CN115373073A - 一种基于狭缝结构的宽带多模式端面耦合器 - Google Patents

一种基于狭缝结构的宽带多模式端面耦合器 Download PDF

Info

Publication number
CN115373073A
CN115373073A CN202210836319.2A CN202210836319A CN115373073A CN 115373073 A CN115373073 A CN 115373073A CN 202210836319 A CN202210836319 A CN 202210836319A CN 115373073 A CN115373073 A CN 115373073A
Authority
CN
China
Prior art keywords
waveguide
mode
slowly
slot structure
modes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210836319.2A
Other languages
English (en)
Inventor
王健
李康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN202210836319.2A priority Critical patent/CN115373073A/zh
Publication of CN115373073A publication Critical patent/CN115373073A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/14Mode converters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1228Tapered waveguides, e.g. integrated spot-size transformers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/262Optical details of coupling light into, or out of, or between fibre ends, e.g. special fibre end shapes or associated optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12035Materials
    • G02B2006/12061Silicon
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12133Functions
    • G02B2006/12147Coupler
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12133Functions
    • G02B2006/12152Mode converter

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

本发明公开了一种基于狭缝结构的宽带多模式端面耦合器,属于光互连通信器件领域。该多模式端面耦合器包括衬底、具有两种芯层材料的异构波导和掩埋层,异构波导包括第一芯层材料构成条形波导、第二芯层材料构成多级绝热缓变倒锥波导,其中倒锥波导位于条形波导中;所述多级绝热缓变倒锥波导,依次包括输入细直波导、锥形的条形波导、多级缓变的狭缝结构波导和输出宽直波导。基于模式演变原理,少模光纤内多个模式耦合到多级绝热缓变倒锥波导后,可以分别演变为片上的多模波导模式,具有低损耗、低串扰、大带宽的特点。本发明实现了模分复用技术在光纤‑芯片光互连系统中的应用,对进一步地提升光纤‑芯片互连系统的容量等领域的应用具有重大意义。

Description

一种基于狭缝结构的宽带多模式端面耦合器
技术领域
本发明属于光互连通信器件领域,更具体地,涉及一种基于狭缝结构的宽带多模式端面耦合器。
背景技术
为了满足快速增长的大容量和低功耗数据传输的需求,随着光场多维度资源的开发和引入,多维复用的光互连技术也成为了进一步提高传输能力的有效途径。其中,在波分复用技术的推动下,光通信的传输速率难以置信地提高到了Tbit/s,而其他维度(偏振、时间等)的复用技术在过去也取得飞速发展,极大地提升了单模光纤通信网络的通信能力。但是,现有光场维度的开发已接近极限。为了解决单模光纤通信网络的容量瓶颈,模分复用(MDM)技术利用光纤中模式或者片上的高阶模式实现了空间维度的复用技术,展示了该技术在未来进一步提升光通信网络容量的广阔前景。
虽然基于光纤或者片上的模分复用技术已经有了大量的报道,但是完整的模分复用光网络还需要实现光纤中模式的和片上模式之间低损耗和低串扰的耦合互连。在现有的光纤-芯片耦合技术中,大多数的方案是研究光纤-芯片之间基模的耦合互连,鲜有光纤-芯片之间多个模式之间的直接耦合,其面临的最大的挑战是需要利用特殊的结构来实现片上波导模式和光纤模式的模斑转换。基于二维光栅的垂直耦合方案虽然能够实现光纤-芯片之间多个模式的转换,但也具有大的耦合损耗,同时还具有光栅的固定缺陷(有限的带宽)。而现有端面耦合方案也在模式数目或者带宽方面存在严峻的挑战,严重限制了模分复用技术在光纤-芯片通信的进一步应用和发展。
发明内容
针对现有技术的缺陷,本发明提供一种基于狭缝结构的宽带多模式端面耦合器,其目的在于突破现有光纤-芯片光互技术的耦合损耗较大、带宽较小和模式数目较少的局限性,目标是基于端面耦合方案,利用狭缝结构波导和模式演变的原理,实现少模光纤与片上多模波导之间的连接,并在一个大带宽内完成光纤-芯片之间多个模式的高效的直接耦合转换,从而促进模分复用技术在光纤-芯片互连系统的应用。
因此,为实现片上多模系统与少模光纤链路的互连通信,在此发明中将提供一种基于狭缝结构的宽带多模式端面耦合器,可以实现片上多模波导与少模光纤中多个模式的直接耦合转换,具有低损耗、低串扰和大带宽的特点。
本发明提供的一种基于狭缝结构的宽带多模式端面耦合器,该设计基于端面耦合,可以实现片上多模系统与少模光纤链路之间多个模式的直接耦合转换。包括两种芯层材料的异构多模波导、衬底和掩埋层,该异构多模波导位于衬底上面,掩埋层下面,包括第一芯层材料构成的条形波导和第二芯层材料构成的多级绝热缓变倒锥波导,其中多级绝热缓倒锥波导位于条形波导中;所述的多级绝热缓变倒锥波导包括首尾相连的输入细直波导、锥形的条形波导、多级缓变的狭缝结构波导和输出宽直波导,能够将耦合到第一芯层材料中的多个高阶模式缓变成片上的多个波导模式。
进一步地,所述的多级缓变的狭缝结构波导包括n+1段波导宽度或者狭缝变化的狭缝结构波导。第一段狭缝结构波导用于连接狭缝结构波导和锥形的条形波导,波导狭缝宽度不变,其中连接锥形波导的波导宽度逐渐减小,另外一根波导的宽度逐渐减小,而且狭缝结构波导的波导宽度相等。而接着的n-1段多级缓变的狭缝结构波导则利用模式演变的原理,通过计算狭缝结构波导的有效折射率以及偏振分量随波导宽度或者波导狭缝的变化关系,从而确定各级狭缝结构波导的波导宽度和波导狭缝宽度,并对各级缓变的狭缝结构波导的长度进行参数扫描,从而实现多个高阶LP模式到片上多模波导之间的直接演变。第n+1段狭缝结构波导用于低损耗地连接狭缝结构波导和输出宽直波导,为波导狭缝宽度变小,波导宽度变大的狭缝结构波导。
进一步地,所述的第一芯层材料起到过渡耦合和辅助耦合的作用,可以为聚合物或者氮化硅等。由该材料构成的条形波导能够支持多个高阶模式,其截面尺寸小于6×6μm2及以下,可以和特殊设计的锥形少模光纤的尺寸匹配,从而减小光纤-芯片之间由于模斑尺寸失配的带来耦合损耗。另一方面,第一芯层材料的折射率低于第二芯层材料的折射率,有利于将存在于第一芯层材料波导中的多个高阶模式缓慢转变成第二芯层材料中多个片上模式。
进一步地,所述第二芯层材料构成的多级缓变的波导,通常为硅材料,位于第一芯层材料构成的条形波导中,依次包括输入细直波导、锥形的条形波导、多级缓变的狭缝结构波导和输出宽直波导。所述的多级缓变的波导厚度为340nm,可以更稳定地同时支持不同模式的两种偏振。同时,为了满足实际加工的可行性,第二芯层材料波导的最小宽度和最小间距由工艺制造条件决定。
更进一步地,所述的输入细直波导用于实现第一芯层材料构成的条形波导到第二芯层材料构成的多级绝热缓变倒锥波导之间的低损耗耦合;所述的锥形的条形波导用于实现两个不同偏振基模之间的直接耦合转化,锥形的条形波导的输出波导宽度能支持两个不同偏振的基模;所述的多级缓变的狭缝结构波导用于实现其他多个高阶LP模式和片上模式之间的直接转换;所述的输出宽直波导能够支持多个片上模式稳定地传输。
通过本发明所构思的以上技术方案,与现有技术相比,能够取得以下有益效果:
1、传统光纤-芯片的互连耦合技术大多数是实现两个不同偏振基模的耦合转换,而针对多模耦合方案,无论是垂直耦合还是端面耦合都存在耦合损耗较大、串扰较低、带宽较大和耦合模式数目较少等问题。相比之下,本发明提出了一种基于狭缝结构的宽带多模式端面耦合器,可以实现少模光纤中多个LP模式和多模波导中多个模式之间的直接耦合转换,具有低损耗、低串扰、大带宽和耦合数目多的特点。
2、本发明提出的基于狭缝结构的宽带多模式端面耦合器,能在大的工作波长内实现多个模式的直接耦合,有利于和其它维度复用技术(比如波长复用技术)形成混合复用技术,能提升光通信的容量。
3、本发明提出的基于狭缝结构的宽带多模式端面耦合器,可以实现少模光纤中6个LP模式到片上6个波导模式之间的直接耦合转换,同时该设计方法可以通过调整波导结构参数来实现更多模式的直接转换,进一步的提升光纤-芯片光互连系统的传输容量。
附图说明
图1是本发明提供的基于狭缝结构的宽带多模式端面耦合器的结构示意图;
图2是本发明提供的少模光纤、第一芯层材料ⅰ构成的条形波导、第二芯层材料ⅱ构成的异构波导的截面图以及其对应支持的6个不同模式光场图;
图3是本发明提供的狭缝结构波导中各个模式有效折射率和TE偏振分量随波导宽度的变化关系图;
图4是本发明提供的片上多级绝热缓变倒锥波导实现6个高阶模式到6个片上模式演变的仿真传播光场图;
图5是本发明提供的基于狭缝结构的宽带多模式端面耦合器中6个模式演变的传输图谱,(a)类似LPO1 x模式,(b)类似LP11a x模式,(c)类似LP11b x模式,(d)类似LPO1 y模式,(e)类似LP11a y模式和(f)类似LP11b y模式。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间不构成冲突就可以相互组合。
本发明提供一种基于狭缝结构的宽带多模式端面耦合器,其主要功能是解决少模光纤与片上多模波导之间多个导模的直接耦合带宽较小的问题,利用多级缓变的狭缝结构波导结构扩大少模光纤与片上多模波导之间的直接耦合带宽。包括两种芯层材料的异构多模波导、衬底和掩埋层,该异构多模波导位于衬底上面,掩埋层下面,包括第一芯层材料构成的条形波导和第二芯层材料构成的多级绝热缓变倒锥波导,其中多级绝热缓倒锥波导位于条形波导中;所述的多级绝热缓变倒锥波导包括首尾相连的输入细直波导、锥形的条形波导、多级缓变的狭缝结构波导和输出宽直波导,其中的多级缓变狭缝结构波导的结构示意图如图1所示。
如图2所示,本发明提供了基于狭缝结构的宽带多模式端面耦合器中的不同结构的截面和导模的模场分布图,包括了少模光纤的截面图和6个LP模式(LPO1 x,LPO1 y,LP11a x,LP11a y,LP11b x,LP11b y)的模场分布图、第一芯层材料ⅰ条形波导的截面图和6个高阶模式(TE11,TM11,TE12,TM12,TE21,TM21)的模场分布图、第一芯层材料ⅰ和第二芯层材料ⅱ异构波导的截面图和6个片上模式(TE0,TE1,TE2,TM0,TM1,TM2)的模场分布图。其中,第一芯层材料ⅰ条形波导和第一芯层材料ⅰ、第二芯层材料ⅱ异构波导均置于绝缘层上面,且被掩埋层包裹。
本发明提供的一种基于狭缝结构的宽带多模式端面耦合器,其中一种具体实施方式为:
由第一芯层材料ⅰ构成的条形波导的一端与特殊设计后的少模光纤连接,其截面尺寸与少模光纤的截面尺寸匹配,可以减少由模斑尺寸失配造成的耦合损耗,另外一端与异构的多级缓变的狭缝结构波导连接,发挥一个过渡耦合的作用,将6个高阶模式输入到两种芯层材料构成的异构波导,包括第一芯层材料ⅰ构成的条形波导、第二芯层材料ⅱ构成的多级绝热缓变倒锥波导。其中,第一芯层材料ⅰ的折射率介于第二芯层材料ⅱ和掩埋层ⅲ,有利于在多级缓变的异构波导中将第一芯层材料ⅰ中的LP模式直接转换为第二芯层材料ⅱ的片上模式。因此,第一芯层材料ⅰ可选择聚合物或者氮化硅等材料,考虑到工艺制备条件等多个因素,本实施例中采用的是SU8材料;所述第二种芯层材料ⅱ为高折射率介质--硅。
多级缓变的异构波导依次包括输入细直波导Ⅰ、锥形的条形波导Ⅱ、多级缓变的狭缝结构波导Ⅲ和输出宽直波导Ⅳ。其中,输入细直波导Ⅰ连接了第一芯层材料ⅰ条形波导和异构波导,理论上细直波导宽度越小,连接损耗越小;但波导的宽度越小,工艺加工难度越大,因此,细直波导的选择需权衡连接损耗和工艺加工条件,本实施例中最小波导宽度为60nm。出于同样的考虑,本实施例中的最小间距为60nm。为了稳定地同时支持不同模式的两种偏振模式,本实施例中的多级缓变波导厚度为340nm;同时,为了满足6个片上模式的稳定传输,本实施例中输出宽直波导的宽度选择为1.2μm。
锥形的条形波导Ⅱ和多级缓变的狭缝结构波导Ⅲ能够实现6个LP模式到6个片上模式的直接耦合,其中锥形条形波导的输出波导宽度能够支持两个不同偏振基模,本实施例中输出波导宽度为180μm。多级缓变的狭缝结构波导Ⅲ用于实现其他4个高阶LP模式和4个片上高阶模式之间的直接转换。
多级缓变的狭缝结构波导Ⅲ由1,2,···,n+1共n+1段波导宽度或者狭缝变化的狭缝结构波导构成。第一段狭缝结构波导用于连接狭缝结构波导和锥形的条形波导,波导狭缝宽度不变,其中连接锥形波导的波导宽度逐渐减小,另外一根波导的宽度逐渐减小,而且狭缝结构波导的波导宽度相等。而接着的n-1段多级缓变的狭缝结构波导则利用模式演变的原理,通过计算狭缝结构波导的有效折射率以及偏振分量随波导宽度或者波导狭缝的变化关系,从而确定各级狭缝结构波导的波导宽度和波导狭缝宽度,并对各级缓变的狭缝结构波导的长度进行参数扫描,从而实现其它4个高阶LP模式到4个片上高阶模式之间的直接演变。其中,狭缝结构波导的有效折射率以及偏振分量随波导宽度或者波导狭缝的变化关系如图3所示。第n+1段狭缝结构波导的用于低损耗地连接狭缝结构波导和输出宽直波导,为波导狭缝宽度变小,波导宽度变大的狭缝结构波导。
图4给出了基于狭缝结构波导的硅基多级绝热缓变倒锥波导实现6个LP模式演变为6个片上模式的传播光场仿真结果图。本实施例中,在横截面为3×3μm2正方形的SU8波导辅助下,共2740μm长的17级的绝热缓变波导能实现6个LP模式和片上模式的高效耦合转换,具有低损耗、低串扰和大带宽的特点。图5给出了基于狭缝结构的宽带多模式端面耦合器中6个模式演变的传输图谱,展示了该耦合器能在C波段(1530nm~1560nm)内实现小于-21dB的低串扰。此外,狭缝结构波导还增加了波导狭缝这一新的结构参数,有利于横截面尺寸(小于6×6μm2)更大的异构波导完成6个模式的高效低串扰耦合,可以降低对特殊少模光纤的设计要求。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种基于狭缝结构的宽带多模式端面耦合器,其特征在于,所述多模式端面耦合器从下至上依次包括衬底、异构波导和掩埋层,所述异构波导包括第一芯层材料(ⅰ)构成的条形波导和第二芯层材料(ⅱ)构成的多级绝热缓变倒锥波导,其中多级绝热缓倒锥波导位于条形波导中;所述多级绝热缓变倒锥波导包括首尾相连的输入细直波导(Ⅰ)、锥形的条形波导(Ⅱ)、多级缓变的狭缝结构波导(Ⅲ)和输出宽直波导(Ⅳ);所述异构波导用于实现少模光纤中多个线偏振(LP)模式到片上多模波导中对应多个模式的直接高效低串扰模式演变和转换。
2.根据权利要求1所述的基于狭缝结构的宽带多模式端面耦合器,其特征在于,所述多级缓变的狭缝结构波导(Ⅲ)包括n+1段波导宽度或者狭缝变化的狭缝结构波导,用于实现多个高阶模式直接转化,其中n≥13。
3.根据权利要求2所述的基于狭缝结构的宽带多模式端面耦合器,其特征在于,所述多级缓变的狭缝结构波导(Ⅲ)中第一段狭缝结构波导(1)与锥形的条形波导(Ⅱ)的输出端相连,所述第一段狭缝结构波导(1)为波导狭缝宽度不变,波导宽度渐变的狭缝结构波导;所述多级缓变的狭缝结构波导(Ⅲ)中第n+1段狭缝结构波导(n+1)与输出宽直波导(Ⅳ)的输入端相连,所述第n+1段狭缝结构波导(n+1)为波导狭缝宽度变小,波导宽度也渐变的狭缝结构波导。
4.根据权利要求1所述的基于狭缝结构的宽带多模式端面耦合器,其特征在于,所述第一芯层材料(ⅰ)构成的条形波导的横截面为正方形且尺寸在6×6μm2及以下。
5.根据权利要求1所述的基于狭缝结构的宽带多模式端面耦合器,其特征在于,所述第二芯层材料(ⅱ)构成的多级缓变波导的高度为340nm。
6.根据权利要求1所述的基于狭缝结构的宽带多模式端面耦合器,其特征在于,所述第一芯层材料(ⅰ)的折射率介于第二芯层材料(ⅱ)和掩埋层的折射率之间。
7.根据权利要求1所述的基于狭缝结构的宽带多模式端面耦合器,其特征在于,所述的锥形的条形波导(Ⅱ)用于实现两个不同偏振基模的直接转换。
8.根据权利要求1所述的基于狭缝结构的宽带多模式端面耦合器,其特征在于,所述的多级缓变的狭缝结构波导(Ⅲ)用于实现四个高阶模式的直接转换。
9.根据权利要求1所述的基于狭缝结构的宽带多模式端面耦合器,其特征在于,所述第一芯层材料(ⅰ)为聚合物或者氮化硅,第二芯层材料(ⅱ)为硅。
CN202210836319.2A 2022-07-15 2022-07-15 一种基于狭缝结构的宽带多模式端面耦合器 Pending CN115373073A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210836319.2A CN115373073A (zh) 2022-07-15 2022-07-15 一种基于狭缝结构的宽带多模式端面耦合器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210836319.2A CN115373073A (zh) 2022-07-15 2022-07-15 一种基于狭缝结构的宽带多模式端面耦合器

Publications (1)

Publication Number Publication Date
CN115373073A true CN115373073A (zh) 2022-11-22

Family

ID=84062194

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210836319.2A Pending CN115373073A (zh) 2022-07-15 2022-07-15 一种基于狭缝结构的宽带多模式端面耦合器

Country Status (1)

Country Link
CN (1) CN115373073A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115755275A (zh) * 2022-11-23 2023-03-07 之江实验室 一种基于亚波长结构的小型化狭缝波导模式转换器件

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115755275A (zh) * 2022-11-23 2023-03-07 之江实验室 一种基于亚波长结构的小型化狭缝波导模式转换器件
CN115755275B (zh) * 2022-11-23 2023-09-19 之江实验室 一种基于亚波长结构的小型化狭缝波导模式转换器件

Similar Documents

Publication Publication Date Title
CN112630995B (zh) 硅基偏振旋转器转换光信号偏振态的方法
CN114384632B (zh) 一种基于阵列波导光栅和波导型探测器的模斑转换器
CN113359238B (zh) 基于模式演化的两臂不等高非对称波导光纤端面耦合器
CN114354128A (zh) 一种新型涡旋光场探测装置
CN110515159A (zh) 基于光纤端面微结构的LP01-LPmn全光纤模式转换器及其制备方法
CN113866893A (zh) 一种新型光纤涡旋场生成器
CN107490829A (zh) 基于反锥形波导的三模式复用器/解复用器
CN115373073A (zh) 一种基于狭缝结构的宽带多模式端面耦合器
CN115079345A (zh) 一种基于双锥形非对称定向耦合器型光偏振分束旋转器
Zhu et al. Efficient silicon integrated four-mode edge coupler for few-mode fiber coupling
Guo et al. Ultracompact mode-order converting power splitter for mid-infrared wavelengths using an MMI coupler embedded with oblique subwavelength grating wires
CN114839722B (zh) 一种异构多模波导耦合器
CN110068892B (zh) 一种基于硅基波导光子轨道角动量的产生及复用集成器
CN113311537A (zh) 一种基于级联锥形耦合器的聚合物三模式复用器
Li et al. Broadband and efficient multi-mode fiber-chip edge coupler on a silicon platform assisted with a nano-slot waveguide
CN109709643B (zh) 一种基于单片集成的双偏振模式复用-解复用芯片
CN115144964B (zh) 一种基于欧拉弯曲宽波导的硅基阵列波导光栅
CN209400730U (zh) 一种新型的多级渐变纤芯级联的宽带模式转换器
CN214586094U (zh) 一种基于亚波长光栅的硅基偏振分束芯片
CN115980926A (zh) 一种混合集成的多模波导耦合器
CN113325515B (zh) 一种采用狭缝阵列波导的阵列波导光栅
CN113866885A (zh) 一种涡旋光通信的信道切换器
CN111948753B (zh) 一种基于双槽式硅纳米线波导高纯oam模产生及模分复用器
CN114089472A (zh) 一种聚合物模式复用器、空分复用器件及空分复用方法
CN114726447A (zh) 一种基于硅基氮化硅波导的90度光混频器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination