CN115375006A - 计及pv和ev的新型城市配电网双层联合拓展规划方法 - Google Patents

计及pv和ev的新型城市配电网双层联合拓展规划方法 Download PDF

Info

Publication number
CN115375006A
CN115375006A CN202210858483.3A CN202210858483A CN115375006A CN 115375006 A CN115375006 A CN 115375006A CN 202210858483 A CN202210858483 A CN 202210858483A CN 115375006 A CN115375006 A CN 115375006A
Authority
CN
China
Prior art keywords
distribution network
planning
charging station
node
power distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210858483.3A
Other languages
English (en)
Inventor
雷才嘉
许苑
孙开元
岑海凤
李涛
林琳
陈坤
曾慧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou Power Supply Bureau of Guangdong Power Grid Co Ltd
Original Assignee
Guangzhou Power Supply Bureau of Guangdong Power Grid Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou Power Supply Bureau of Guangdong Power Grid Co Ltd filed Critical Guangzhou Power Supply Bureau of Guangdong Power Grid Co Ltd
Priority to CN202210858483.3A priority Critical patent/CN115375006A/zh
Publication of CN115375006A publication Critical patent/CN115375006A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06313Resource planning in a project environment
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06315Needs-based resource requirements planning or analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/067Enterprise or organisation modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/10Power transmission or distribution systems management focussing at grid-level, e.g. load flow analysis, node profile computation, meshed network optimisation, active network management or spinning reserve management
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin

Landscapes

  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Engineering & Computer Science (AREA)
  • Strategic Management (AREA)
  • Economics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Tourism & Hospitality (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Marketing (AREA)
  • General Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • Development Economics (AREA)
  • Quality & Reliability (AREA)
  • Operations Research (AREA)
  • Game Theory and Decision Science (AREA)
  • Educational Administration (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明提供了计及PV和EV的新型城市配电网双层联合拓展规划方法,包括:输入电动汽车充电站基本参数以及配电网拓扑结构,评估新型城市配电网接纳能力;建立子运行规划数学模型和目标函数,求解电动汽车配置问题;确定充电站安装位置和容量,将充电站初始规划结果放入规划模型修正模块进行数据预处理;将负荷需求时空分布输入主投资规划数据参数中,并在规划模型修正模块中对基础模型进行假设与修正;建立主投资规划数学模型和目标函数,求解改进的直流配电网拓展规划模型;计算最优规划方案下变电站、光伏和电动汽车充电站的经济容量和三者在正常运行条件下地理位置,得到联合拓展规划方案。本发明具有显著工程实用价值,具备广泛应用前景。

Description

计及PV和EV的新型城市配电网双层联合拓展规划方法
技术领域
本发明涉及新型城市配电网的联合拓展规划领域,特别涉及一种计及PV和EV的新型城市配电网双层联合拓展规划方法,该方法纳入光伏发电并引入电动汽车平衡约束,从而更新新型城市配电网络拓扑结构并有效地提高城市配电网规划结果的合理性。
背景技术
近年来,随着可再生能源、电力电子设备的高比例接入以及终端电气化率的快速提升,越来越多的新能源不断接入电网。同时,在“碳达峰”、“碳中和”等能源理念下,多元化负荷(光伏、电动汽车)大量接入城市电力系统,导致电网结构日益复杂化,对配电网的运行与规划产生不可忽视的影响。新型城市电网负荷高速增长且建设难度不断增大,急切需要对现有的配电网网络进行拓展规划。综合考虑多元化负荷和配电网接纳能力的协同发展具有重要意义。
利用光伏的合理接入能够在一定程度上减少电网的生产成本,而电动汽车的充电需求在各配电网节点合理分布可以优化配电网的协调调度,有助于提高配电网规划结果的合理性。含光伏分布式电源和电动汽车充电站的配电网规划问题都具有投建点的不确定性,在规划前期需要结合负荷需求进行相应的部署,如何协调与平衡好两者与配电网的节点负荷是一大难点。目前综合考虑分布式光伏与电动汽车充电站的联合选址规划问题的相关研究较少,没有直观地体现两者的协同规划给配电网带来的效益。
为此,提出计及PV和EV的新型城市配电网双层联合拓展规划方法。
发明内容
有鉴于此,本发明实施例希望提供计及PV和EV的新型城市配电网双层联合拓展规划方法,考虑分布式光伏的并网消纳和电动汽车的灵活接入,并针对不同规划阶段的负荷需求情况将负载曲线离散化为三个负荷水平等级分别描述峰平谷时段用电量;然后,引入电动汽车充电站充放电价格特性,建立了以投资-运行-收益综合成本最优为目标的联合配电网双层拓展规划模型,采用Gurob i求解器对线性化之后的混合整数线性规划问题进行求解,给出了相应的线路投建规划方案及规划成本费用,以此实现配电网的可再生能源并网消纳;解决或缓解现有技术中存在的技术问题,至少提供一种有益的选择。
本发明实施例的技术方案是这样实现的:计及PV和EV的新型城市配电网双层联合拓展规划方法,包括以下步骤:
S1、输入电动汽车充电站基本参数以及配电网拓扑结构,根据新一代城市电网规划低碳指标体系及评估方法,对新型城市配电网接纳能力进行评估;
S2、综合配电网运行约束条件,建立子运行规划的数学模型和目标函数,求解电动汽车配置问题;
S3、得到初始的电动汽车充电站选址定容方案,确定充电站安装位置和容量,而后将充电站的初始规划结果放入规划模型修正模块进行数据预处理;
S4、将负荷需求时空分布输入主投资规划的数据参数中,并在所述规划模型修正模块中对基础模型进行假设与修正;
S5、综合配电网投资约束条件,建立所述主投资规划的数学模型和目标函数,求解改进的直流配电网拓展规划模型;
S6、计算最优规划方案下的变电站、光伏和电动汽车充电站的经济容量,并确定变电站、光伏和电动汽车充电站在正常运行条件下的地理位置。
进一步优选的:所述S1中,新一代城市电网规划低碳指标体系及评估方法从以下三个方面进行考量:
(1)电源侧指标:
系统平均碳排放强度;
碳捕集(CCS)低碳技术的减排率;
可再生能源接纳力度;
可再生能源弃电率;
(2)电网侧指标:
SF6气体相关指标;
资源回收利用相关指标;
先进发电调度指标;
需求侧响应指标;
(3)负荷侧指标:
系统负荷峰谷比;
系统负荷率;
负荷侧碳减排指标;
电动汽车相关指标。
进一步优选的:所述S1中,新一代城市电网规划评估方法包括:
数据预处理:通过归一化处理统一各指标的优化取值方向,然后利用无量纲化处理消除各指标单位和数量级的差异;
相关性处理:削弱乃至消除指标间的相关性和重叠性,减少重复评价;
确定指标权重:采用综合赋权法进行计算:
wi=k1pi+k2qi (1)
式中:wi为由综合赋权法得到的权重系数;k1和k2分别对主、客观赋权法的倾向程度,满足k1+k2=1;pi和qi分别为基于主观及客观赋权法确定的权重系数;
构建集结模型的目的在于由各指标的数值和权重系数求得综合评价值,集结模型为线性加权综合:
Figure BDA0003756540770000031
式中:yi为电网样本j的综合评价值;n为总指标数;xij为电网样本j指标i的指标值。
进一步优选的:所述S2中,所述配电网运行约束条件包括充电需求、规划节点、负荷比例;
子运行规划的数学模型和目标函数:
Figure BDA0003756540770000041
Figure BDA0003756540770000042
Figure BDA0003756540770000043
Figure BDA0003756540770000044
其中,α表示年度通胀调整利率,
Figure BDA0003756540770000045
表示充电站的投资成本,
Figure BDA0003756540770000046
表示充电站的保养维护成本,
Figure BDA0003756540770000047
表示充电站的运营收益;
RRev表示充电站的资金回收率,
Figure BDA0003756540770000048
Figure BDA0003756540770000049
分别表示充电站投资成本系数和维护成本系数;
Figure BDA00037565407700000410
表示充电站的投资决策,
Figure BDA00037565407700000411
表示充电站的投用决定,两者都属于0-1变量;
Figure BDA00037565407700000412
Figure BDA00037565407700000413
分别表示充电站的单位售电价格和单位购电价格,ηcharge表示充电站的输入效率,Pi ev表示第i个充电站节点的容量。
进一步优选的:所述S3中,一旦求解得到初始的电动汽车充电站的容量和安装位置,则计算各配电网节点的充电需求满足率;
若处于配电网规划的合理范围内,则分别选出候选站址,然后将确定的充电站负荷数据输入修正模块进行计算;
候选站址即充电站可接入的配电网节点。
进一步优选的:所述S4中,规划模型修正模块中的基础模型旨在实现规划成本净现值最小化的目标,它的表达式如下所示:
Figure BDA00037565407700000414
其中,二进制变量x表示为变电站、线路、光伏、电动汽车的投资决定,连续变量y表示为配电网拓展规划的电流、电压以及光伏容量,约束条件f(x,y)≤0包括一组二进制变量x及二进制变量x与连续变量y构成的可行域。
进一步优选的:所示基础模型的相关假设包括:
各节点电压仅在基准值附近微小变化;
各支路电流和节点功率具有相同的功率因数;
将负荷表示为恒定的注入电流。
进一步优选的:所述S5中,所述配电网投资约束条件包括配电网平衡、电网安全运行、投用以及网络约束,改进的直流配电网拓展规划模型包括如下几点假设条件:
以年为单位,配电网整体规划分多个阶段逐步扩建完成;
引入研究常用的辐射状分布网络拓展规划模型;
在中长期的配电网拓展规划中,采用负荷水平来描述负载曲线;
拓展规划包括变电站的新建、线路的新增、光伏电站的新建;
主投资规划的数学模型和目标函数:
Figure BDA0003756540770000051
Figure BDA0003756540770000052
Figure BDA0003756540770000053
Figure BDA0003756540770000054
Figure BDA0003756540770000055
Figure BDA0003756540770000056
其中:
1)集合:t∈T表示时间集合;支路集合l∈L={EFB,ERB,NAB,NRB}分别表示{现有不可替换分支,现有可替换分支,新建增加分支,新建替换分支};变压器集合tr∈TR={ET,NT}分别表示{现有变压器,新增变压器};节点集合i∈{ΨLNSSPVEV}分别表示{负荷节点,变电站节点,光伏电站节点,电动汽车充电站节点};pv∈PV表示光伏电站集合;k∈{Kl,KTR,KPV}表示投资选择集合;ll∈LL={LL1,LL2,LL3}表示负荷水平集合;
2)变量:
Figure BDA0003756540770000057
属于0-1变量,表示在配电网扩展规划的阶段t下,支路lij的投资决策,
Figure BDA0003756540770000058
表示在t阶段选择投资建设支路lij,否则不进行投资建设;
Figure BDA0003756540770000059
Figure BDA0003756540770000061
属于0-1变量,表示在阶段t下变压器tr和光伏电站pv的投资决策,其含义与支路同理;
Figure BDA0003756540770000062
Figure BDA0003756540770000063
也都属于0-1变量,表示在阶段t负荷水平ll下,支路lij的投用决定,之所以要用两个变量表示,是因为每条支路有两个代表方向,
Figure BDA0003756540770000064
表示在t阶段选择投入使用支路lij,否则不进行投入使用;
Figure BDA0003756540770000065
Figure BDA0003756540770000066
属于0-1变量,表示在阶段t下,变压器和光伏电站的投用决定,其含义与支路同理;
Figure BDA0003756540770000067
Figure BDA0003756540770000068
代表支路电流的幅值与方向,需要注意的是,当lij中有从节点i到节点j的电流流过时,
Figure BDA0003756540770000069
为1,
Figure BDA00037565407700000610
为正值,
Figure BDA00037565407700000611
Figure BDA00037565407700000612
都为0;当lij中没有电流流过时,
Figure BDA00037565407700000613
Figure BDA00037565407700000614
均为0;
Figure BDA00037565407700000615
表示在阶段t负荷水平ll下,变电站i的变压器tr的注入电流值;
Figure BDA00037565407700000616
表示在阶段t负荷水平ll下,由节点i功率不平衡引起的甩负荷量;
3)其他系数:
Figure BDA00037565407700000617
分别表示投资成本系数和维护成本系数;RATEll和DURLll分别表示负荷等级ll下的电费和每日持续时长小时数;VOLL表示单位甩负荷成本;RRl,RRtr,RRPV分别表示支路、变压器、光伏的资金回收率。
进一步优选的:所述S6中,计算最优规划方案下的变电站、光伏和电动汽车充电站的经济容量时,利用配电网节点平衡约束来快速地计算最优规划方案下的各个节点的变电站、光伏和电动汽车充电站的经济容量,并确定变电站、光伏和电动汽车充电站在正常运行条件下的地理位置。
进一步优选的:所述约束遵循基尔霍夫电流定律和基尔霍夫电压定律:
Figure BDA00037565407700000618
Figure BDA00037565407700000619
式中:
Figure BDA00037565407700000620
Figure BDA00037565407700000621
分别表示节点i流向节点j和节点j流向节点i的电流值;
Figure BDA00037565407700000622
表示变电站i的变压器tr的注入电流值;
Figure BDA00037565407700000623
表示光伏电站i的注入电流值;evikt,ll表示节点i的电动汽车负荷需求量;LDit,ll表示节点i的负荷需求量;
Figure BDA00037565407700000624
表示节点i的甩负荷量;Vit,ll和Vjt,ll分别表示节点和节点j的电压值;
通过以上迭代过程纳入光伏发电并引入电动汽车平衡约束,以优化高可再生能源渗透率下配电网的负荷波动,在规划阶段求解直流配电网模型,得到计及PV和EV的新型城市配电网双层联合拓展规划方案。
本发明实施例由于采用以上技术方案,其具有以下优点:
一、本发明为一种计及PV和EV的新型城市配电网双层联合拓展规划方法,针对配电网拓展规划问题纳入城市电网规划低碳指标体系及评估方法,具有显著的工程实用价值,具备广泛的应用前景。
二、本发明引入分布式光伏的并网消纳和电动汽车充电站充放电价格特性,建立以投资-运行-收益综合成本最优为目标的联合配电网双层拓展规划模型。
三、本发明采用改进的配电网直流拓展规划模型,在保证长期的城市配电网拓展规划合理性的同时,能有效地提高计算效率。
上述概述仅仅是为了说明书的目的,并不意图以任何方式进行限制。除上述描述的示意性的方面、实施方式和特征之外,通过参考附图和以下的详细描述,本发明进一步的方面、实施方式和特征将会是容易明白的。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例中计及PV和EV的新型城市配电网双层联合拓展规划方法的流程图。
图2为本发明实施例24节点配电网系统拓扑结构图。
具体实施方式
在下文中,仅简单地描述了某些示例性实施例。正如本领域技术人员可认识到的那样,在不脱离本发明的精神或范围的情况下,可通过各种不同方式修改所描述的实施例。因此,附图和描述被认为本质上是示例性的而非限制性的。
下面结合附图对本发明的实施例进行详细说明。
实施例一
如图1所示,本发明实施例提供了计及PV和EV的新型城市配电网双层联合拓展规划方法,包括以下步骤:
S1、输入电动汽车充电站基本参数以及配电网拓扑结构,根据新一代城市电网规划低碳指标体系及评估方法对新型城市配电网接纳能力进行评估;
S2、综合考虑电动汽车充电站充放电价格特性,建立子运行规划的数学模型和目标函数求解电动汽车配置问题;
S3、一旦子运行问题求解得到初始的电动汽车充电站选址定容方案,确定充电站安装位置和容量,而后将充电站的初始规划结果放入规划模型修正模块进行数据预处理;
S4、在规划周期内,将负荷需求时空分布输入主投资规划的数据参数中,并在所述规划模型修正模块中对基础模型进行假设与修正;
S5、综合考虑配电网投资约束,建立主投资规划的数学模型和目标函数求解改进的直流配电网拓展规划模型;
S6、一旦求解得到最佳的规划方案,则可以快速地计算最优规划方案下的变电站、光伏和电动汽车充电站的经济容量,并确定变电站、光伏和电动汽车充电站在正常运行条件下的地理位置。
本实施例中,具体的:S1中,新一代城市电网规划低碳指标体系及评估方法从以下三个方面进行考量:
(1)电源侧指标:
系统平均碳排放强度;
碳捕集(CCS)等低碳技术的减排率;
可再生能源接纳力度;
可再生能源弃电率;
(2)电网侧指标:
SF6气体相关指标;
资源回收利用相关指标;
先进发电调度指标;
需求侧响应指标;
(3)负荷侧指标:
系统负荷峰谷比;
系统负荷率;
负荷侧碳减排指标;
电动汽车相关指标。
本实施例中,具体的:新型城市的电网综合评价模型包括:
数据预处理:通过归一化处理统一各指标的优化取值方向,然后利用无量纲化处理消除各指标单位和数量级的差异;
相关性处理:削弱乃至消除指标间的相关性和重叠性,减少重复评价。
确定指标权重:采用综合赋权法进行计算:
wi=k1pi+k2qi (1)
式中:wi为由综合赋权法得到的权重系数;
k1和k2分别对主、客观赋权法的倾向程度,满足k1+k2=1;
pi和qi分别为基于主观及客观赋权法确定的权重系数;
构建集结模型的目的在于由各指标的数值和权重系数求得综合评价值,集结模型为线性加权综合:
Figure BDA0003756540770000091
式中:yi为电网样本j的综合评价值;n为总指标数;xij为电网样本j指标i的指标值。
本实施例中,具体的:S2中,配电网运行约束条件包括充电需求、规划节点、负荷比例;
子运行规划的数学模型和目标函数:
Figure BDA0003756540770000092
Figure BDA0003756540770000093
Figure BDA0003756540770000094
Figure BDA0003756540770000101
其中,α表示年度通胀调整利率,
Figure BDA0003756540770000102
表示充电站的投资成本,
Figure BDA0003756540770000103
表示充电站的保养维护成本,
Figure BDA0003756540770000104
表示充电站的运营收益;
RRev表示充电站的资金回收率,
Figure BDA0003756540770000105
Figure BDA0003756540770000106
分别表示充电站投资成本系数和维护成本系数;
Figure BDA0003756540770000107
表示充电站的投资决策,
Figure BDA0003756540770000108
表示充电站的投用决定,两者都属于0-1变量;
Figure BDA0003756540770000109
Figure BDA00037565407700001010
分别表示充电站的单位售电价格和单位购电价格,ηcharge表示充电站的输入效率,Pi ev表示第i个充电站节点的容量。
本实施例中,具体的:S3中,一旦求解得到初始的电动汽车充电站的容量和安装位置,则计算各配电网节点的充电需求满足率;
若处于配电网规划的合理范围内,则可以分别选出候选站址,然后将确定的充电站负荷数据输入修正模块进行计算;
候选站址即充电站可接入的配电网节点。
本实施例中,具体的:S4中,规划模型修正模块中的基础模型旨在实现规划成本净现值最小化的目标,它的表达式如下所示:
Figure BDA00037565407700001011
其中,二进制变量x表示为变电站、线路、光伏、电动汽车的投资决定,连续变量y表示为配电网拓展规划的电流、电压以及光伏容量,约束条件f(x,y)≤0包括一组二进制变量x及二进制变量x与连续变量y构成的可行域。
本实施例中,具体的:所示基础模型的相关假设包括:
各节点电压仅在基准值附近微小变化;
各支路电流和节点功率具有相同的功率因数;
将负荷表示为恒定的注入电流。
本实施例中,具体的:S5中,配电网投资约束包括配电网平衡、电网安全运行、投用以及网络约束,改进的直流配电网拓展规划模型包括如下几点假设条件:
以年为单位,配电网整体规划分多个阶段逐步扩建完成;
引入研究常用的辐射状分布网络拓展规划模型;
在中长期的配电网拓展规划中,通常采用负荷水平来近似地描述负载曲线。
拓展规划包括变电站的新建、线路的新增、光伏电站的新建等等。
主投资规划的数学模型和目标函数:
Figure BDA0003756540770000111
Figure BDA0003756540770000112
Figure BDA0003756540770000113
Figure BDA0003756540770000114
Figure BDA0003756540770000115
Figure BDA0003756540770000116
其中:
1)集合:t∈T表示时间集合;支路集合l∈L={EFB,ERB,NAB,NRB}分别表示{现有不可替换分支,现有可替换分支,新建增加分支,新建替换分支};变压器集合tr∈TR={ET,NT}分别表示{现有变压器,新增变压器};节点集合i∈{ΨLNSSPVEV}分别表示{负荷节点,变电站节点,光伏电站节点,电动汽车充电站节点};pv∈PV表示光伏电站集合;k∈{Kl,KTR,KPV}表示投资选择集合;ll∈LL={LL1,LL2,LL3}表示负荷水平集合;
2)变量:
Figure BDA0003756540770000117
属于0-1变量,表示在配电网扩展规划的阶段t下,支路lij的投资决策,
Figure BDA0003756540770000118
表示在t阶段选择投资建设支路lij,否则不进行投资建设;
Figure BDA0003756540770000119
Figure BDA00037565407700001110
属于0-1变量,表示在阶段t下变压器tr和光伏电站pv的投资决策,其含义与支路同理;
Figure BDA00037565407700001111
Figure BDA00037565407700001112
也都属于0-1变量,表示在阶段t负荷水平ll下,支路lij的投用决定,之所以要用两个变量表示,是因为每条支路可以有两个代表方向,
Figure BDA00037565407700001113
表示在t阶段选择投入使用支路lij,否则不进行投入使用;
Figure BDA00037565407700001114
Figure BDA00037565407700001115
属于0-1变量,表示在阶段t下,变压器和光伏电站的投用决定,其含义与支路同理;
Figure BDA00037565407700001116
Figure BDA0003756540770000121
可以代表支路电流的幅值与方向,需要注意的是,当lij中有从节点i到节点j的电流流过时,
Figure BDA0003756540770000122
为1,
Figure BDA0003756540770000123
为正值,
Figure BDA0003756540770000124
Figure BDA0003756540770000125
都为0;当lij中没有电流流过时,
Figure BDA0003756540770000126
Figure BDA0003756540770000127
均为0。
Figure BDA0003756540770000128
表示在阶段t负荷水平ll下,变电站i的变压器tr的注入电流值;
Figure BDA0003756540770000129
表示在阶段t负荷水平ll下,由节点i功率不平衡引起的甩负荷量。
3)其他系数:
Figure BDA00037565407700001210
分别表示投资成本系数和维护成本系数;RATEll和DURLll分别表示负荷等级ll下的电费和每日持续时长小时数;VOLL表示单位甩负荷成本;RRl,RRtr,RRPV分别表示支路、变压器、光伏的资金回收率。
本实施例中,具体的:S6中,计算最优规划方案下的变电站、光伏和电动汽车充电站的经济容量时,利用配电网节点平衡约束来快速地计算最优规划方案下的各个节点的变电站、光伏和电动汽车充电站的经济容量,并确定变电站、光伏和电动汽车充电站在正常运行条件下的地理位置。
本实施例中,具体的:约束遵循基尔霍夫电流定律和基尔霍夫电压定律:
Figure BDA00037565407700001211
Figure BDA00037565407700001212
式中:
Figure BDA00037565407700001213
Figure BDA00037565407700001214
分别表示节点i流向节点j和节点j流向节点i的电流值;
Figure BDA00037565407700001215
表示变电站i的变压器tr的注入电流值;
Figure BDA00037565407700001216
表示光伏电站i的注入电流值;evikt,ll表示节点i的电动汽车负荷需求量;LDit,ll表示节点i的负荷需求量;
Figure BDA00037565407700001217
表示节点i的甩负荷量;Vit,ll和Vjt,ll分别表示节点和节点j的电压值;
通过以上迭代过程纳入光伏发电并引入电动汽车平衡约束,以优化高可再生能源渗透率下配电网的负荷波动,在规划阶段求解直流配电网模型,得到计及PV和EV的新型城市配电网双层联合拓展规划方案。
实施例二
如图2所示,本发明还提供了一种根据本发明实施例一方法进行实践的实施例:
本实施例为一个虚拟的改进24节点配电网络,由20个负荷节点,4个变电站节点以及32条支路构成,具体的拓扑结构如图2所示。图中实线表示固定不可替换支路,双实线表示可替换支路,虚线表示候选的新建支路;实线矩形表示现有的变电站节点,虚线矩形表示候选的新建变电站节点,圆形表示负荷节点。从图中可知,21和22节点上已有变电站,变电站内部各包括一台变压器,2-21和6-22为固定不可替换支路,1-21和8-22为可替换支路。
基本情景设定如下:
1)整个配电网络的基准值为1MVA和20kV,节点电压上下限分别为21kV和19kV。本次规划分为三个阶段,每一年作为一个阶段,年通货膨胀调整利率为10%,支路的资本回收率为11%,变压器的资本回收率为13%,线路阻抗为阻抗0.732Ω/km,甩负荷成本设为2000k$/MWh。
2)在规划过程中,新建的变电站、线路、光伏电站以及电动汽车充电站的都有相应的投资和运行费用。电动汽车充电负荷占总负荷的5%以上,充电费用设为当前电网电价的1.5倍。
3)本文将负载曲线离散化为三个负荷水平等级LL1,LL2和LL3,分别描述负荷节点在峰时段、平时段和谷时段的每小时最高用电量,日持续小时分别为6h,10h和8h。
本发明设计了以下四个场景算例,规划结果如表1所示。
场景Ⅰ:不考虑光伏和电动汽车的拓展规划;
场景II:只考虑光伏接入的配电网拓展规划;
场景III:只考虑电动汽车充电站的拓展规划;
场景IV:综合考虑光伏和电动汽车的拓展规划。
表1四种场景下的规划成本结果
Figure BDA0003756540770000131
Figure BDA0003756540770000141
从表1可以看出,随着配电网负荷的阶段性增长,除了投资成本以外,变电站生产成本、运维成本和网络损耗在内的运行费用都呈现出了阶段性递增的趋势,并且考虑光伏电站和电动汽车充电站可有效减少系统规划总成本。
与基准规划场景Ⅰ相比,场景II配置光伏电站会使得投资者在投建初期承担较大的经济压力,但这种预期的费用增长能够被生产成本的降低所补偿。配置光伏电站能够延缓或减少配电网中变电站的投资,降低变电站的出力,总费用成本相对于场景Ⅰ减少了51.36%。场景III电动汽车充电站的接入加快了配电网中线路的投资和使用,会产生更高的投资和运维成本,但电动汽车充电站通过向用户提供充电负荷能够赚取一定的运营收益,总费用成本相对于场景Ⅰ减少了12.11%。与前三种场景相比,在考虑光伏和电动汽车充电负荷场景IV下,考虑充电负荷所带来的运营收益能够补偿要付出的生产成本,考虑光伏电站所带来的电能生产能够补偿要付出的投资成本。因此所得到的联合规划方案总费用成本是最低的,相对于场景Ⅰ减少了70.18%。对该配电网系统来说,在四个场景下的各负荷水平下,失负荷成本均为0,说明所提出的规划方案可保证各节点负荷需求,这个结果也验证了模型的适用性。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到其各种变化或替换,这些都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (10)

1.计及PV和EV的新型城市配电网双层联合拓展规划方法,其特征在于,包括以下步骤:
S1、输入电动汽车充电站基本参数以及配电网拓扑结构,根据新一代城市电网规划低碳指标体系及评估方法,对新型城市配电网接纳能力进行评估;
S2、综合配电网运行约束条件,建立子运行规划的数学模型和目标函数,求解电动汽车配置问题;
S3、得到初始的电动汽车充电站选址定容方案,确定充电站安装位置和容量,而后将充电站的初始规划结果放入规划模型修正模块进行数据预处理;
S4、将负荷需求时空分布输入主投资规划的数据参数中,并在所述规划模型修正模块中对基础模型进行假设与修正;
S5、综合配电网投资约束条件,建立所述主投资规划的数学模型和目标函数,求解改进的直流配电网拓展规划模型;
S6、计算最优规划方案下的变电站、光伏和电动汽车充电站的经济容量,并确定变电站、光伏和电动汽车充电站在正常运行条件下的地理位置,得到计及PV和EV的新型城市配电网双层联合拓展规划方案。
2.根据权利要求1所述的计及PV和EV的新型城市配电网双层联合拓展规划方法,其特征在于:所述S1中,新一代城市电网规划低碳指标体系及评估方法从以下三个方面进行考量:
(1)电源侧指标:
系统平均碳排放强度;
碳捕集(CCS)低碳技术的减排率;
可再生能源接纳力度;
可再生能源弃电率;
(2)电网侧指标:
SF6气体相关指标;
资源回收利用相关指标;
先进发电调度指标;
需求侧响应指标;
(3)负荷侧指标:
系统负荷峰谷比;
系统负荷率;
负荷侧碳减排指标;
电动汽车相关指标。
3.根据权利要求2所述的计及PV和EV的新型城市配电网双层联合拓展规划方法,其特征在于:所述S1中,新一代城市电网规划评估方法包括:
数据预处理:通过归一化处理统一各指标的优化取值方向,然后利用无量纲化处理消除各指标单位和数量级的差异;
相关性处理:削弱乃至消除指标间的相关性和重叠性,减少重复评价;
确定指标权重:采用综合赋权法进行计算:
wi=k1pi+k2qi (1)
式中:wi为由综合赋权法得到的权重系数;k1和k2分别对主、客观赋权法的倾向程度,满足k1+k2=1;pi和qi分别为基于主观及客观赋权法确定的权重系数;
构建集结模型的目的在于由各指标的数值和权重系数求得综合评价值,集结模型为线性加权综合:
Figure FDA0003756540760000021
式中:yi为电网样本j的综合评价值;n为总指标数;xij为电网样本j指标i的指标值。
4.根据权利要求1所述的计及PV和EV的新型城市配电网双层联合拓展规划方法,其特征在于:所述S2中,所述配电网运行约束条件包括充电需求、规划节点、负荷比例;
子运行规划的数学模型和目标函数:
Figure FDA0003756540760000022
Figure FDA0003756540760000031
Figure FDA0003756540760000032
Figure FDA0003756540760000033
其中,α表示年度通胀调整利率,
Figure FDA0003756540760000034
表示充电站的投资成本,
Figure FDA0003756540760000035
表示充电站的保养维护成本,
Figure FDA0003756540760000036
表示充电站的运营收益;
RRev表示充电站的资金回收率,
Figure FDA0003756540760000037
Figure FDA0003756540760000038
分别表示充电站投资成本系数和维护成本系数;
Figure FDA0003756540760000039
表示充电站的投资决策,
Figure FDA00037565407600000310
表示充电站的投用决定,两者都属于0-1变量;
Figure FDA00037565407600000311
Figure FDA00037565407600000312
分别表示充电站的单位售电价格和单位购电价格,ηcharge表示充电站的输入效率,Pi ev表示第i个充电站节点的容量。
5.根据权利要求1所述的计及PV和EV的新型城市配电网双层联合拓展规划方法,其特征在于:所述S3中,一旦求解得到初始的电动汽车充电站的容量和安装位置,则计算各配电网节点的充电需求满足率;
若处于配电网规划的合理范围内,则分别选出候选站址,然后将确定的充电站负荷数据输入修正模块进行计算;
候选站址即充电站可接入的配电网节点。
6.根据权利要求1所述的计及PV和EV的新型城市配电网双层联合拓展规划方法,其特征在于:所述S4中,规划模型修正模块中的基础模型的表达式如下所示:
Figure FDA00037565407600000313
其中,二进制变量x表示为变电站、线路、光伏、电动汽车的投资决定,连续变量y表示为配电网拓展规划的电流、电压以及光伏容量,约束条件f(x,y)≤0包括一组二进制变量x及二进制变量x与连续变量y构成的可行域。
7.根据权利要求6所述的计及PV和EV的新型城市配电网双层联合拓展规划方法,其特征在于:所示基础模型的相关假设包括:
各节点电压仅在基准值附近微小变化;
各支路电流和节点功率具有相同的功率因数;
将负荷表示为恒定的注入电流。
8.根据权利要求1所述的计及PV和EV的新型城市配电网双层联合拓展规划方法,其特征在于:所述S5中,所述配电网投资约束条件包括配电网平衡、电网安全运行、投用以及网络约束,改进的直流配电网拓展规划模型包括如下几点假设条件:
以年为单位,配电网整体规划分多个阶段逐步扩建完成;
引入研究常用的辐射状分布网络拓展规划模型;
在中长期的配电网拓展规划中,采用负荷水平来描述负载曲线;
拓展规划包括变电站的新建、线路的新增、光伏电站的新建;
主投资规划的数学模型和目标函数:
Figure FDA0003756540760000041
Figure FDA0003756540760000042
Figure FDA0003756540760000043
Figure FDA0003756540760000044
Figure FDA0003756540760000045
Figure FDA0003756540760000046
其中:
1)集合:t∈T表示时间集合;支路集合l∈L={EFB,ERB,NAB,NRB}分别表示{现有不可替换分支,现有可替换分支,新建增加分支,新建替换分支};变压器集合tr∈TR={ET,NT}分别表示{现有变压器,新增变压器};节点集合i∈{ΨLNSSPVEV}分别表示{负荷节点,变电站节点,光伏电站节点,电动汽车充电站节点};pv∈PV表示光伏电站集合;k∈{Kl,KTR,KPV}表示投资选择集合;ll∈LL={LL1,LL2,LL3}表示负荷水平集合;
2)变量:
Figure FDA0003756540760000051
属于0-1变量,表示在配电网扩展规划的阶段t下,支路lij的投资决策,
Figure FDA0003756540760000052
表示在t阶段选择投资建设支路lij,否则不进行投资建设;
Figure FDA0003756540760000053
Figure FDA0003756540760000054
属于0-1变量,表示在阶段t下变压器tr和光伏电站pv的投资决策,其含义与支路同理;
Figure FDA0003756540760000055
Figure FDA0003756540760000056
也都属于0-1变量,表示在阶段t负荷水平ll下,支路lij的投用决定,之所以要用两个变量表示,是因为每条支路有两个代表方向,
Figure FDA0003756540760000057
表示在t阶段选择投入使用支路lij,否则不进行投入使用;
Figure FDA0003756540760000058
Figure FDA0003756540760000059
属于0-1变量,表示在阶段t下,变压器和光伏电站的投用决定,其含义与支路同理;
Figure FDA00037565407600000510
Figure FDA00037565407600000511
代表支路电流的幅值与方向,需要注意的是,当lij中有从节点i到节点j的电流流过时,
Figure FDA00037565407600000512
为1,
Figure FDA00037565407600000513
为正值,
Figure FDA00037565407600000514
Figure FDA00037565407600000515
都为0;当lij中没有电流流过时,
Figure FDA00037565407600000516
Figure FDA00037565407600000517
均为0;
Figure FDA00037565407600000518
表示在阶段t负荷水平ll下,变电站i的变压器tr的注入电流值;
Figure FDA00037565407600000519
表示在阶段t负荷水平ll下,由节点i功率不平衡引起的甩负荷量;
3)其他系数:
Figure FDA00037565407600000520
分别表示投资成本系数和维护成本系数;RATEll和DURLll分别表示负荷等级ll下的电费和每日持续时长小时数;VOLL表示单位甩负荷成本;RRl,RRtr,RRPV分别表示支路、变压器、光伏的资金回收率。
9.根据权利要求1所述的计及PV和EV的新型城市配电网双层联合拓展规划方法,其特征在于:所述S6中,计算最优规划方案下的变电站、光伏和电动汽车充电站的经济容量时,利用配电网节点平衡约束来快速地计算最优规划方案下的各个节点的变电站、光伏和电动汽车充电站的经济容量,并确定变电站、光伏和电动汽车充电站在正常运行条件下的地理位置。
10.根据权利要求9所述的计及PV和EV的新型城市配电网双层联合拓展规划方法,其特征在于:所述约束遵循基尔霍夫电流定律和基尔霍夫电压定律:
Figure FDA00037565407600000521
Figure FDA00037565407600000522
式中:
Figure FDA00037565407600000523
Figure FDA00037565407600000524
分别表示节点i流向节点j和节点j流向节点i的电流值;
Figure FDA00037565407600000525
表示变电站i的变压器tr的注入电流值;
Figure FDA00037565407600000526
表示光伏电站i的注入电流值;evikt,ll表示节点i的电动汽车负荷需求量;LDit,ll表示节点i的负荷需求量;
Figure FDA00037565407600000527
表示节点i的甩负荷量;Vit,ll和Vjt,ll分别表示节点和节点j的电压值;
通过以上迭代过程纳入光伏发电并引入电动汽车平衡约束,以优化高可再生能源渗透率下配电网的负荷波动,在规划阶段求解直流配电网模型,得到计及PV和EV的新型城市配电网双层联合拓展规划方案。
CN202210858483.3A 2022-07-20 2022-07-20 计及pv和ev的新型城市配电网双层联合拓展规划方法 Pending CN115375006A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210858483.3A CN115375006A (zh) 2022-07-20 2022-07-20 计及pv和ev的新型城市配电网双层联合拓展规划方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210858483.3A CN115375006A (zh) 2022-07-20 2022-07-20 计及pv和ev的新型城市配电网双层联合拓展规划方法

Publications (1)

Publication Number Publication Date
CN115375006A true CN115375006A (zh) 2022-11-22

Family

ID=84061884

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210858483.3A Pending CN115375006A (zh) 2022-07-20 2022-07-20 计及pv和ev的新型城市配电网双层联合拓展规划方法

Country Status (1)

Country Link
CN (1) CN115375006A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117391311A (zh) * 2023-12-07 2024-01-12 国网湖北省电力有限公司经济技术研究院 计及碳排放和不确定性的充电站和配电网协同规划方法
CN117764401A (zh) * 2024-01-10 2024-03-26 国网河北省电力有限公司经济技术研究院 考虑风险评估的柔性配电网多资源协调规划方法及装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117391311A (zh) * 2023-12-07 2024-01-12 国网湖北省电力有限公司经济技术研究院 计及碳排放和不确定性的充电站和配电网协同规划方法
CN117391311B (zh) * 2023-12-07 2024-03-08 国网湖北省电力有限公司经济技术研究院 计及碳排放和不确定性的充电站和配电网协同规划方法及装置
CN117764401A (zh) * 2024-01-10 2024-03-26 国网河北省电力有限公司经济技术研究院 考虑风险评估的柔性配电网多资源协调规划方法及装置

Similar Documents

Publication Publication Date Title
Lupangu et al. A review of technical issues on the development of solar photovoltaic systems
CN108470239B (zh) 计及需求侧管理和储能的主动配电网多目标分层规划方法
Yang et al. Optimal sizing and placement of energy storage system in power grids: A state-of-the-art one-stop handbook
Singh et al. Distributed power generation planning for distribution networks using electric vehicles: Systematic attention to challenges and opportunities
CN115375006A (zh) 计及pv和ev的新型城市配电网双层联合拓展规划方法
Sun et al. Flexible expansion planning of distribution system integrating multiple renewable energy sources: An approximate dynamic programming approach
Modu et al. DC-based microgrid: Topologies, control schemes, and implementations
CN105826944A (zh) 一种微电网群的功率预测方法和系统
CN113239512B (zh) 一种考虑韧性的交直流配电网规划方案筛选方法及系统
Cheng et al. Adaptive robust method for dynamic economic emission dispatch incorporating renewable energy and energy storage
CN111626594A (zh) 一种多种需求侧资源协同的配电网扩展规划方法
Saini et al. An environmental based techno-economic assessment for battery energy storage system allocation in distribution system using new node voltage deviation sensitivity approach
CN111009914A (zh) 一种面向主动配电网的储能装置选址定容方法
Mohseni et al. Optimal sizing of an islanded micro-grid using meta-heuristic optimization algorithms considering demand-side management
Singh et al. Profit maximization in ADN through voltage control and DR management with networked community micro-grids
CN116995719A (zh) 一种计及风光荷不确定性的主动配电网双层扩展规划方法
Goli et al. Optimal planning of smart charging facilities using grey wolf optimizer
Azmi Grid interaction performance evaluation of BIPV and analysis with energy storage on distributed network power management
Reddy et al. Active power management of grid-connected PV-PEV using a Hybrid GRFO-ITSA technique
Mohseni et al. Power quality considerations in the planning phase of stand-alone wind-powered micro-grids
Chouaf et al. Optimal energy management for a connected microgrid using dynamic programming method
Huang et al. Stackelberg Competition Between Merchant and Regulated Storage Investment under Locational Marginal Pricing
Jovanović et al. Electricity tariff aware model predictive controller for customer battery storage with uncertain daily cycling load
Chen et al. Leaky bucket-inspired power output smoothing with load-adaptive algorithm
ELamin et al. Enhancing energy trading between different islanded microgrids a reinforcement learning algorithm case study in northern kordofan state

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination