的穿刺力;The hammer handle of the hammer-type micro-nano robot prepared by sol-gel and chemical precipitation process is thinner, so that the micro-nano robot can obtain higher puncture force in the process of breaking through the cell membrane;
制备的锤型微纳机器人能够同时对外部磁场及超声场进行响应,调节磁场及超声场参数可以控制锤型微纳机器人的运动状态,可以实现远程、可控的细胞穿刺功能;The prepared hammer-shaped micro-nano robot can respond to the external magnetic field and ultrasonic field at the same time. Adjusting the parameters of the magnetic field and ultrasonic field can control the movement state of the hammer-shaped micro-nano robot, and can realize the remote and controllable cell puncture function;
微纳机器人由磁场及超声场耦合驱动,使得其具有更高的驱动能力和更大的推重比,使得微纳机器人更易突破单一细胞的细胞膜屏障;The micro-nano robot is driven by the coupling of magnetic field and ultrasonic field, which makes it have higher driving ability and larger thrust-to-weight ratio, making it easier for the micro-nano robot to break through the cell membrane barrier of a single cell;
利用锤型微纳机器人进行细胞穿刺可取代现有人工细胞穿刺手段,提高细胞穿刺精度及效率,极大节省人力物力。The use of hammer-type micro-nano robots for cell puncture can replace existing artificial cell puncture methods, improve the accuracy and efficiency of cell puncture, and greatly save manpower and material resources.
附图说明Description of drawings
下面结合附图和具体实施方法对本发明做进一步详细的说明。The present invention will be described in further detail below in conjunction with the accompanying drawings and specific implementation methods.
图1至4是本发明的锤型微纳机器人扫描电镜图及能谱图;1 to 4 are scanning electron microscope images and energy spectra of the hammer-type micro-nano robot of the present invention;
图5是本发明的锤型微纳机器人驱动控制系统示意图;5 is a schematic diagram of a hammer-type micro-nano robot drive control system of the present invention;
图6是本发明的锤型微纳机器人驱动机理示意图;Fig. 6 is a schematic diagram of the driving mechanism of the hammer-type micro-nano robot of the present invention;
图7至10是本发明的锤型微纳机器人运动控制实验图;7 to 10 are diagrams of experiments on the motion control of the hammer-type micro-nano robot of the present invention;
图11至13是本发明的锤型微纳机器人细胞穿刺实验图。11 to 13 are cell puncture experiments of the hammer-type micro-nano robot of the present invention.
具体实施方式Detailed ways
下面结合附图对本发明做进一步详细说明。The present invention will be described in further detail below in conjunction with the accompanying drawings.
一种基于锤型微纳机器人的单细胞穿刺系统,包括锤型微纳机器人,还设置有驱动锤型微纳机器人进行旋转的磁场发生装置和驱动锤型微纳机器人进行运动的超声场发生装置;锤型微纳机器人包括锤头和锤柄,锤头具有顺磁性;A single-cell puncture system based on a hammer-type micro-nano robot, including a hammer-type micro-nano robot, a magnetic field generator that drives the hammer-type micro-nano robot to rotate, and an ultrasonic field generator that drives the hammer-type micro-nano robot to move ;The hammer-type micro-nano robot includes a hammer head and a hammer handle, and the hammer head has paramagnetism;
锤型微纳机器人的扫描电镜图及能谱图如图1至4所示,锤头由氧化铁构成,锤柄由二氧化硅构成,证明微纳机器人锤头为氧化铁,锤柄为二氧化硅;The scanning electron microscope images and energy spectra of the hammer-type micro-nano robot are shown in Figures 1 to 4. The hammer head is made of iron oxide, and the hammer handle is made of silicon dioxide, which proves that the hammer head of the micro-nano robot is iron oxide, and the hammer handle is two. Silicon oxide;
由于锤型微纳机器人的锤头材料为氧化铁,具有顺磁性,在外加磁场作用下微纳机器人锤头的长轴即X轴,将始终与外加磁场方向保持平行。因此,当施加的磁场为平面旋转磁场时,微纳机器人在锤头的驱动下能够表现出自转运动行为;Since the material of the hammer head of the hammer-type micro-nano robot is iron oxide, which has paramagnetism, the long axis of the hammer head of the micro-nano robot, that is, the X axis, will always remain parallel to the direction of the applied magnetic field under the action of an external magnetic field. Therefore, when the applied magnetic field is a planar rotating magnetic field, the micro-nano robot can exhibit rotation motion behavior driven by the hammer head;
同时,由于锤型微纳机器人自身结构具有非对称性,因此在水平超声场作用下能够以锤柄朝前的方式向声压梯度低的方向表现出水平运动行为;At the same time, due to the asymmetric structure of the hammer-type micro-nano robot, it can exhibit horizontal movement behavior in the direction of low sound pressure gradient with the hammer handle facing forward under the action of the horizontal ultrasonic field;
所述锤型微纳机器人由溶胶-凝胶工艺及化学沉淀工艺制备而成,通过溶胶-凝胶及化学沉淀工艺制备的锤型微纳机器人的锤柄部较细,使得微纳机器人在突破细胞膜过程中可获得更高的穿刺力;The hammer-type micro-nano robot is prepared by a sol-gel process and a chemical precipitation process. The hammer handle of the hammer-type micro-nano robot prepared by the sol-gel and chemical precipitation process is thinner, so that the micro-nano robot can break through Higher puncture force can be obtained in the process of cell membrane;
如图5至13所示,下面对磁场发生装置和超声场发生装置的结构和功能进行详细的说明;As shown in Figures 5 to 13, the structure and function of the magnetic field generating device and the ultrasonic field generating device are described in detail below;
如图5所示,利用倒置显微镜进行观察。三维亥姆霍兹线圈作为驱动控制系统的磁场发生装置,利用信号发生器产生正弦波信号,经功率放大器对信号进行放大后,作为信号源输入到亥姆霍兹线圈中,用以产生三向匀强磁场,利用三向匀强磁场中的两向进行组合可构成平面内匀强旋转磁场(20Hz,3.71mT)。锤型微纳机器人在旋转磁场作用下将绕其长轴即Z轴旋转并表现出自转运动行为。As shown in Fig. 5, observation was performed using an inverted microscope. The three-dimensional Helmholtz coil is used as the magnetic field generating device of the drive control system. The signal generator is used to generate a sine wave signal. After the signal is amplified by the power amplifier, it is input into the Helmholtz coil as a signal source to generate a three-way Uniform magnetic field, using the combination of two of the three uniform magnetic fields can form a uniform rotating magnetic field in the plane (20Hz, 3.71mT). Under the action of the rotating magnetic field, the hammer-type micro-nano robot will rotate around its long axis, that is, the Z axis, and exhibit self-rotation motion behavior.
叉指换能器作为驱动控制系统的超声场发生装置,通过在Y-128°铌酸锂基底上依次沉积7纳米铬、200纳米铝及300纳米二氧化硅制成,利用信号发生器产生高频正弦波信号(100kHz,10Vpp),作为信号源输入到叉指换能器中。根据逆压电效应,叉指换能器将输入的高频电信号转化为机械振动,并以平面超声波的形式沿铌酸锂基底进行传播。锤型微纳机器人在叉指换能器产生的平面超声波作用下表现出水平运动行为。采用微流道加工工艺加工聚二甲基硅氧烷微流道并与铌酸锂基底键合,为锤型微纳机器人细胞穿刺提供流体环境。As the ultrasonic field generating device of the drive control system, the interdigital transducer is made by sequentially depositing 7 nanometers of chromium, 200 nanometers of aluminum and 300 nanometers of silicon dioxide on the Y-128° lithium niobate substrate. A frequency sine wave signal (100kHz, 10Vpp) is input into the interdigital transducer as a signal source. According to the inverse piezoelectric effect, the interdigital transducer converts the input high-frequency electrical signal into mechanical vibration, and propagates along the lithium niobate substrate in the form of planar ultrasonic waves. The hammer-type micro-nano robot exhibits horizontal motion behavior under the action of planar ultrasonic waves generated by interdigital transducers. The polydimethylsiloxane microchannel is processed by the microchannel processing technology and bonded with the lithium niobate substrate to provide a fluid environment for the hammer-type micro-nano robot cell puncture.
锤型微纳机器人的驱动控制系统启动后,超声场发生装置产生平面超声波,推动锤型微纳机器人水平运动;磁场发生装置产生平面匀强旋转磁场,推动锤型微纳机器人绕自身长轴即Z轴旋转;在两种物理场耦合作用下,锤型微纳机器人能够在水平快速运动的同时进行高频率自转,钻入靶向细胞中,实现对单一细胞的穿刺功能,如图6所示。After the driving control system of the hammer-type micro-nano robot is started, the ultrasonic field generating device generates plane ultrasonic waves to drive the hammer-type micro-nano robot to move horizontally; the magnetic field generating device generates a plane uniform rotating magnetic field to push the hammer-type micro-nano robot Z-axis rotation; under the coupling effect of the two physical fields, the hammer-type micro-nano robot can perform high-frequency rotation while moving horizontally and quickly, drill into the targeted cells, and realize the puncture function of a single cell, as shown in Figure 6 .
利用本发明提出的驱动控制系统,通过改变外部施加的物理场特征参数,能够实现对锤型微纳机器人运动行为的调控。改变超声场的超声幅值,可实现对锤型微纳机器人运动速度的控制。改变超声场的超声频率,可实现对锤型微纳机器人运动方向的控制,如图7至10所示,将锤型微纳机器人和鸡的血红细胞同时注入到微流道中,改变外物理场参数,控制锤型微纳机器人的运动速度和方向,可以有效实现对单一细胞的穿刺功能,如图11至13所示。Utilizing the drive control system proposed by the present invention, by changing the characteristic parameters of the externally applied physical field, the movement behavior of the hammer-type micro-nano robot can be regulated. Changing the ultrasonic amplitude of the ultrasonic field can realize the control of the movement speed of the hammer-type micro-nano robot. Changing the ultrasonic frequency of the ultrasonic field can control the movement direction of the hammer-type micro-nano robot. As shown in Figures 7 to 10, the hammer-type micro-nano robot and chicken red blood cells are injected into the micro-channel at the same time, changing the external physical field parameters to control the movement speed and direction of the hammer-type micro-nano robot, which can effectively realize the puncture function of a single cell, as shown in Figures 11 to 13.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210974703.9A CN115386487B (en) | 2022-08-15 | 2022-08-15 | Single-cell puncture system based on hammer type micro-nano robot |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210974703.9A CN115386487B (en) | 2022-08-15 | 2022-08-15 | Single-cell puncture system based on hammer type micro-nano robot |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115386487A true CN115386487A (en) | 2022-11-25 |
CN115386487B CN115386487B (en) | 2024-09-24 |
Family
ID=84118350
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210974703.9A Active CN115386487B (en) | 2022-08-15 | 2022-08-15 | Single-cell puncture system based on hammer type micro-nano robot |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115386487B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119120174A (en) * | 2024-11-12 | 2024-12-13 | 浙江大学 | A linear-rotation cross-scale precision puncture instrument with an ultra-long service life |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR200243812Y1 (en) * | 2001-04-28 | 2001-10-12 | 안재목 | Low frequency magnetic field exposure device |
KR20140026958A (en) * | 2012-08-24 | 2014-03-06 | 전남대학교산학협력단 | Micro-robot system |
WO2017101149A1 (en) * | 2015-12-18 | 2017-06-22 | 中国科学院深圳先进技术研究院 | Vertical mobile puncture robot |
CN111592048A (en) * | 2020-06-03 | 2020-08-28 | 四川轻化工大学 | A kind of spindle-shaped iron oxide nanomaterial and its preparation method and application |
CN113288421A (en) * | 2021-05-07 | 2021-08-24 | 山东商业职业技术学院 | Minimally invasive breast interventional operation robot and operation method thereof |
CN114601509A (en) * | 2020-12-08 | 2022-06-10 | 长春工业大学 | Design of a magnetically driven micro-nano robot and its preparation method and driving method |
-
2022
- 2022-08-15 CN CN202210974703.9A patent/CN115386487B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR200243812Y1 (en) * | 2001-04-28 | 2001-10-12 | 안재목 | Low frequency magnetic field exposure device |
KR20140026958A (en) * | 2012-08-24 | 2014-03-06 | 전남대학교산학협력단 | Micro-robot system |
WO2017101149A1 (en) * | 2015-12-18 | 2017-06-22 | 中国科学院深圳先进技术研究院 | Vertical mobile puncture robot |
CN111592048A (en) * | 2020-06-03 | 2020-08-28 | 四川轻化工大学 | A kind of spindle-shaped iron oxide nanomaterial and its preparation method and application |
CN114601509A (en) * | 2020-12-08 | 2022-06-10 | 长春工业大学 | Design of a magnetically driven micro-nano robot and its preparation method and driving method |
CN113288421A (en) * | 2021-05-07 | 2021-08-24 | 山东商业职业技术学院 | Minimally invasive breast interventional operation robot and operation method thereof |
Non-Patent Citations (2)
Title |
---|
L X YANG ET.AL: "Minimum damping profile of micro/nano-robot and as the carrier for drug delivery: theory study", JOURNAL OF PHYSICS: CONFERENCE SERIES, 31 December 2019 (2019-12-31), pages 1 - 8 * |
王治东 等: "微超声振动机器人系统的设计与分析", 机械设计与制造, no. 5, 31 May 2009 (2009-05-31), pages 58 - 60 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119120174A (en) * | 2024-11-12 | 2024-12-13 | 浙江大学 | A linear-rotation cross-scale precision puncture instrument with an ultra-long service life |
CN119120174B (en) * | 2024-11-12 | 2025-01-28 | 浙江大学 | Linear rotation trans-scale precise puncture instrument with ultra-long service period |
Also Published As
Publication number | Publication date |
---|---|
CN115386487B (en) | 2024-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chen et al. | Recent advances in field‐controlled micro–nano manipulations and micro–nano robots | |
Nakamura | Ultrasonic motors | |
Yang et al. | 3D acoustic manipulation of living cells and organisms based on 2D array | |
Shen et al. | State of the art: micro-nanorobotic manipulation in single cell analysis | |
CN115386487B (en) | Single-cell puncture system based on hammer type micro-nano robot | |
Kong et al. | Surface acoustic wave propulsion system with acoustic radiation force | |
Guo et al. | A Review of Single‐Cell Pose Adjustment and Puncture | |
CN114193428A (en) | Micro-nano ultrasonic robot based on bubble propulsion, preparation method, driving device and driving method thereof | |
Xiang et al. | Study on tetherless micro-soft robot based on magnetic elastic composite material | |
CN114522649B (en) | Acoustic particle capturing and track control method based on magnetofluid reconstruction | |
CN205704147U (en) | Many ciliums magnetic force Micro-Robot and control system thereof | |
Wang et al. | A novel ring-shaped acoustic manipulation device using in-plane traveling wave for rotation of sub-millimeter spheres | |
Ge et al. | Optimal design of a new structure piezo-driven cell injector | |
CN115323042B (en) | Method for realizing non-contact rapid infiltration of nano holes by utilizing ultrasonic waves | |
CN112746012B (en) | Single cell manipulation system and method, monoclonal cell line construction method, single cell droplet generation system and method | |
Ou et al. | Aggregation Effect of Micro-Objects Induced by Sonotrodes with Different Shapes | |
CN114308151B (en) | Acoustic microfluidic system for cell fusion and preparation method and application thereof | |
CN101453177A (en) | Split type helical stator micromotor | |
Zhao et al. | Reversible Swarming of Micro Robots Controlled by Acoustic Field | |
CN118389278A (en) | Ultrasonic cell regulation micro-channel device, system and method for targeting microbubbles | |
US20240150748A1 (en) | Acoustic microfluidic system for cell fusion, preparation method therefor and use thereof | |
CN113595524B (en) | Micro-component non-contact control device and method based on surface acoustic wave | |
CN209778882U (en) | Cell rotation device and cell rotation system having same | |
Wei et al. | Closed-Loop Control Strategy For Acoustic Microrobot Based On Vibration Of Microstructure | |
CN201345623Y (en) | Split type spiral stator micromotor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |