CN115376519A - Method and equipment for generating electronic medical record and computer readable storage medium - Google Patents
Method and equipment for generating electronic medical record and computer readable storage medium Download PDFInfo
- Publication number
- CN115376519A CN115376519A CN202211015118.2A CN202211015118A CN115376519A CN 115376519 A CN115376519 A CN 115376519A CN 202211015118 A CN202211015118 A CN 202211015118A CN 115376519 A CN115376519 A CN 115376519A
- Authority
- CN
- China
- Prior art keywords
- electronic medical
- patient
- key information
- text
- question
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L17/00—Speaker identification or verification techniques
- G10L17/06—Decision making techniques; Pattern matching strategies
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L15/00—Speech recognition
- G10L15/26—Speech to text systems
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H10/00—ICT specially adapted for the handling or processing of patient-related medical or healthcare data
- G16H10/60—ICT specially adapted for the handling or processing of patient-related medical or healthcare data for patient-specific data, e.g. for electronic patient records
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Acoustics & Sound (AREA)
- Multimedia (AREA)
- Physics & Mathematics (AREA)
- Audiology, Speech & Language Pathology (AREA)
- Human Computer Interaction (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Business, Economics & Management (AREA)
- Game Theory and Decision Science (AREA)
- Epidemiology (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Primary Health Care (AREA)
- Public Health (AREA)
- Computational Linguistics (AREA)
- Medical Treatment And Welfare Office Work (AREA)
Abstract
Description
技术领域technical field
本申请一般涉及电子病历技术领域。更具体地,本申请涉及一种生成电子病历的方法、设备和计算机可读存储介质。This application generally relates to the technical field of electronic medical records. More specifically, the present application relates to a method, device and computer-readable storage medium for generating electronic medical records.
背景技术Background technique
病历是医务人员在问诊过程中对患者疾病的发生、发展和转归等进行检查、诊断、治疗等医疗活动过程的记录,也是对采集到的资料加以归纳、整理、综合分析并且按规定的格式和要求书写的患者医疗健康档案。Medical records are records of medical activities such as inspection, diagnosis, and treatment of the occurrence, development, and outcome of a patient's disease by medical staff during the consultation process. Format and requirements for writing patient medical records.
传统的问诊过程是由医务人员通过键盘输入的方式输入问诊信息,以生成病历报告,但这样会导致问诊过程耗时较长。目前,已经将语音识别技术应用于问诊过程中,通过对问诊的音频数据进行识别,将识别的信息之间填入对应位置,从而生成病历报告。然而,目前问诊的音频数据往往无法与医务人员和患者相对应,导致在将识别的信息填入对应位置时发生错误。例如将医务人员的问题信息填入患者的描述信息处,而将患者的描述信息填入医务人员的问题信息处,使得生成的病历报告错误。此外,现有的电子病历的生成往往采用固定的电子病历模板,通过获取关键信息与模板之间的对应关系来生成电子病历,这使得生成的电子病历的形式较为固定、单一。In the traditional consultation process, medical personnel input consultation information through keyboard input to generate a medical record report, but this will result in a long time-consuming consultation process. At present, speech recognition technology has been applied to the process of medical consultation. By identifying the audio data of the medical consultation, the identified information is filled in the corresponding position, thereby generating a medical record report. However, the audio data of the current consultation often cannot correspond to the medical staff and patients, resulting in errors when filling the identified information into the corresponding positions. For example, the question information of the medical staff is filled in the description information of the patient, and the description information of the patient is filled in the question information of the medical staff, so that the generated medical record report is wrong. In addition, the existing electronic medical record generation often adopts a fixed electronic medical record template, and the electronic medical record is generated by obtaining the corresponding relationship between the key information and the template, which makes the form of the generated electronic medical record relatively fixed and single.
发明内容Contents of the invention
为了至少部分地解决背景技术中提到的技术问题,本申请的方案提供了一种生成电子病历的方案。利用本申请的方案,可以将音频数据分别与医务人员和患者相对应,并通过神经网络模型来生成电子病历,以避免电子病历报告出错和生成单一形式的电子病历报告。为此,本申请在如下的多个方面提供解决方案。In order to at least partly solve the technical problems mentioned in the background art, the solution of the present application provides a solution for generating electronic medical records. Using the solution of the present application, the audio data can be respectively corresponding to the medical personnel and patients, and the electronic medical record can be generated through the neural network model, so as to avoid errors in the electronic medical record report and generate a single form of electronic medical record report. To this end, the present application provides solutions in the following aspects.
在第一方面中,本申请提供一种生成电子病历的方法,包括:从左声道和右声道获取与问诊相关的音频数据,其中所述左声道和右声道分别设置有各自的角色标签;对与所述问诊相关的音频数据进行语音识别,以至少获得与角色标签对应的对话文本;基于对话文本分别提取其与问诊相关的关键信息;以及使用神经网络模型根据角色标签和对应的对话文本中的关键信息生成电子病历。In the first aspect, the present application provides a method for generating an electronic medical record, including: obtaining audio data related to consultation from the left and right channels, wherein the left and right channels are respectively provided with their own character label; perform speech recognition on the audio data related to the consultation, so as to at least obtain the dialogue text corresponding to the role label; extract the key information related to the consultation based on the dialogue text; and use the neural network model according to the role The key information in the label and the corresponding dialogue text generates an electronic medical record.
在一个实施例中,所述方法还包括:响应于角色的立体声输入,将所述角色的立体声输入设置为立体声格式;以及对所述立体声格式进行声道分割,以确定所述左声道和所述右声道。In one embodiment, the method further includes: in response to the stereo input of the character, setting the stereo input of the character to a stereo format; and performing channel splitting on the stereo format to determine the left channel and the right channel.
在另一个实施例中,其中所述角色标签包括医生标签和患者标签,所述对话文本包括与所述医生标签对应的问诊问题文本以及与所述患者标签对应的问诊答案文本。In another embodiment, wherein the role tag includes a doctor tag and a patient tag, the dialogue text includes a medical question text corresponding to the doctor tag and a medical question answer text corresponding to the patient tag.
在又一个实施例中,其中基于对话文本分别提取其与问诊相关的关键信息包括:对所述问诊问题文本和所述问诊答案文本分别进行标注;以及根据标注后的问诊问题文本和问诊答案文本提取各自的关键信息。In yet another embodiment, extracting the key information related to the medical inquiry based on the dialogue text includes: respectively marking the text of the medical question and the text of the answer; and according to the text of the marked medical question and the text of the question answer to extract their key information.
在又一个实施例中,其中所述关键信息至少包括医生提问的关于患者的主诉问题特征词和/或句以及病症问题特征和/或句以及患者回答的关于主诉描述特征词和/或句以及病症描述特征词和/或句。In yet another embodiment, wherein the key information includes at least the characteristic words and/or sentences about the patient's chief complaint question asked by the doctor and the characteristic words and/or sentences of the disease question and the characteristic words and/or sentences about the chief complaint described by the patient and Symptoms describe characteristic words and/or sentences.
在又一个实施例中,其中使用神经网络模型根据角色标签和对应的对话文本中的关键信息生成电子病历包括:将角色标签和对应的对话文本中的关键信息输入至神经网络模型中,以获得与病历相关的图片;以及基于所述图片生成电子病历。In yet another embodiment, wherein using the neural network model to generate the electronic medical record according to the key information in the role label and the corresponding dialogue text includes: inputting the role label and the key information in the corresponding dialogue text into the neural network model to obtain A picture associated with the medical record; and generating an electronic medical record based on the picture.
在又一个实施例中,所述方法还包括:对与所述问诊相关的音频数据进行语音识别,以获得所述左声道和所述右声道通各自的声纹信息;以及根据声纹信息确定所述左声道和所述右声道是否与各自的角色标签相一致。In yet another embodiment, the method further includes: performing speech recognition on the audio data related to the consultation to obtain voiceprint information of the left channel and the right channel; and The pattern information determines whether the left channel and the right channel correspond to their respective role labels.
在又一个实施例中,所述方法还包括:根据角色标签和对应的对话文本中的关键信息为角色提供问题提示信息和回答提示信息。In yet another embodiment, the method further includes: providing the character with question prompt information and answer prompt information according to the key information in the character label and the corresponding dialogue text.
在又一个实施例中,其中根据对应的对话文本中的关键信息为角色提供问题提示信息和回答提示信息包括:根据对应的对话文本中的关键信息,利用与问诊相关的知识图谱计算其对应的数值;以及响应于对应的数值命中所述知识图谱的路径,为对应角色提供问题提示信息和回答提示信息。In yet another embodiment, providing the character with question prompt information and answer prompt information according to the key information in the corresponding dialogue text includes: according to the key information in the corresponding dialogue text, using the knowledge map related to the consultation to calculate its correspondence value; and in response to the corresponding value hitting the path of the knowledge graph, providing question prompt information and answer prompt information for the corresponding character.
在第二方面中,本申请提供还一种生成电子病历的设备,包括:处理器;以及存储器,其存储有生成电子病历的程序指令,当所述程序指令由所述处理器执行时,使得所述设备实现前述多个实施例。In the second aspect, the present application provides a device for generating electronic medical records, including: a processor; and a memory, which stores program instructions for generating electronic medical records, when the program instructions are executed by the processor, so that The device implements several of the aforementioned embodiments.
在第三方面中,本申请提供还一种计算机可读存储介质,其上存储有生成电子病历的计算机可读指令,该计算机可读指令被一个或多个处理器执行时,实现前述多个实施例。In the third aspect, the present application provides a computer-readable storage medium on which computer-readable instructions for generating electronic medical records are stored. When the computer-readable instructions are executed by one or more processors, the aforementioned multiple Example.
通过本申请的方案,通过设置有相应角色标签的左声道和右声道获取与问诊相关的音频数据,并且通过对左声道和右声道各自的音频数据进行识别和提取关键信息,利用神经网络模型根据前述关键信息生成电子病历。基于此,能够将相应角色(包括医生和患者)区分开,将各音频数据和角色标签相对应,以生成正确的电子病历报告。进一步地,本申请实施例通过使用神经网络模型将关键信息处理为图片,使得医护人员可以根据需求排列图片,以自定义电子病历形式,从而避免生成固定、单一的电子病历。更进一步地,本申请实施例还通过对左声道和右声道各自的声纹信息进行识别,以在左声道和右声道的音频数据与角色标签不一致时及时纠正,从而确保电子病历报告的准确性。此外,本申请实施例还可以对医生提问和患者回答作出提示,以便于提高问诊效率。Through the solution of this application, the audio data related to the consultation is obtained through the left and right channels with corresponding role labels, and by identifying and extracting key information from the respective audio data of the left and right channels, The neural network model is used to generate electronic medical records based on the aforementioned key information. Based on this, the corresponding roles (including doctors and patients) can be distinguished, and each audio data can be associated with role labels to generate correct electronic medical record reports. Further, in the embodiment of the present application, the key information is processed into pictures by using the neural network model, so that the medical staff can arrange the pictures according to the needs, and customize the form of the electronic medical record, thereby avoiding the generation of a fixed and single electronic medical record. Furthermore, the embodiment of the present application also recognizes the voiceprint information of the left and right channels to correct in time when the audio data of the left and right channels are inconsistent with the role label, thereby ensuring that the electronic medical records Reporting Accuracy. In addition, the embodiment of the present application can also prompt the doctor's question and the patient's answer, so as to improve the efficiency of consultation.
附图说明Description of drawings
通过参考附图阅读下文的详细描述,本申请示例性实施方式的上述以及其他目的、特征和优点将变得易于理解。在附图中,以示例性而非限制性的方式示出了本申请的若干实施方式,并且相同或对应的标号表示相同或对应的部分,其中:The above and other objects, features and advantages of the exemplary embodiments of the present application will become readily understood by reading the following detailed description with reference to the accompanying drawings. In the accompanying drawings, several embodiments of the present application are shown in an exemplary rather than restrictive manner, and the same or corresponding reference numerals represent the same or corresponding parts, wherein:
图1是示出根据本申请实施例的生成电子病历的方法的示例性流程框图;Fig. 1 is an exemplary flowchart showing a method for generating an electronic medical record according to an embodiment of the present application;
图2是示出根据本申请实施例的获得与角色标签对应的对话文本的示例性示意图;FIG. 2 is an exemplary schematic diagram illustrating obtaining dialogue text corresponding to a role label according to an embodiment of the present application;
图3是示出根据本申请实施例的生成电子病历报告的示例性示意图;Fig. 3 is an exemplary schematic diagram illustrating generating an electronic medical record report according to an embodiment of the present application;
图4是示出根据本申请实施例的生成的电子病历报告的示例性示意图;FIG. 4 is an exemplary schematic diagram showing an electronic medical record report generated according to an embodiment of the present application;
图5是示出根据本申请实施例的生成错误的电子病历报告的示例性示意图;Fig. 5 is an exemplary schematic diagram showing an electronic medical record report generating errors according to an embodiment of the present application;
图6是示出根据本申请实施例的提供问题提示信息和回答提示信息的示例性示意图;以及Fig. 6 is an exemplary schematic diagram illustrating providing question prompt information and answer prompt information according to an embodiment of the present application; and
图7是示出根据本申请实施例的生成电子病历的设备的示例性结构框图。Fig. 7 is a block diagram illustrating an exemplary structure of a device for generating an electronic medical record according to an embodiment of the present application.
具体实施方式Detailed ways
下面将结合附图对本申请实施例中的技术方案进行清楚和完整地描述。应当理解的是本说明书所描述的实施例仅是本申请为了便于对方案的清晰理解和符合法律的要求而提供的部分实施例,而并非可以实现本申请的所有实施例。基于本说明书公开的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。The technical solutions in the embodiments of the present application will be clearly and completely described below in conjunction with the accompanying drawings. It should be understood that the embodiments described in this specification are only some of the embodiments provided by the present application to facilitate a clear understanding of the solution and comply with legal requirements, but not all the embodiments of the present application can be implemented. Based on the embodiments disclosed in this specification, all other embodiments obtained by those skilled in the art without making creative efforts belong to the scope of protection of the present application.
图1是示出根据本申请实施例的生成电子病历的方法100的示例性流程框图。如图1中所示,在步骤S102处,从左声道和右声道获取与问诊相关的音频数据。在一个实施例中,前述左声道和右声道可以通过以下操作进行确定,即响应于角色的立体声输入,将角色的立体声输入设置为立体声格式,接着对立体声格式进行声道分割,以确定左声道和右声道。其中,前述角色包括医生和患者。在实现场景中,可以设置两个语音输入设备(例如话筒、耳机等),由医生和患者分别通过各自的语音输入设备进行提问和回答,以输入立体声。在该场景下,当医生和患者输入立体声后,可以通过例如MDN提供的API接口将其各自的立体声输入设置为立体声格式。接着,可以利用如节点(node)进行分割,从而划分为左声道和右声道。其中,前述左声道和右声道分别设置有各自的角色标签,并且该角色标签可以包括医生标签和患者标签。即,左声道和右声道分别对应医生和患者。由此,可以区分医生和患者的音频数据。Fig. 1 is an exemplary flowchart showing a
接着,在步骤S104处,对与问诊相关的音频数据进行语音识别,以至少获得与角色标签对应的对话文本。在一个实施场景中,可以通过例如语音识别软件或者语音识别程序来对音频数据进行语音识别,以获得与角色标签对应的对话文本。即,经识别获得的对话文本分别与角色标签相对应。本申请对前述语音识别软件或者语音识别程序不作限制,只要能够识别出对话文本信息,均属于本申请的保护范围。其中,前述对话文本可以包括与医生标签对应的问诊问题文本以及与患者标签对应的问诊答案文本,医生提问的问诊问题文本对应医生标签,患者回答的问诊答案文本对应患者标签。在实现场景中,经语音识别后,医生提问的问题文本前会有医生标签,而患者回答的回答文本前会有患者标签。例如在一个示例性场景中,医生和患者分别经由左声道和右声道输出音频数据并经语音识别后,获得例如“医生:请问眼部有什么症状?患者:眼部有异物感”。Next, at step S104, speech recognition is performed on the audio data related to the consultation, so as to at least obtain dialogue text corresponding to the role tag. In an implementation scenario, speech recognition may be performed on the audio data by, for example, speech recognition software or a speech recognition program, so as to obtain dialogue text corresponding to the character tag. That is, the dialogue text obtained through recognition corresponds to the character label respectively. The present application does not limit the aforementioned speech recognition software or speech recognition program, as long as the dialogue text information can be recognized, all belong to the protection scope of the present application. Wherein, the aforementioned dialogue text may include question texts corresponding to doctor tags and question answer texts corresponding to patient tags, the question texts asked by doctors correspond to doctor tags, and the question answer texts answered by patients correspond to patient tags. In the implementation scenario, after speech recognition, the doctor's label will be in front of the question text asked by the doctor, and the patient label will be in front of the answer text of the patient's answer. For example, in an exemplary scenario, the doctor and the patient output audio data via the left channel and the right channel respectively, and after voice recognition, obtain, for example, "Doctor: What symptoms do you have in the eyes? Patient: There is a foreign body sensation in the eyes".
基于上述获得的对话文本,在步骤S106处,基于对话文本分别提取其与问诊相关的关键信息。在一个实施例中,可以对问诊问题文本和问诊答案文本分别进行标注,进而根据标注后的问诊问题文本和问诊答案文本提取各自的关键信息。具体地,可以通过例如实体标注模型来对问诊问题文本和问诊答案文本分别进行标注。在应用场景中,首先可以通过大量的病症提问文本和回答文本以及其对应的实体标注来对实体标注模型进行训练,使得实体标注模型能够提取与问诊相关的关键信息。在一些实施例中,前述关键信息可以包括医生提问的关于患者的主诉问题特征词和/或句以及病症问题特征和/或句、患者回答的关于主诉描述特征词和/或句以及病症描述特征词和/或句。其中,前述患者的主诉可以包括但不仅限于是患者的年龄、住址、疾病史等,前述患者的病症可以包括但不仅限于是患者眼部出现刺痛、胀痛、发痒、异物感、畏光、发红或者充血等。另外,还可以包括病症发作时间、是否用药等。由此,在对实体标注模型进行训练时,可以对例如年龄、眼部病症、发红、异物感等进行标注,以输出关键信息。例如经实体标注模型后可以输出年龄,22,眼部症状,眼部有异物感,并且刺痛、发痒等。Based on the dialogue text obtained above, at step S106, the key information related to the consultation is extracted based on the dialogue text. In one embodiment, the medical question text and the medical question answer text can be marked separately, and then the respective key information can be extracted according to the marked medical question text and the medical question answer text. Specifically, the medical question text and the medical question answer text can be marked respectively by using, for example, an entity labeling model. In the application scenario, the entity labeling model can be trained first through a large number of disease question texts and answer texts and their corresponding entity labels, so that the entity labeling model can extract key information related to the consultation. In some embodiments, the aforementioned key information may include the characteristic words and/or sentences of the patient's chief complaint question and the characteristic words and/or sentences of the disease question asked by the doctor, the characteristic words and/or sentences of the chief complaint description and the disease description characteristics answered by the patient words and/or sentences. Among them, the chief complaint of the aforementioned patient may include but not limited to the age, address, disease history, etc. , redness, or congestion. In addition, it may also include the onset time of the disease, whether to take medication, etc. Therefore, when training the entity labeling model, it is possible to label, for example, age, eye disease, redness, foreign body sensation, etc., to output key information. For example, after the physical labeling model can output age, 22, eye symptoms, foreign body sensation in the eyes, and tingling, itching, etc.
进一步地,步骤S108处,使用神经网络模型根据角色标签和对应的对话文本中的关键信息生成电子病历。在一个实施例中,可以通过将角色标签和对应的对话文本中的关键信息输入至神经网络模型中,以获得与病历相关的图片,进而基于图片生成电子病历。如背景技术描述所知,现有的电子病历的生成往往采用固定的电子病历模板,通过获取关键信息与模板之间的对应关系来生成电子病历,其中前述电子病历模板可以从例如医院系统的病历模块库中获取。具体地,首先可以将医生提问的关于患者的主诉问题特征词和/或句以及病症问题特征词和/或句与病历模板上的相关特征词进行匹配,以获得关于患者的主诉问题特征词和/或句以及病症问题特征词和/或句的位置;或者将医生标签和患者标签与病历模板上的医生标签或者患者标签进行匹配获得相应的位置。接着,在相应位置处放置患者回答的关于主诉描述特征词和/或句以及病症描述特征词和/或句,从而生成电子病历报告。由此可见,现有的生成电子病历的方式受电子模板的限制,其各信息仅能放置在模板上的相应位置。Further, at step S108, the neural network model is used to generate an electronic medical record according to the key information in the role label and the corresponding dialogue text. In one embodiment, the key information in the character label and the corresponding dialogue text can be input into the neural network model to obtain pictures related to the medical records, and then the electronic medical records are generated based on the pictures. As known from the description of background technology, the generation of existing electronic medical records often adopts fixed electronic medical record templates, and generates electronic medical records by obtaining the corresponding relationship between key information and templates. Obtained from the module library. Specifically, firstly, the characteristic words and/or sentences of the patient's chief complaint question and the characteristic words and/or sentences of the disease question asked by the doctor can be matched with the relevant characteristic words on the medical record template to obtain the characteristic words and/or sentences of the patient's chief complaint question. /or the position of the sentence and the feature word and/or sentence of the disease question; or match the doctor label and patient label with the doctor label or patient label on the medical record template to obtain the corresponding position. Next, the characteristic words and/or sentences about the chief complaint description and the characteristic words and/or sentences for the disease description answered by the patient are placed at corresponding positions, so as to generate an electronic medical record report. It can be seen that the existing way of generating electronic medical records is limited by the electronic template, and each information can only be placed in the corresponding position on the template.
在本申请实施例中,可以不采用医院系统提供的病历模板,而直接根据提取的关键信息生成电子病历报告。具体而言,首先可以将医生标签和患者标签、医生提问的关于患者的主诉问题特征词和/或句以及病症问题特征词和/或句进行向量化,将向量化结果输入至神经网络模型中进行处理,以生成图片。接着,通过对图片进行排列后生成电子病历报告。在一些实施例中,前述神经网络模型可以例如是开源模型dall.e。基于该开源模型dall.e可以基于前述的关键信息生成图片,由医务人员自行排列布置生成电子病历报告,例如可以形成PPT模板,以供医务人员查看。In the embodiment of the present application, instead of using the medical record template provided by the hospital system, the electronic medical record report can be generated directly according to the extracted key information. Specifically, firstly, the doctor label and the patient label, the feature words and/or sentences of the patient's chief complaint question asked by the doctor, and the feature words and/or sentences of the disease question can be vectorized, and the vectorized results can be input into the neural network model processed to generate an image. Then, generate an electronic medical record report by arranging the pictures. In some embodiments, the aforementioned neural network model may be, for example, an open source model dall.e. Based on the open source model dall.e can generate pictures based on the aforementioned key information, and arrange them by medical staff to generate electronic medical record reports. For example, a PPT template can be formed for medical staff to view.
结合上述描述可知,本申请实施例通过将医生和患者的语音输入分割成左声道和右声道,并且分别设置相应的角色标签,使得左声道和右声道的音频数据对应相应的角色。进一步地,通过对左声道和右声道的音频数据进行识别并且提取关键信息,通过使用神经网络模型基于关键信息生成图片,进而对图片进行排列后生成电子病历报告。基于此,能够将医生和患者的对话文本信息区分开,使得各自提取的关键信息与角色标签准确对应,以确保生成正确的电子病历报告。进一步地,医护人员可以根据需求自行设计电子病历,而不受电子病历模板的约束,使得生成的电子病历多样化。In combination with the above description, it can be seen that the embodiment of the present application divides the voice input of doctors and patients into left and right channels, and sets corresponding role tags respectively, so that the audio data of the left and right channels correspond to the corresponding roles . Further, by identifying the audio data of the left channel and the right channel and extracting key information, the neural network model is used to generate pictures based on the key information, and then the pictures are arranged to generate an electronic medical record report. Based on this, the dialogue text information of doctors and patients can be distinguished, so that the key information extracted by each corresponds to the role label accurately, so as to ensure the generation of correct electronic medical record reports. Furthermore, medical staff can design electronic medical records according to their own needs, without being restricted by the electronic medical record template, so that the generated electronic medical records are diversified.
图2是示出根据本申请实施例的获得与角色标签对应的对话文本的示例性示意图。如图2中所示,在问诊过程中,医生和患者分别通过左声道201和右声道202输入音频数据。例如,医生可以通过左声道201对患者进行提问,患者可以通过右声道202进行回答或者医生可以通过右声道202对患者进行提问,患者可以通过左声道201进行回答,以输出各自的音频数据。在应用场景中,前述左声道201和右声道202设置有角色标签。作为示例,当医生通过左声道201对患者进行提问,患者通过右声道202进行回答时,左声道201的角色标签设置为医生,而右声道202的角色标签设置为患者。进一步地,利用例如语音识别软件对各自的音频数据进行识别,获得对应的对话文本,其中在对话文本之前显示相应的角色标签。Fig. 2 is an exemplary diagram illustrating obtaining dialogue text corresponding to a role tag according to an embodiment of the present application. As shown in FIG. 2 , during the consultation process, the doctor and the patient input audio data through the
例如在一个示例性场景中,当医生通过左声道201提问患者的主诉信息(例如年龄、住址等)和病症信息(例如眼部病症等)后,通过语音识别可以获得对应的问诊问题文本,如“医生:请问多大年龄?医生:眼部有什么症状?医生:这个症状从什么时候开始的,持续多久了?医生:是否有用药?”。与之对应地,患者基于医生的提问,通过右声道202回答前述主诉信息(例如年龄、住址等)和病症信息(例如眼部病症等)后,通过语音识别可以获得对应的问诊答案文本,如“患者:29;患者:眼部有异物感,并且刺痛、发痒;患者:持续一周了;患者:没有用药”。For example, in an exemplary scenario, when the doctor asks the patient's main complaint information (such as age, address, etc.) and disease information (such as eye disease, etc.) through the
如前所述,在获得与角色标签对应的对话文本(包括问诊问题文本和问诊答案文本)后,可以基于对话文本分别提取其与问诊相关的关键信息。在应用场景中,可以通过训练好的实体标注模型来提取关键信息,并且该关键信息可以包括医生提问的关于患者的主诉问题特征词和/或句以及病症问题特征和/或句、患者回答的关于主诉描述特征词和/或句以及病症描述特征词和/或句。例如以上述图2的对话文本为例,可以提取例如“年龄”、“29”、“眼部症状”、“眼部有异物感,并且刺痛、发痒”以及“用药”等关键信息。进一步地,通过将前述关键信息以及角色标签输入至神经网络模型,经由神经网络模型处理后生成图片,通过对图片进行排列生成电子病历报告,例如图3所示。As mentioned above, after obtaining the dialogue text corresponding to the role label (including the question text and the answer text), the key information related to the consultation can be extracted based on the dialogue text. In the application scenario, the key information can be extracted through the trained entity annotation model, and the key information can include the characteristic words and/or sentences of the patient's main complaint question asked by the doctor, the characteristics and/or sentences of the disease question, and the patient's answer Describe the characteristic words and/or sentences about the chief complaint and the characteristic words and/or sentences for the disease description. For example, taking the dialogue text in Figure 2 above as an example, key information such as "age", "29", "eye symptoms", "a foreign body sensation in the eye, tingling and itching", and "medication" can be extracted. Further, by inputting the aforementioned key information and role labels into the neural network model, images are generated after being processed by the neural network model, and an electronic medical record report is generated by arranging the images, as shown in Figure 3, for example.
图3是示出根据本申请实施例的生成电子病历报告的示例性示意图。如图3中所示,首先对角色标签(包括医生标签和患者标签)301以及关键信息302(包括医生提问的关于患者的主诉问题特征词和/或句以及病症问题特征和/或句、患者回答的关于主诉描述特征词和/或句以及病症描述特征词和/或句)进行向量化303。在一个示例性场景中,例如对医生标签进行向量化后为(0000),对患者标签进行向量化后为(0001),眼部有异物感进行向量化后为(00010100)。其中,前述0或1的设置基于前述医生标签、患者标签以及关键信息存储于向量中的特定位置来确定,当接收的信息包含在该向量中时,其指定位置就置为1,反之为0。接着,将前述向量化后的结果输入至神经网络模型(例如dall.e)304中,该神经网络模型为全连接结构,包括至少一个隐藏层,并且该神经网络模型的输出为多个图片。其中,每个图片上包含相应的信息,例如“患者年龄”、“29”、“患者症状”、“眼部有异物感,并且刺痛、发痒,持续一周了,没有用药”以及“医生建议”、“建议患者多闭眼休息,少看电子设备”等。进一步地,通过将前述多个图片按需进行排列后,可以生成电子病历305。Fig. 3 is an exemplary diagram illustrating generating an electronic medical record report according to an embodiment of the present application. As shown in Fig. 3, at first character label (comprising doctor label and patient label) 301 and key information 302 (comprising the feature word and/or sentence of the chief complaint question and/or sentence and disease question feature and/or sentence, patient's question about patient that doctor asks,
在一些实施例中,本申请实施例的神经网络模型也可以直接输入与角色标签对应的对话文本和角色标签,由该神经网络模型提取与问诊相关的关键信息,并将角色标签和关键信息处理成图片,以生成电子病历。In some embodiments, the neural network model of the embodiment of the present application can also directly input the dialogue text and role label corresponding to the role label, and the neural network model extracts the key information related to the consultation, and the role label and key information Processed into pictures to generate electronic medical records.
图4是示出根据本申请实施例的生成的电子病历报告的示例性示意图。如图4中所示,经由上述神经网络模型对经向量化的角色标签和关键信息进行处理后,可以生成多张图片,其包含相应的信息。例如图中示出的包含“患者年龄”、“29”、“患者症状描述”、“眼部有异物感,并且刺痛、发痒,持续一周了,没有用药”以及“医生建议”、“建议患者多闭眼休息,少看电子设备”的图片,其经排列后生成图中所示电子病历。Fig. 4 is an exemplary schematic diagram illustrating a generated electronic medical record report according to an embodiment of the present application. As shown in FIG. 4 , after the vectorized character labels and key information are processed through the above neural network model, multiple pictures can be generated, which contain corresponding information. For example, what is shown in the figure includes "patient's age", "29", "patient's symptom description", "foreign body sensation in the eye, tingling, itching, lasted for a week, no medication" and "doctor's advice", " Advise patients to close their eyes and rest more, and look less at electronic equipment" pictures, which are arranged to generate the electronic medical records shown in the picture.
在一个实施场景中,医生和患者可能会用错语音输入设备,例如医生对应患者的声道,患者对应医生的声道,此时会导致医生和患者的文本信息不一致,即医生对应患者的文本信息,而患者对应医生的文本信息,而导致电子病历报告出错,例如图5中所示。In an implementation scenario, the doctor and the patient may use the wrong voice input device. For example, the doctor corresponds to the patient’s voice channel, and the patient corresponds to the doctor’s voice channel. information, while the patient corresponds to the text information of the doctor, which leads to errors in the electronic medical record report, as shown in Figure 5.
图5是示出根据本申请实施例的生成错误的电子病历报告的示例性示意图。如图5中(a)图所示为医生和患者的对话文本,在该场景下,由于医生和患者的对应声道错误,使得医生和患者的文本信息不一致。例如“患者:请问多大年龄?患者:眼部有什么症状?患者:这个症状从什么时候开始的,持续多久了?患者:是否有用药?和“医生:29;医生:眼部有异物感,并且刺痛、发痒;医生:持续一周了;医生:没有用药”。在该场景下,当对其对话文本提取关键信息时,会存在角色标签和对应的关键信息不一致,从而导致电子病历报告有误。例如图5中(b)图所示,“患者年龄”显示为医生年龄,“患者病症”显示为“医生病症”以及“医生建议”显示为“患者建议”。Fig. 5 is an exemplary schematic diagram illustrating generating an erroneous electronic medical record report according to an embodiment of the present application. Figure 5 (a) shows the dialogue text between the doctor and the patient. In this scenario, the text information of the doctor and the patient is inconsistent due to the wrong corresponding vocal channels of the doctor and the patient. For example, "Patient: How old is it? Patient: What symptoms do you have in the eyes? Patient: When did the symptoms start and how long has it lasted? Patient: Have you taken any medication?" and "Doctor: 29; Doctor: There is a foreign body sensation in the eyes, And tingling, itching; doctor: lasted for a week; doctor: no medication". In this scenario, when key information is extracted from the dialogue text, there will be inconsistencies between the role label and the corresponding key information, resulting in electronic medical record reports Incorrect. For example, as shown in (b) in Figure 5, "patient age" is displayed as the doctor's age, "patient's condition" is displayed as "doctor's condition" and "doctor's suggestion" is displayed as "patient's suggestion".
鉴于此,本申请实施例提出对与问诊相关的音频数据进行语音识别,以获得左声道和所述右声道通各自的声纹信息以及根据声纹信息确定左声道和右声道是否与各自的角色标签相一致。在一个实施例中,同样可以通过例如语音识别软件或者语音识别程序来识别各自的声纹信息,接着将识别的声纹信息与医生注册时录制的语音进行比对,由此确定左声道和右声道的音频数据来自于医生还是患者,从而确定左声道和右声道是否与各自的角色标签相一致。当比对后确定左声道和右声道与各自的角色标签不一致时,可以通过提示医生和患者交换各自的声道,重新输入;或者也可以修改左声道和右声道对应的角色标签。例如,将初始设置的医生标签修改为患者标签,将初始设置的患者标签修改为医生标签,以使左声道和右声道与各自的角色标签相一致,提高生成电子病历模板的准确性。In view of this, the embodiment of the present application proposes to perform speech recognition on the audio data related to the consultation, so as to obtain the respective voiceprint information of the left channel and the right channel, and determine the left channel and the right channel according to the voiceprint information. Is it consistent with the respective role tags. In one embodiment, the respective voiceprint information can also be identified by, for example, voice recognition software or a voice recognition program, and then the identified voiceprint information is compared with the recorded voice of the doctor when registering, thereby determining the left channel and Whether the audio data for the right channel comes from a doctor or a patient determines whether the left and right channels correspond to their respective role labels. When it is determined after comparison that the left and right channels are inconsistent with their respective role labels, you can prompt the doctor and patient to exchange their respective channels and re-enter; or you can also modify the role labels corresponding to the left and right channels . For example, modify the initially set doctor label to a patient label, and change the initially set patient label to a doctor label, so that the left and right channels are consistent with their respective role labels, and the accuracy of generating the electronic medical record template is improved.
在一个实施例中,本申请实施例还可以根据角色标签和对应的对话文本中的关键信息为角色提供问题提示信息和回答提示信息。即,在问诊过程中,提示医生所要提问的问题和提示患者所要回答的方向,以提高问诊效率,并且确保问诊的全面性。在实现场景中,首先可以根据对应的对话文本中的关键信息,利用与问诊相关的知识图谱计算其对应的数值,接着响应于对应的数值命中知识图谱的路径,为对应角色提供问题提示信息和回答提示信息。可以理解,本申请实施例中的医疗知识图谱主要是针对眼科的,其由眼科专家根据问诊患者遇到的不同问题以及对应作出的判断而获得的确定的结论,并通过收集病人当时发病时的情况确认路径,进而确定知识图谱。其中,前述计算的数值为索引值,通过该索引值在知识图谱中进行搜索,当该索引值在知识图谱中有存在相应路径时,基于该路径为医生或者患者提供问题提示或者回答提示,例如图6所示。In an embodiment, the embodiment of the present application may also provide question prompt information and answer prompt information for the character according to the key information in the character label and the corresponding dialogue text. That is, during the consultation process, the question to be asked by the doctor and the direction to be answered by the patient are prompted, so as to improve the efficiency of the consultation and ensure the comprehensiveness of the consultation. In the implementation scenario, first of all, according to the key information in the corresponding dialogue text, the corresponding value can be calculated by using the knowledge map related to the consultation, and then in response to the corresponding value hitting the path of the knowledge map, provide question prompt information for the corresponding role and answer prompts. It can be understood that the medical knowledge map in the embodiment of the present application is mainly aimed at ophthalmology. It is determined by ophthalmology experts based on the different problems encountered by patients and the corresponding judgments. Confirm the path of the situation, and then determine the knowledge map. Among them, the value calculated above is an index value, through which the knowledge map is searched, and when the index value has a corresponding path in the knowledge map, the doctor or patient is provided with a question prompt or an answer prompt based on the path, for example Figure 6 shows.
图6是示出根据本申请实施例的提供问题提示信息和回答提示信息的示例性示意图。如图6中所示,在问诊过程中,当医生对患者提问“眼部有什么症状”时,首先会对该文本信息提取关键信息,例如“眼部症状”。接着,基于该眼部症状症状,通过知识图谱对其进行计算并且获得相应数值。根据该相应数值,可以在知识图谱中找到相应路径,并为患者提供回答提示信息。例如在患者回答之前,会提示患者从具体的症状、发作时间等进行回答,而无需医生再提问。类似地,当患者回答完毕,可以提示医生下一问题内容或者提示医生给出建议,而无需患者再追问。由此,可以提高问诊效率,并且确保问诊全面。Fig. 6 is an exemplary diagram illustrating providing question prompt information and answer prompt information according to an embodiment of the present application. As shown in Figure 6, during the consultation process, when the doctor asks the patient "what are the symptoms of the eyes", the key information will first be extracted from the text information, such as "eye symptoms". Then, based on the eye symptoms, it is calculated through the knowledge map and the corresponding value is obtained. According to the corresponding value, the corresponding path can be found in the knowledge map, and the patient can be provided with answer prompt information. For example, before the patient answers, the patient will be prompted to answer from specific symptoms, onset time, etc., without the need for the doctor to ask questions. Similarly, when the patient has finished answering, the doctor can be prompted for the content of the next question or to give advice without the patient asking further questions. Thus, the efficiency of consultation can be improved, and comprehensive consultation can be ensured.
图7是示出根据本申请实施例的生成电子病历的设备700的示例性结构框图。可以理解的是,实现本申请方案的设备可以是单一的设备(例如计算设备)或包括各种外围设备的多功能设备。Fig. 7 is a block diagram showing an exemplary structure of a
如图7中所示,本申请的设备可以包括中央处理器或中央处理单元(“CPU”)711,其可以是通用CPU、专用CPU或者其他信息处理以及程序运行的执行单元。进一步,设备700还可以包括大容量存储器712和只读存储器(“ROM”)713,其中大容量存储器712可以配置用于存储各类数据,包括各种与音频数据、算法数据、中间结果和运行设备700所需要的各种程序。ROM 713可以配置成存储对于设备700的加电自检、系统中各功能模块的初始化、系统的基本输入/输出的驱动程序及引导操作系统所需的数据和指令。As shown in FIG. 7, the device of the present application may include a central processing unit or central processing unit (“CPU”) 711, which may be a general-purpose CPU, a dedicated CPU, or other execution units for information processing and program execution. Further, the
可选地,设备700还可以包括其他的硬件平台或组件,例如示出的张量处理单元(“TPU”)714、图形处理单元(“GPU”)715、现场可编程门阵列(“FPGA”)716和机器学习单元(“MLU”)717。可以理解的是,尽管在设备700中示出了多种硬件平台或组件,但这里仅仅是示例性的而非限制性的,本领域技术人员可以根据实际需要增加或移除相应的硬件。例如,设备700可以仅包括CPU、相关存储设备和接口设备来实现本申请的生成电子病历的方法。Optionally,
在一些实施例中,为了便于数据与外部网络的传递和交互,本申请的设备700还包括通信接口718,从而可以通过该通信接口718连接到局域网/无线局域网(“LAN/WLAN”)705,进而可以通过该LAN/WLAN连接到本地服务器706或连接到因特网(“Internet”)707。替代地或附加地,本申请的设备700还可以通过通信接口718基于无线通信技术直接连接到因特网或蜂窝网络,例如基于第3代(“3G”)、第4代(“4G”)或第5代(“5G”)的无线通信技术。在一些应用场景中,本申请的设备700还可以根据需要访问外部网络的服务器708和数据库709,以便获得各种已知的算法、数据和模块,并且可以远程地存储各种数据,例如用于呈现例如音频数据、对话文本、关键信息等的各类数据或指令。In some embodiments, in order to facilitate data transmission and interaction with external networks, the
设备700的外围设备可以包括显示装置702、输入装置703和数据传输接口704。在一个实施例中,显示装置702可以例如包括一个或多个扬声器和/或一个或多个视觉显示器,其配置用于对本申请的生成电子病历进行语音提示和/或图像视频显示。输入装置703可以包括例如键盘、鼠标、麦克风、姿势捕捉相机等其他输入按钮或控件,其配置用于接收音频数据的输入和/或用户指令。数据传输接口704可以包括例如串行接口、并行接口或通用串行总线接口(“USB”)、小型计算机系统接口(“SCSI”)、串行ATA、火线(“FireWire”)、PCIExpress和高清多媒体接口(“HDMI”)等,其配置用于与其他设备或系统的数据传输和交互。根据本申请的方案,该数据传输接口704可以接收来自于从左声道和右声道获取与问诊相关的音频数据,并且向设备700传送包括音频数据或各种其他类型的数据或结果。The peripheral equipment of the
本申请的设备700的上述CPU 711、大容量存储器712、ROM 713、TPU 714、GPU 715、FPGA 716、MLU 717和通信接口718可以通过总线719相互连接,并且通过该总线与外围设备实现数据交互。在一个实施例中,通过该总线719,CPU 711可以控制设备700中的其他硬件组件及其外围设备。The
以上结合图7描述了可以用于执行本申请的生成电子病历的设备。需要理解的是这里的设备结构或架构仅仅是示例性的,本申请的实现方式和实现实体并不受其限制,而是可以在不偏离本申请的精神下做出改变。The device for generating electronic medical records that can be used to execute the present application has been described above with reference to FIG. 7 . It should be understood that the device structure or architecture here is only exemplary, and the implementation manner and implementation entity of the present application are not limited thereto, but changes can be made without departing from the spirit of the present application.
根据上述结合附图的描述,本领域技术人员也可以理解本申请的实施例还可以通过软件程序来实现。由此本申请还提供了一种计算机程序产品。该计算机程序产品可以用于实现本申请结合附图1-图6所描述的生成电子病历的方法。According to the above description in conjunction with the accompanying drawings, those skilled in the art can also understand that the embodiments of the present application can also be implemented by software programs. Therefore, the present application also provides a computer program product. The computer program product can be used to implement the method for generating an electronic medical record described in this application in conjunction with Figures 1 to 6 .
应当注意,尽管在附图中以特定顺序描述了本申请方法的操作,但是这并非要求或者暗示必须按照该特定顺序来执行这些操作,或是必须执行全部所示的操作才能实现期望的结果。相反,流程图中描绘的步骤可以改变执行顺序。附加地或备选地,可以省略某些步骤,将多个步骤合并为一个步骤执行,和/或将一个步骤分解为多个步骤执行。It should be noted that, while operations of the methods of the present application are depicted in the figures in a particular order, this does not require or imply that those operations must be performed in that particular order, or that all illustrated operations must be performed to achieve desirable results. Conversely, the steps depicted in the flowcharts may be performed in an altered order. Additionally or alternatively, certain steps may be omitted, multiple steps may be combined into one step for execution, and/or one step may be decomposed into multiple steps for execution.
应当理解,本申请的说明书和权利要求书中使用的术语“包括”和“包含”指示所描述特征、整体、步骤、操作、元素和/或组件的存在,但并不排除一个或多个其它特征、整体、步骤、操作、元素、组件和/或其集合的存在或添加。It should be understood that the terms "comprising" and "comprising" used in the specification and claims of this application indicate the presence of described features, integers, steps, operations, elements and/or components, but do not exclude one or more other Presence or addition of features, wholes, steps, operations, elements, components and/or collections thereof.
还应当理解,在此本申请说明书中所使用的术语仅仅是出于描述特定实施例的目的,而并不意在限定本申请。如在本申请说明书和权利要求书中所使用的那样,除非上下文清楚地指明其它情况,否则单数形式的“一”、“一个”及“该”意在包括复数形式。还应当进一步理解,在本申请说明书和权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。It should also be understood that the terminology used in the description of the present application is only for the purpose of describing specific embodiments, and is not intended to limit the present application. As used in the specification and claims of this application, the singular forms "a", "an" and "the" are intended to include the plural forms unless the context clearly dictates otherwise. It should be further understood that the term "and/or" used in the specification and claims of the present application refers to any combination and all possible combinations of one or more of the associated listed items, and includes these combinations.
虽然本申请的实施方式如上,但所述内容只是为便于理解本申请而采用的实施例,并非用以限定本申请的范围和应用场景。任何本申请所述技术领域内的技术人员,在不脱离本申请所揭露的精神和范围的前提下,可以在实施的形式上及细节上作任何的修改与变化,但本申请的专利保护范围,仍须以所附的权利要求书所界定的范围为准。Although the embodiments of the present application are as above, the content described is only an embodiment adopted for the convenience of understanding the present application, and is not intended to limit the scope and application scenarios of the present application. Anyone skilled in the technical field described in this application can make any modifications and changes in the form and details of implementation without departing from the spirit and scope disclosed in this application, but the patent protection scope of this application , must still be subject to the scope defined by the appended claims.
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211015118.2A CN115376519A (en) | 2022-08-23 | 2022-08-23 | Method and equipment for generating electronic medical record and computer readable storage medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211015118.2A CN115376519A (en) | 2022-08-23 | 2022-08-23 | Method and equipment for generating electronic medical record and computer readable storage medium |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115376519A true CN115376519A (en) | 2022-11-22 |
Family
ID=84067886
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211015118.2A Pending CN115376519A (en) | 2022-08-23 | 2022-08-23 | Method and equipment for generating electronic medical record and computer readable storage medium |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115376519A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116913450A (en) * | 2023-09-07 | 2023-10-20 | 北京左医科技有限公司 | Method and device for generating medical records in real time |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015194974A (en) * | 2014-03-31 | 2015-11-05 | 株式会社東芝 | Home/visit medical service system |
CN112308530A (en) * | 2020-11-09 | 2021-02-02 | 珠海格力电器股份有限公司 | Method and device for generating prompt information, storage medium and electronic device |
CN112530411A (en) * | 2020-12-15 | 2021-03-19 | 北京快鱼电子股份公司 | Real-time role-based role transcription method, equipment and system |
CN112837772A (en) * | 2021-01-28 | 2021-05-25 | 安徽科大讯飞医疗信息技术有限公司 | Method and device for generating pre-examination medical records |
CN113724695A (en) * | 2021-08-30 | 2021-11-30 | 平安国际智慧城市科技股份有限公司 | Electronic medical record generation method, device, equipment and medium based on artificial intelligence |
-
2022
- 2022-08-23 CN CN202211015118.2A patent/CN115376519A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015194974A (en) * | 2014-03-31 | 2015-11-05 | 株式会社東芝 | Home/visit medical service system |
CN112308530A (en) * | 2020-11-09 | 2021-02-02 | 珠海格力电器股份有限公司 | Method and device for generating prompt information, storage medium and electronic device |
CN112530411A (en) * | 2020-12-15 | 2021-03-19 | 北京快鱼电子股份公司 | Real-time role-based role transcription method, equipment and system |
CN112837772A (en) * | 2021-01-28 | 2021-05-25 | 安徽科大讯飞医疗信息技术有限公司 | Method and device for generating pre-examination medical records |
CN113724695A (en) * | 2021-08-30 | 2021-11-30 | 平安国际智慧城市科技股份有限公司 | Electronic medical record generation method, device, equipment and medium based on artificial intelligence |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116913450A (en) * | 2023-09-07 | 2023-10-20 | 北京左医科技有限公司 | Method and device for generating medical records in real time |
CN116913450B (en) * | 2023-09-07 | 2023-12-19 | 北京左医科技有限公司 | Method and device for generating medical records in real time |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102424085B1 (en) | Machine-assisted conversation system and medical condition inquiry device and method | |
CN110675951A (en) | Intelligent disease diagnosis method and device, computer equipment and readable medium | |
CN110993093B (en) | Method and device for pre-diagnosis in ophthalmology based on deep learning | |
TWI501189B (en) | An Avatar-Based Charting Method And System For Assisted Diagnosis | |
JP7385320B1 (en) | Programs, information processing devices, methods and systems | |
CN111048167A (en) | Hierarchical case structuring method and system | |
CN116975218A (en) | Text processing method, device, computer equipment and storage medium | |
WO2023029348A1 (en) | Image instance labeling method based on artificial intelligence, and related device | |
US20240428052A1 (en) | Methods and systems for training medical machine-learning models | |
CN119314695A (en) | Case analysis method, device, equipment, storage medium and program product | |
CN114664431A (en) | A kind of artificial intelligence-assisted question answering method, device, equipment and medium | |
CN117217332A (en) | Medicine question-answering model training method and device, electronic equipment and storage medium | |
CN117171309A (en) | Methods, devices and media for providing response information to medical inquiries | |
US20200345290A1 (en) | Dynamic neuropsychological assessment tool | |
CN115376519A (en) | Method and equipment for generating electronic medical record and computer readable storage medium | |
US20240362492A1 (en) | Systems, methods, and computer-accessible medium for providing human-model alignment using metadata and artifacts, patient information, or synthetic data | |
WO2024077913A1 (en) | Medical teaching method, apparatus and device, and storage medium | |
CN117573946A (en) | Dialogue sample generation method, chat dialogue large model training method and related devices | |
CN117743522A (en) | Medical reply generation method, device, equipment and storage medium | |
EP3871231A1 (en) | Applying machine learning to scribe input to improve data accuracy | |
CN117038109A (en) | Pre-inspection report collection method and system | |
CN114676236A (en) | Structured clinical thinking training method, system, storage medium and computer equipment | |
CN112992301B (en) | Data processing methods, devices, electronic equipment and storage media | |
JP7291440B1 (en) | Program, information processing device, method and system | |
CN118734964A (en) | Pain question-answering method, device, medium and electronic device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |