CN115362733A - 非许可的频带上的独立侧行链路通信 - Google Patents

非许可的频带上的独立侧行链路通信 Download PDF

Info

Publication number
CN115362733A
CN115362733A CN202080099505.1A CN202080099505A CN115362733A CN 115362733 A CN115362733 A CN 115362733A CN 202080099505 A CN202080099505 A CN 202080099505A CN 115362733 A CN115362733 A CN 115362733A
Authority
CN
China
Prior art keywords
sidelink
rmsi
transmitting
parameter information
transmit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202080099505.1A
Other languages
English (en)
Inventor
J·孙
张晓霞
许昌龙
C-H·刘
O·厄兹蒂尔克
薛义生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of CN115362733A publication Critical patent/CN115362733A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

提供了与独立侧行链路通信相关的无线通信系统和方法。第一用户设备(UE)确定系统参数信息,以发起侧行链路通信。第一UE在第一时间周期期间,在共享射频内的多个子带中的一个或多个第一子带中发送系统参数信息。第一UE基于系统参数信息,在与第一时间周期不同的第二时间周期期间,在多个子带中的第二子带中与第二UE传送侧行链路数据。

Description

非许可的频带上的独立侧行链路通信
技术领域
本申请涉及无线通信系统,并且更具体地,涉及在由多个网络操作实体共享的共享射频频带中(例如,在共享频谱或非许可的频谱中)的独立侧行链路通信。
背景技术
无线通信系统得到广泛部署,用于提供诸如语音、视频、分组数据、信息传递、广播等各种类型的通信内容。这些系统可能能够通过共享可用的系统资源(例如,时间、频率及功率)来支持与多个用户的通信。无线多址通信系统可以包括多个基站(BS),每个基站同时支持针对多个通信设备(其在其它方面可以被称为用户设备(UE))的通信。
为了满足对于扩展的移动宽带连接的不断增长的需求,无线通信技术正在从长期演进(LTE)技术向下一代新无线电(NR)技术(其可以被称为第5代(5G))发展。例如,与LTE相比,NR被设计为提供更低的时延、更高的带宽或更高的吞吐量、以及更高的可靠性。NR被设计为在一系列广泛的频谱带(例如,从低于大约1千兆赫(GHz)的低频带以及从大约1GHz到大约6GHz的中频带,到诸如毫米波(mmWave)频带的高频带)上操作。NR还被设计为跨越不同频谱类型(从经许可的频谱到非许可和共享频谱)操作。频谱共享使运营商能够适时地聚合频谱,以动态地支持高带宽服务。频谱共享可以将NR技术的益处扩展到可能不具有到经许可的频谱的接入的操作实体。
在无线通信网络中,BS可以在上行链路方向和下行链路方向上与UE进行通信。在LTE中引入了侧行链路,以允许UE向另一UE发送数据,而无需通过BS和/或相关联的核心网络进行隧道传输。LTE侧行链路技术已经被扩展到提供设备到设备(D2D)通信、车辆到万物(V2X)通信和/或蜂窝车辆到万物(C-V2X)通信。类似地,NR可以被扩展为支持在专用频谱、经许可的频谱和/或非许可的频谱上的针对D2D、V2X和/或C-V2X的侧行链路通信。
发明内容
下文概述了本公开内容的一些方面,以便提供对所讨论的技术的基本理解。该概述不是对本公开内容的所有预期特征的广泛概述,并且既不旨在标识本公开内容的所有方面的关键或重要元素,也不旨在描绘本公开内容的任何或所有方面的范围。其唯一目的是以概述的形式给出本公开的一个或多个方面的一些概念,作为稍后给出的更加详细的描述的前序。
例如,在本公开内容的一个方面中,一种无线通信的方法包括:由第一UE确定系统参数信息,以发起侧行链路通信;由第一UE在第一时间周期期间在共享射频内的多个子带中的一个或多个第一子带中发送系统参数信息;以及由第一UE基于系统参数信息在与第一时间周期不同的第二时间周期期间在多个子带中的第二子带中与第二UE传送侧行链路数据。
在本公开内容的一个附加方面中,第一UE包括:处理器,其被配置为确定系统参数信息,以发起侧行链路通信;以及收发机,其被配置为在第一时间周期期间在共享射频内的多个子带中的一个或多个第一子带中发送系统参数信息,并且基于系统参数信息,在与第一时间周期不同的第二时间周期期间在多个子带中的第二子带中与第二UE传送侧行链路数据。
在本公开内容的一个附加方面中,一种具有记录在其上的程序代码的非临时性计算机可读介质,其中,程序代码包括:用于使第一UE确定系统参数信息以发起侧行链路通信的代码;用于使第一UE在第一时间周期期间在共享射频内的多个子带中的一个或多个第一子带中发送系统参数信息的代码;以及用于使第一UE基于系统参数信息来在与第一时间周期不同的第二时间周期期间在多个子带中的第二子带中与第二UE传送侧行链路数据的代码。
在本公开内容的一个附加方面中,第一UE包括:用于确定系统参数信息以发起侧行链路通信的单元;用于在第一时间周期期间在共享射频内的多个子带中的一个或多个第一子带中发送系统参数信息的单元;以及用于基于系统参数信息来在与第一时间周期不同的第二时间周期期间在多个子带中的第二子带中与第二UE传送侧行链路数据的单元。
在结合附图浏览对本发明的具体的示例性实施例的以下描述时,本发明的其它方面、特征和实施例对于本领域普通技术人员将变得显而易见。虽然可以关于下文的某些实施例和附图来讨论本发明的特征,但是本发明的所有实施例可以包括本文讨论的有利特征中的一个或多个有利特征。换句话说,虽然可以将一个或多个实施例讨论为具有某些有利特征,但是还可以根据本文讨论的本发明的各种实施例来使用这种特征中的一个或多个特征。类似地,虽然示例性实施例在下文中被作为设备、系统或方法实施例进行讨论,但是应该理解的是此类示例性实施例可以在各种设备、系统和方法中实现。
附图说明
图1示出了根据本公开内容的一些方面的无线通信网络。
图2示出了根据本公开内容的一些方面的提供侧行链路通信的无线通信网络。
图3示出了根据本公开内容的一些方面的侧行链路通信方案。
图4是根据本公开内容的一些方面的侧行链路主信息块的示例性帧结构的简化框图。
图5是根据本公开内容的一些方面的示例性非锚定用户设备(UE)的框图。
图6是根据本公开内容的一些方面的示例性锚定UE的框图。
图7是根据本公开内容的一些方面的锚定节点发现过程的流程示意图。
图8是根据本公开内容的一些方面的侧行链路通信过程的流程示意图。
图9是根据本公开内容的一些方面的侧行链路系统信息广播过程的流程示意图。
图10是根据本公开内容的一些方面的侧行链路通信过程的流程示意图。
具体实施方式
下文结合附图阐述的详细描述旨在作为各种配置的描述,而并非旨在表示可以在其中实施本文所描述的概念的仅有配置。为了提供对各个概念的透彻理解,详细描述包括特定细节。然而,对于本领域技术人员将显而易见的是,可以在没有这些特定细节的情况下实施这些概念。在一些实例中,已知的结构与部件以框图形式示出,以免使这些概念难以理解。
概括而言,本公开内容涉及无线通信系统,也称为无线通信网络。在各种实施例中,技术和装置可用于无线通信网络,诸如,码分多址(CDMA)网络、时分多址(TDMA)网络、频分多址(FDMA)网络、正交FDMA(OFDMA)网络、单载波FDMA(SC-FDMA)网络、LTE网络、全球移动通信系统(GSM)网络、第5代(5G)或新无线电(NR)网络以及其它通信网络。如本文中所述,术语“网络”和“系统”可以可互换地使用。
OFDMA网络可以实现无线电技术,诸如,演进UTRA(E-UTRA)、电气与电子工程师协会(IEEE)802.11、IEEE 802.16、IEEE 802.20、flash-OFDM等。UTRA、E-UTRA和GSM是通用移动电信系统(UMTS)的部分。具体地,长期演进(LTE)是UMTS的使用E-UTRA的版本。在来自名为“第3代合作伙伴计划”(3GPP)的组织的文档中描述了UTRA、E-UTRA、GSM、UMTS和LTE,以及在来自名为“第3代合作伙伴计划2”(3GPP2)的组织的文档中描述了cdma2000。这些各种无线电技术和标准都已知或正在开发中。例如,第3代合作伙伴计划(3GPP)是电信协会团体之间的协作,旨在定义全球适用的第三代(3G)移动电话规范。3GPP长期演进(LTE)是旨在改进UMTS移动电话标准的3GPP计划。3GPP可以定义下一代移动网络、移动系统及移动设备的规范。本公开内容关于在采用一些新的不同的无线接入技术或无线电空中接口的网络之间进行对无线频谱的共享接入的方面,无线技术从LTE、4G、5G、NR及更高世代的演进。
5G网络预期可以使用基于OFDM的统一空中接口实现的多样化的部署、多样化的频谱以及多样化的服务和设备。为了实现这些目标,除了为5G NR网络开发新无线电技术外,还考虑对LTE和LTE-A的进一步增强。5G NR将能够扩展以提供对如下的覆盖:(1)具有超高密度(例如,~1M个节点/km2)、超低复杂度(例如,~10s的比特/秒)、超低能量(例如,~10+年的电池寿命)、以及具有到达具有挑战性的位置的能力的深度覆盖的大型物联网(IoT);(2)包括具有保护敏感个人、金融或分类信息的强大安全性的任务关键型控制、超高可靠性(例如,~99.9999%可靠性)、超低时延(例如,~1ms)、以及具有广泛移动范围或缺乏移动范围的用户;以及(3)具有增强的移动宽带,包括极高容量(例如,~10Tbps/km2)、极限数据速率(例如,多Gbps速率,100+Mbps用户体验速率)、以及具有高级发现和优化的深度意识。
可以实现5G NR,以使用具有可扩展的数字方案和传输时间间隔(TTI)的基于优化的OFDM的波形;具有公共的、灵活的框架以通过动态、低时延时分双工(TDD)/频分双工(FDD)设计高效地复用服务和特征;以及具有先进无线技术,例如大规模多输入多输出(MIMO)、稳健的毫米波(mmWave)传输、先进的信道编码以及以设备为中心的可移动性。5GNR中数字方案的缩放性,通过采用子载波间隔的缩放,可以高效地处理操作多样化的频谱和多样化的部署中的多样化的服务。例如,在低于3GHz的FDD/TDD实现方式的各种户外和宏覆盖部署中,可以在例如5、10、20MHz以及类似的带宽(BW)上以15kHz的子载波间隔出现。对于高于3GHz的TDD的其它各种户外和小型小区覆盖部署,可以在80/100MHz BW上以30kHz的子载波间隔出现。对于其它各种户内宽带实现方式,使用5GHz频带的非许可的部分上的TDD时,可以在160MHz BW上以60kHz的子载波间隔出现。最后,对于在28GHz的TDD处用mmWave组件进行发射的各种部署,可以在500MHz BW上以120kHz的子载波间隔出现。
5G NR的可扩展数字方案促进可扩展的TTI用于多样化延迟和服务质量(QoS)要求。例如,更短的TTI可用于低时延和高可靠性,而更长的TTI可用于更高的频谱效率。长TTI和短TTI的高效复用允许传输在符号边界上开始。5G NR还预期在同一子帧中具有UL/下行链路调度信息、数据及确认的自包含集成子帧设计。自包含集成子帧支持在非许可的或基于竞争的共享频谱中的通信、可以在逐小区基础上灵活地被配置为在UL与下行链路之间动态地切换以满足当前业务需求的自适应UL/下行链路。
本公开内容的各种其它方面和特征在下文中进一步描述。显然,本文的教导可以体现为多种形式,本文公开的任何具体结构、功能或两者仅仅是代表性的而非限制性的。基于本文的教导,本领域的普通技术人员应当认识到,本文所公开的一个方面可以独立于任何其它方面来实现,并且可以通过各种方式来组合这些方面中的两个或更多个方面。例如,可以用本文中所阐述的任何数量个方面来实现装置或实践方法。此外,除了本文所阐述的方面中的一个或多个方面之外,还可以利用其它结构、功能或结构与功能来实现这种装置或实践这种方法。例如,方法可以被实现为系统、设备、装置和/或存储在计算机可读介质上供在处理器或计算机上执行的指令的部分。此外,一个方面可以包括权利要求的至少一个要素。
侧行链路是指用户设备(UE)装置之间的通信,无需通过基站(BS)和/或核心网络进行隧道传输。侧行链路通信可以在物理侧行链路控制信道(PSCCH)和物理侧行链路共享信道(PSSCH)上进行传送。PSCCH和PSSCH类似于在BS与UE之间的下行链路(DL)通信中的物理下行链路控制信道(PDCCH)和物理下行链路共享信道(PDSCH)。例如,PSCCH可以携带侧行链路控制信息(SCI),并且PSSCH可以携带侧行链路数据(例如,用户数据)。每个PSCCH与对应的PSSCH相关联,其中,PSCCH中的SCI可以携带保留和/或调度信息,用于在相关联的PSSCH中的侧行链路数据传输。针对侧行链路通信的使用例可以包括V2X、增强的移动宽带(eMBB)、工业IoT(IIoT)和/或NR-lite。
如本文中所使用的,术语“侧行链路UE”可以指执行与另一用户设备装置的设备到设备通信或其它类型的通信,而不依靠通过BS(例如,gNB)和/或相关联的核心网络的任何隧道传输。如本文中所使用的,术语“侧行链路发送UE”可以指执行侧行链路发送操作的用户设备装置。如本文中所使用的,术语“侧行链路接收UE”可以指执行侧行链路接收操作的用户设备装置。如本文中所使用的,术语“锚定UE”或“侧行链路锚定UE”是指被指定为可以自主地(例如,独立于任何小区和/或相关联的核心网络)发起侧行链路操作的、具有独立侧行链路配置的锚定节点的侧行链路UE,并且术语是可互换的,而不脱离本公开内容的范围。
在非许可的频谱上的NR的部署被称为NR-非许可(NR-U)。已经针对5千兆赫(GHz)非许可的频带上的NR-U部署进行了一些研究。联邦通信委员会(FCC)和欧洲电信标准协会(ETSI)正在努力将6GHz规定为用于无线通信的新的非许可的频带。6GHz频带的增加允许数百兆赫兹(MHz)的带宽(BW)可用于非许可的频带通信。此外,NR-U还可以被部署在当前由各种无线接入技术(RAT)共享的2.4GHz非许可的频带上,诸如,IEEE 802.11无线局域网(WLAN)或WiFi和/或许可辅助接入(LAA)。侧链路可以受益于利用非许可的频谱中可用的附加带宽。然而,在某个非许可的频谱中的信道接入可以由相关部门规定。例如,当节点将跳频应用于传输并且满足传输序列或开/关模式时(具有大约5ms的最大传输持续时间以及传输之间大约5ms的最小静默或间隙持续时间),2.4GHz频带中的规定允许节点进行传输,而无需执行LBT。
对于经许可的频谱上的侧行链路,NR支持两种模式的无线电资源分配(RRA),即模式1RRA和模式2RRA。模式1RRA支持可以用于覆盖中的侧行链路通信的网络控制的RRA。例如,服务BS(例如,gNB)可以代表侧行链路UE确定无线电资源,并且将对无线电资源的指示发送给侧行链路UE。在一些方面中,服务BS利用下行链路控制信息(DCI)来授权侧行链路传输。然而,对于该模式,有明显的基站参与,并且仅当侧行链路UE在服务BS的覆盖区域内时是可操作的。模式2RRA支持可以用于覆盖外的侧行链路UE或部分覆盖的侧行链路UE的自主RRA。例如,覆盖外的侧行链路UE或部分覆盖的UE可以用侧行链路资源池来预配置,并且可以从预配置的侧行链路资源池中选择无线电资源用于侧链路通信。对于该模式,V2X系统可以可能独立于服务BS而操作。然而,模式2RRA依赖于跨越不同环境(例如,车辆)的侧行链路设置。例如,该模式将要求侧行链路设置是一致的,使得每个侧行链路UE(例如,车辆)可以与彼此通信。这将依赖于装置用户供应商(例如,不同的汽车制造商),以协调和实现公共侧行链路设置。这可以对装置用户供应商造成大量的负担来开发和实施一致的侧行链路设置,使得所有的NR-U侧行链路用户设备装置可以经由相应的侧行链路连接来通信。如此,存在将NR-U侧行链路系统部署为独立系统的期望。
本申请描述了通过将侧行链路UE的子集配置成网络内的锚定节点以供侧行链路UE来部署与其它侧行链路UE的独立侧行链路通信的机制,所述锚定节点在共享射频频带上(例如,在共享无线电频谱或非许可的频谱中)操作的同步侧行链路系统中自主地发起任何小区和/或相关联的核心网络的侧行链路操作。在各个实施例中,主题技术的独立侧行链路系统不旨在代替和/或取代服务BS功能来协调侧行链路操作。侧行链路UE可以被配置为类似于在模式2RRA中操作的用户设备装置来操作,然而,主题技术的侧行链路UE可以用独立侧行链路设计来操作,独立侧行链路设计具有超过模式2RRA机制的若干优点,将在本文中更详细地描述。
在主题技术的一些实施例中,第一用户设备(UE)包括被配置为确定系统参数信息以发起侧行链路通信的处理器。第一UE包括被配置为在第一时间周期期间在共享射频内的多个子带中的一个或多个第一子带中发送系统参数信息的收发机。收发机可以基于系统参数信息,在与第一时间周期不同的第二时间周期期间在多个子带中的第二子带中与第二UE传送侧行链路数据。
在一些实施例中,第一UE向包括第二UE的其它侧行链路UE提供时序同步和控制信令。在一些方面中,处理器还被配置为生成同步信号,以促进第一UE与第二UE之间的同步,并且向侧行链路同步信号块(S-SSB)的第一部分分配同步信号,其中,同步信号包括其后是辅同步信号的主同步信号。在一些方面中,处理器还被配置为确定包括系统参数信息的至少一部分的侧行链路主信息块(SL-MIB),并且将SL-MIB分配给S-SSB的第二部分,其中,第二部分跟随在第一部分之后。在一些方面中,一个或多个第一子带包括在第一时间周期的第一部分中的物理侧行链路广播信道(PSBCH),并且被配置为发送系统参数信息的收发机还被配置为在PSBCH上发送S-SSB。在一些方面中,被配置为确定SL-MIB的处理器还被配置为:确定初始传输无线电资源池配置,其中,初始传输无线电资源池配置包括多个子信道、多个调制符号或在其期间剩余最小系统信息(RMSI)被发送的第一时间周期内的时域时隙的集合中的一项或多项;并且向SL-MIB中的一个或多个位置分配初始传输无线电资源池配置。在一些方面中,处理器还被配置为在SL-MIB内提供指示是否存在RMSI用于由第二UE进行处理的指示。
在一些实施例中,第一UE以RMSI的形式提供附加系统参数。在一些方面中,RMSI包括与SL-MIB中的系统参数信息的至少一部分不同的附加系统参数信息。在一些方面中,收发机还被配置为在第一时间周期期间,在第二子带中与第二UE传送RMSI。在一些方面中,第二子带包括在第一时间周期的第一部分中在时间或频率中的至少一者上被复用的多个物理侧行链路控制信道(例如,PSCCH)以及在第一时间周期的第二部分中在时间或频率中的至少一者上被复用的多个物理侧行链路共享信道(例如,PSSCH),第二部分不同于第一部分,被配置为传送RMSI的收发机还被配置为在多个PSCCH中的一个或多个PSCCH中传送RMSI,并且被配置为传送侧行链路数据的收发机还被配置为在多个PSSCH中的至少一个PSSCH中传送侧行链路数据。在一些方面中,收发机还被配置为在RMSI中传送对小区内保护频带的指示,供第二UE用于恢复一个或多个资源块集合。
在一些实施例中,第一UE提供附加系统参数内的带宽分配。在一些方面中,收发机还被配置为在RMSI中传送侧行链路BWP配置。在一些方面中,被配置为确定SL-MIB的处理器还被配置为确定初始侧行链路带宽部分(BWP)配置的多个预定义集合,并且在SL-MIB中的一个或多个位置内提供指示初始侧行链路BWP配置的多个预定义集合中的至少一个预定义集合的指示。在一些方面中,初始侧行链路BWP配置的多个预定义集合中的至少一个预定义集合包括起始资源块(RB)和RB的数量,并且起始RB对应于资源网格中的第一位置,并且S-SSB占用资源网格中的至少第二位置,其中,第一位置和第二位置被资源块级偏移分开。在一些方面中,侧行链路BWP配置不同于被包括在SL-MIB中的初始侧行链路BWP配置的多个预定义集合中的至少一个预定义集合中的至少一个初始侧行链路BWP配置。
在一些实施例中,第一UE向侧行链路UE提供资源分配信息。在一些方面中,收发机还被配置为在RMSI中传送发送资源池配置,发送资源池配置指示哪些无线电资源被分配给第一UE,供第一UE发送侧行链路通信。在一些方面中,收发机还被配置为在RMSI中传送接收资源池配置,接收资源池配置指示哪些无线电资源被分配给第一UE,供第一UE接收侧行链路通信。在一些方面中,收发机还被配置为在RMSI中传送S-SSB的传输模式,以使第二UE能够对S-SSB进行速率匹配。在一些方面中,收发机还被配置为在RMSI中传送RMSI的传输模式,以使第二UE能够监测RMSI。
在一些实施例中,第一UE提供其锚定节点配置的公告,并且监测其它锚定节点,以维持系统参数的本地一致性。在一些方面中,收发机还被配置为发送输出的公告消息,以公告第一UE是被配置为自主地设置用于包括第二UE的其它UE的侧行链路操作的锚定节点。在一些方面中,处理器还被配置为针对指示被配置成锚定节点的另一UE的存在的输入的公告消息,来监测物理侧行链路发现信道(PSDCH)。在一些方面中,当指示被配置成锚定节点的另一UE的存在的输入的公告消息不被第一UE检测到时,被配置为发送输出的公告消息的收发机还被配置为在PSDCH中发送包括输出的公告消息的一个或多个发现消息。在一些方面中,处理器还被配置为当指示被配置成锚定节点的另一UE的存在的输入的公告消息被检测到时,确定一个或多个预先确定的因素被满足,以证明第一UE是锚定节点,并且采用被配置成锚定节点的另一UE的一个或多个系统参数。在一些方面中,被配置为采用一个或多个系统参数的处理器还被配置为接收在PSDCH上从另一UE向第一UE传播的一个或多个系统参数。在一些方面中,处理器还被配置为用从另一UE采用的一个或多个系统参数来更新本地系统参数,以生成更新的系统参数信息,并且收发机还被配置为在继第一时间周期之后的第三时间周期期间发送更新的系统参数信息。在一些方面中,被配置为发送更新的系统参数信息的收发机还被配置为在PSBCH上发送更新的系统参数信息。在一些方面中,被配置为发送更新的系统参数信息的收发机还被配置为在单播传输或组播传输中的一者或多者中将更新的系统参数信息发送给具有与第一UE的侧行链路连接的一个或多个其它UE。在一些方面中,被配置为采用一个或多个系统参数的处理器还被配置为基于另一UE的相对于小区的覆盖区域的位置来确定另一UE是否是覆盖中的UE,并且当基于另一UE处于小区的覆盖区域内,另一UE是覆盖中的UE时,确定针对确定第一UE与另一UE之间的系统参数,另一UE具有比第一UE高的优先级。
在一些方面中,被配置为传送侧行链路数据的收发机还被配置为基于接收资源池配置,在第二时间周期期间在第二子带中,在多个PSCCH中的至少一个PSCCH中或在多个PSSCH中的至少一个PSSCH中从第二UE接收侧行链路消息,侧行链路消息使第一UE建立与第二UE的侧行链路连接。
在一些方面中,侧行链路系统可以是同步系统,其中,侧行链路接收UE例如基于从侧行链路锚定UE接收的同步信令,在时间上是同步的。在一些方面中,共享射频频带可以被划分成多个子信道或频率子带。在一些方面中,侧行链路接收UE可以用共享射频频带中的一个或多个无线电资源池来配置。侧行链路接收UE可以利用宽带接收机,来在相应的无线电资源池中进行监测或感测,并且可以基于来自相应的无线电资源池的经分配的无线电资源来利用窄带发射机,用于基于频率子带的信道接入。另外地,信道接入可以在时间上以侧行链路通信帧为单位。
本公开内容的方面可以提供若干个益处。例如,独立侧行链路系统通过促进用于侧行链路操作的系统信息的设置来提供灵活性(独立于任何服务BS和/或相关联的核心网络)。独立侧行链路系统可以通过实现具有跨锚定节点的系统参数的采用机制来维持跨多个和/或不同的锚定节点的侧行链路系统的本地一致性。在该方面中,系统参数可以跨不同的锚定节点而保持一致,用于用户设备装置的协调的部署(例如,IIoT)。否则,如果在邻域(或网络)中存在具有不同系统参数的多个锚定节点,则侧行链路系统操作变得越来越繁重。独立侧行链路通信机制的使用可以允许侧行链路系统与2.4GHz非许可频带中的规定兼容,并且因此可以允许在2.4GHz非许可的频带上的侧行链路系统的部署。独立侧行链路通信机制可以部署信道繁忙率(CBR)和/或信道接入占用率(CR)计算,以向侧行链路系统内的信道状态和/或侧行链路UE信道利用提供更佳或更准确的查看,并且因此侧行链路锚定UE可以能够为侧行链路UE更高效地配置侧行链路UE、资源池、和/或跳频模式,以减少系统内冲突。虽然本公开内容是在在2.4GHz非许可的频带上部署独立侧行链路通信的上下文中描述的,但是所公开的实施例可以应用于任何合适的共享或非许可的频带。
图1示出了根据本公开内容的一些方面的无线通信网络100。网络100可以是5G网络。网络100包括多个基站(BS)105(分别标记为105a、105b、105c、105d、105e和105f)及其它网络实体。BS 105可以是与UE 115通信的站,并且也可以被称为演进型节点B(eNB)、下一代eNB(gNB)、接入点等。每个BS 105可以为特定的地理区域提供通信覆盖。在3GPP中,取决于使用该术语的上下文,术语“小区”可以指BS 105的该特定地理覆盖区域和/或服务于该覆盖区域的BS子系统。
BS 105可以为宏小区或小型小区(诸如,微微小区或毫微微小区)和/或其它类型的小区提供通信覆盖。宏小区一般覆盖相对大的地理区域(例如,半径若干千米),以及可以允许由具有与网络提供商的服务订制的UE进行不受限制的接入。小型小区,诸如微微小区,一般会覆盖相对较小的地理区域,以及可以允许由具有与网络提供商的服务订制的UE进行不受限制的接入。小型小区,诸如毫微微小区,一般也会覆盖相对小的地理区域(例如,住宅),以及除了不受限制的接入外,还可以提供由与该毫微微小区具有关联的UE(例如,封闭用户组(CSG)中的UE、针对住宅中的用户的UE等)进行的受限制的接入。针对宏小区的BS可以被称为宏BS。针对小型小区的BS可以被称为小型小区BS、微微BS、毫微微BS或家庭BS。在如图1所示的示例中,BS 105d和105e可以是常规宏BS,而BS 105a-105c可以是具有三维(3D)、全维(FD)或大规模MIMO其中之一的宏BS。BS 105a-105c可以利用其更高维度的MIMO能力来利用在标高和方位角波束成形中的3D波束成形以提高覆盖和容量。BS 105f可以是小型小区BS,该小型小区BS可以是家庭节点或便携式接入点。BS 105可以支持一个或多个(例如,两个、三个、四个等)小区。
网络100可以支持同步或异步操作。对于同步操作,BS可以具有相似的帧时序,并且来自不同BS的传输可以在时间上近似对齐。对于异步操作,BS可以具有不同帧时序,并且来自不同BS的传输可以不在时间上对齐。
UE 115遍布无线网络100分布,并且每个UE 115可以是静止的或移动的。UE 115还可以被称为终端、移动站、用户单元、站等。UE 115可以是蜂窝式电话、个人数字助理(PDA)、无线调制解调器、无线通信设备、手持设备、平板电脑、膝上型电脑、无绳电话、无线本地环路(WLL)站等。在一个方面中,UE 115可以是包括通用集成电路卡(UICC)的设备。在另一个方面中,UE可以是不包括UICC的设备。在一些方面中,不包括UICC的UE 115也可以被称为IoT设备或万物网(IoE)设备。UE 115a-115d是接入网络100的移动智能电话类型设备的示例。UE 115还可以是专门被配置用于连接通信(包括机器类型通信(MTC)、增强的MTC(eMTC)、窄带IoT(NB-IoT)等)的机器。UE 115e-115h是接入网络100的被配置用于通信的各种机器的示例。UE 115i-115k是配备有接入网络100的被配置用于通信的无线通信设备的车辆的示例。UE 115可以能够与任何类型的BS(无论是宏BS、小型小区等)通信。在图1中,闪电(例如,通信链路)指示UE 115与服务BS 105之间的无线传输、BS 105之间期望的传输、BS之间的回程传输或UE 115之间的侧行链路传输,所述服务BS 105是被指定用于在下行链路(DL)和/或上行链路(UL)上服务于UE 115的BS。
在操作中,BS 105a-105c可采用3D波束成形和协作空间技术(诸如,协作多点(CoMP)或多连接)服务UE 115a和115b。宏BS 105d可以执行与BS 105a-105c以及小型小区BS 105f的回程通信。宏BS 105d还可以发送组播服务,所述组播服务由UE 115c和115d订阅并接收。此类组播服务可以包括移动电视或流视频,或可以包括用于提供社区信息(例如天气紧急情况或警报(例如安珀警报或灰色警报))的其它服务。
BS 105还可以与核心网络通信。核心网络可以提供用户认证、接入授权、跟踪、互联网协议(IP)连接以及其它接入、路由或移动性功能。BS 105中的至少一些(例如,可以是gNB或接入节点控制器(ANC)的示例)可以通过回程链路(例如,NG-C、NG-U等)与核心网络接口,并且可以针对于UE 115的通信执行无线电配置和调度。在各种示例中,BS 105可以在回程链路(例如,X1、X2等)上直接或间接地(例如,通过核心网络)彼此通信,该回程链路可以是有线或无线通信链路。
网络100还可以通过超可靠且冗余的链路来支持任务关键型通信,以用于诸如UE115e之类的任务关键型设备(其可以是无人机)。与UE 115e的冗余通信链路可以包括来自宏BS 105d和105e的链路,以及来自小型小区BS 105f的链路。其它机器类型的设备,诸如UE115f(例如,温度计)、UE 115g(例如,智能仪表)和UE 115h(例如,可穿戴设备),可以通过网络100直接与BS(诸如,小型小区BS 105f以及宏BS 105e)通信,或在多步长配置中通过与另一个将其信息中继到网络的用户设备通信来进行通信,诸如UE 115f将温度测量信息传送给智能仪表UE 115g,然后UE 115g通过小型小区BS 105f将其报告给网络。网络100还可以通过动态、低时延的TDD/FDD通信来提供附加的网络效率,诸如,UE 115i、115j或115k与其它UE 115之间的V2V、V2X、C-V2X通信、和/或UE 115i、115j或115k与BS 105之间的车辆到基础设施(V2I)通信。
在一些实现方式中,网络100采用基于OFDM的波形进行通信。基于OFDM的系统可以将系统BW划分成多(K)个正交子载波,正交子载波也通常被称为子载波、音调、频段等。每个子载波可以用数据调制。在一些实例中,相邻子载波之间的子载波间隔可以是固定的,并且子载波总数(K)可以取决于系统BW。系统BW还可以被划分为子带。在其它实例中,子载波间隔和/或TTI的持续时间可以是可扩展的。
在一些方面中,BS 105可以为网络100中的下行链路(DL)和上行链路(UL)传输分配或调度传输资源(例如,以时频资源块(RB)的形式)。DL是指从BS 105到UE 115的传输方向,而UL是指从UE 115到BS 105的传输方向。通信可以是无线帧的形式。无线帧可以被划分为多个子帧或时隙,例如约10个。每个时隙可以被进一步划分为微时隙。在FDD模式中,UL与DL同时传输可以发生在不同的频带中。例如,每个子帧包括UL频带中的UL子帧以及DL频带中的DL子帧。在TDD模式中,UL和DL传输发生在采用相同频带的不同时间周期。例如,无线帧中的子帧(例如,DL子帧)的子集可用于DL传输,并且无线帧中的子帧(例如,UL子帧)的另一子集可用于UL传输。
DL子帧和UL子帧可以被进一步划分为若干个区域。例如,每个DL或UL子帧可以具有用于参考信号、控制信息及数据的传输的预定义区域。参考信号是促进BS 105与UE 115之间通信的预先确定的信号。例如,参考信号可以具有特定的导频模式或结构,其中,导频音调可以横跨操作BW或频带,每个导频音调位于预定义的时间和预定义的频率处。例如,BS105可以发送小区特定参考信号(CRS)和/或信道状态信息参考信号(CSI-RS),以便使UE115能够估计DL信道。类似地,UE 115可以发送探测参考信号(SRS),以使BS 105能够估计UL信道。控制信息可以包括资源分配和协议控制。数据可以包括协议数据和/或操作数据。在一些方面中,BS 105和UE 115可以采用自包含子帧进行通信。自包含子帧可以包括用于DL通信的部分以及用于UL通信的部分。自包含子帧可以是以DL为中心的或以UL为中心的。以DL为中心的子帧可以包括比用于UL通信更长的用于DL通信的持续时间。以UL为中心的子帧可以包括比用于UL通信更长的用于UL通信的持续时间。
在一些方面中,网络100可以是被部署在经许可的频谱上的NR网络。BS 105可以在网络100中发送同步信号(例如,包括主同步信号(PSS)和辅同步信号(SSS)),以促进同步。BS 105可以广播与网络100相关联的系统信息(例如,包括主信息块(MIB)、剩余最小系统信息(例如,RMSI)及其它系统信息(OSI)),以促进初始网络接入。在一些实例中,BS 105可以在物理广播信道(PBCH)上以同步信号块(SSB)的形式广播PSS、SSS和/或MIB,并且可以在物理下行链路共享信道(例如,PDSCH)上广播RMSI和/或OSI。
在一些方面中,尝试接入网络100的UE 115可以通过检测来自BS 105的PSS来执行初始小区搜索。PSS可以实现周期时序的同步,并且可以指示物理层标识值。然后UE 115可以接收SSS。SSS可以实现无线帧同步,并且可以提供小区标识值,小区标识值可以与物理层标识值组合来标识小区。PSS和SSS可以处于载波的中心部分或载波内的任何合适的频率中。
在接收PSS和SSS之后,UE 115可以接收MIB。MIB可以包括用于初始网络接入的系统信息以及用于RMSI和/或OSI的调度信息。在解码MIB之后,UE 115可以接收RMSI和/或OSI。RMSI和/或OSI可以包括与随机接入信道(RACH)过程、寻呼、用于物理下行链路控制信道(PDCCH)监测的控制资源集(CORESET)、物理UL控制信道(PUCCH)、物理UL共享信道(PUSCH)、功率控制及SRS相关的无线电资源控制(RRC)信息。
在获得MIB、RMSI和/或OSI之后,UE 115可以执行随机接入过程以建立BS 105的连接。在一些示例中,随机接入过程可以是四步随机接入过程。例如,UE 115可以发送随机接入前导码,并且BS 105可以用随机接入响应来响应。随机接入响应(RAR)可以包括对应于随机接入前导码的检测到的随机接入前导码标识符(ID)、时序提前(TA)信息、UL授权、临时小区无线电网络临时标识符(C-RNTI)、和/或退避指示符。在接收到随机接入响应之后,UE115可以将连接请求发送给BS 105,并且BS 105可以用连接响应来响应。连接响应可以指示竞争解决。在一些示例中,随机接入前导码、RAR、连接请求以及连接响应可以被分别称为消息1(MSG1)、消息2(MSG2)、消息3(MSG3)以及消息4(MSG4)。在一些示例中,随机接入过程可以是两步随机接入过程,其中,UE 115可以在单个传输中发送随机接入前导码和连接请求,并且BS 105可以通过在单个传输中发送随机接入响应和连接响应来响应。
在建立连接之后,UE 115和BS 105可进入正常操作阶段,其中,操作数据可被交换。例如,BS 105可以调度UE 115用于UL和/或DL通信。BS 105可以经由PDCCH向UE 115发送UL和/或DL调度授权。调度授权可以以DL控制信息(DCI)的形式发送。BS 105可以根据DL调度授权经由PDSCH向UE 115发送DL通信信号(例如,携带数据)。UE 115可以根据UL调度授权经由PUSCH和/或PUCCH向BS 105发送UL通信信号。
在一些方面中,BS 105可以采用HARQ技术与UE 115通信,以提高通信可靠性,例如,以提供URLLC服务。BS 105可以通过在PDCCH中发送DL授权来调度UE 115用于PDSCH通信。BS 105可以根据PDSCH中的调度向UE 115发送DL数据分组。DL数据分组可以以DL传输块(TB)的形式发送。如果UE 115成功地接收了DL数据分组,则UE 115可以向BS 105发送HARQACK。相反,如果UE 115未能成功地接收DL传输,则UE 115可以向BS 105发送HARQ NACK。在从UE 115接收到HARQ NACK之后,BS 105可以将DL数据分组重传给UE 115。重传可以包括与初始传输相同的编码版本的DL数据。可替代地,重传可以包括与初始传输不同的编码版本的DL数据。UE 115可以应用软组合来组合从初始传输和重传接收的经编码的数据以进行解码。BS 105和UE 115还可以使用与DL HARQ基本相似的机制来将HARQ应用于UL通信。
在一些方面中,网络100可以在系统BW或分量载波(CC)BW上操作。网络100可以将系统BW划分为多个BWP(例如,部分)。BS 105可以动态地分配UE 115在某一BWP(例如,系统BW的某一部分)上操作。所分配的BWP可以被称为活动BWP。UE 115可以针对来自BS 105的信令信息,监测活动BWP。BS 105可以调度UE 115在活动BWP中进行UL或DL通信。在一些方面中,BS 105可以将CC内的一对BWP分配给UE 115以用于UL和DL通信。例如,该BWP对可以包括一个用于UL通信的BWP和一个用于DL通信的BWP。
在一些方面中,网络100可以在共享信道上操作,共享信道可以包括共享频带和/或非许可的频带。例如,网络100可以是在非许可的频带上操作的NR-U网络。在这样的一个方面中,BS 105和UE 115可以由多个网络操作实体操作。为了避免冲突,BS 105和UE 115可以采用先听后说(LBT)过程来监测共享信道中的传输机会(TXOP)。TXOP也可以被称为COT。例如,发送节点(例如,BS 105或UE 115)可以于在信道中发送之前执行LBT。当LBT通过时,发送节点可以继续进行传输。当LBT失败时,发送节点可以避免在信道中发送。
LBT可以是基于能量检测(ED)或信号检测的。对于基于能量检测的LBT,当从信道测量的信号能量低于阈值时,LBT通过。相反,当从信道测量的信号能量超过阈值时,LBT失败。对于基于信号检测的LBT,当在信道中没有检测到信道保留信号(例如,预先确定的前导码信号)时,LBT通过。另外地,LBT可以是在多种模式下。LBT模式可以是例如类别4(CAT4)LBT、类别2(CAT2)LBT或类别1(CAT1)LBT。CAT1 LBT被称为无LBT模式,其中,在传输之前,不执行LBT。CAT2LBT是指没有随机退避周期的LBT。例如,发送模式可以确定时间间隔中的信道测量,并且基于信道测量与ED阈值的比较来确定信道是否可用。CAT4 LBT是指具有随机退避和可变竞争窗口(CW)的LBT。例如,发送节点可以汲取随机数,并且基于某个时间单位的经汲取的随机数来退避一个持续时间。
在一些方面中,网络100可以支持共享射频频带上(例如,在共享频谱或非许可的频谱中)的UE 115之间的侧行链路通信。在一些方面中,UE 115可以在2.4GHz非许可的频带上与彼此通信,该2.4GHz非许可的频带可以由使用各种无线接入技术(RAT)(诸如,NR-U、WiFi和/或许可辅助接入(LAA))的多个网络操作实体来共享,如图2中所示。
在一些方面中,网络100可以支持在共享射频频带上的UE 115之间的独立侧行链路通信,其中,UE 115的子集适于作为锚定节点(例如,侧行链路锚定UE),并且自主地发起针对UE 115的侧行链路操作。在该方面中,侧行链路锚定UE是自主的,并且可以独立于任何小区(诸如,BS 105)来执行侧行链路操作。
为了针对图1的描述的剩余部分的说明的简洁,被配置成锚定节点的UE 115被称为“锚定UE”,并且被配置为从锚定UE接收系统信息的剩余UE 115被称为“侧行链路接收UE”。在一些示例中,UE 115j可以表示锚定UE,并且UE 115k可以表示侧行链路接收UE,然而,在相应的实现方式中,剩余UE 115可以单独地充当锚定UE和侧行链路接收UE,而不脱离本公开内容的范围。
锚定UE可以自主地确定系统参数信息(例如,独立于任何覆盖中的小区和/或相关联的核心网络)。跨越不同的锚定UE(例如,UE 115j、115d),在一些实施例中,系统参数信息可以基本上相同,以促进协调的部署(例如,IIoT),或者在其它实施例中,针对不同应用的部署,系统信息可以至少部分地不同。
锚定UE(例如,115j)可以在网络100中发送同步信号(例如,包括PSS和SSS),以发起网络100中的侧行链路操作,并且促进与决定加入侧行链路操作的侧行链路接收UE(例如,115k)的同步。在一些实例中,PSS和SSS中的每一者包括经编码的同步前导码序列。
锚定UE可以广播与网络100相关联的系统参数信息(例如,包括侧行链路主信息块(例如,SL-MIB)和/或剩余最小系统信息(例如,RMSI)),以促进与锚定UE的侧行链路通信。在一些实例中,锚定UE可以在物理侧行链路广播信道(例如,PSBCH)上以侧行链路同步信号块(例如,S-SSB)的形式广播PSS、SSS和/或SL-MIB。S-SSB可以以预定义的时间间隔周期性地发送。锚定UE可以在物理侧行链路共享信道(例如,PSSCH)上发送RMSI。PSS和SSS可以处于载波的中心部分或载波内的任何合适的频率中。
在一些方面中,UE 115可以自主地决定其是否应当将其自身配置成锚定节点,并且侧行链路广播信道(例如,PSBCH)上将其自身公告为的锚定节点。在一些方面中,锚定UE(例如,115j)可以在侧行链路广播信道上将系统参数信息广播给邻近UE 115(例如,115i、115k),使得每个侧行链路接收UE可以分别在侧行链路控制和/或数据信道上监测并恢复控制和数据消息。例如,尝试与邻近侧行链路UE通信的侧行链路接收UE可以通过监测PSBCH并且在PSBCH上检测来自锚定UE的PSS来执行初始锚定节点搜索。PSS可以实现周期时序的同步,并且可以指示物理层标识值。然后,侧行链路接收UE可以在PSBCH上接收来自锚定UE的SSS。SSS可以实现无线帧同步,并且可以提供UE标识值,UE标识值可以与物理层标识值组合来标识锚定UE。
在接收PSS和SSS之后,侧行链路接收UE可以在PSBCH上接收SL-MIB。SL-MIB可以包括用于初始网络接入的系统信息以及对用于RMSI的调度信息的指针。SL-MIB还可以包括初始BWP配置的一个或多个预定义集合和/或初始传输资源池配置。在一些方面中,S-SSB是在于初始BWP配置中定义的带宽内发送的。
在解码SL-MIB之后,侧行链路接收UE可以基于指针来恢复RMSI。在其它实例中,锚定UE可以分配比特位置,以包括对SL-MIB是否包括RMSI的指示。例如,SL-MIB指示可以指示不存在RMSI,并且侧行链路接收UE可以不尝试恢复RMSI。
RMSI可以包括附加的系统参数。在一些方面中,RMSI包括用于NR-U系统的小区内保护频带信息,以由另一侧行链路接收UE(例如,115i)用于得到资源块集合。在各种实施例中,RMSI包括发送资源池配置信息和/或接收资源池配置信息。发送资源池配置信息可以定义用于由锚定UE进行侧行链路发送的可用子帧和资源块的子集。接收资源池配置信息可以定义用于由锚定UE进行侧行链路接收的可用子帧和资源块的子集。在一些方面中,RMSI包括传输模式信息,诸如,用于速率匹配目的的S-SSB传输模式和/或用于监测目的的RMSI传输模式。
在获得SL-MIB和/或RMSI之后,侧行链路接收UE可以执行侧行链路通信过程以建立锚定UE的侧行链路连接。例如,锚定UE可以经由被包括在RMSI中的传输资源池配置将无线电资源分配给侧行链路接收UE,用于侧行链路通信。锚定UE可以在PSCCH上向侧行链路接收UE发送附加的系统参数,诸如,调度信息。附加的系统参数可以以侧行链路控制信息(SCI)的形式发送。
在建立侧行链路连接后,侧行链路接收UE和锚定UE可以进入正常侧行链路操作阶段,其中,操作侧行链路数可以被交换。锚定UE可以根据发送资源池配置,在PSSCH上向侧行链路接收UE发送侧行链路通信信号(例如,携带侧行链路数据)。侧行链路接收UE可以根据接收资源池配置,在PSSCH和/或PSCCH上向锚定UE发送侧行链路通信信号。
在一些方面中,锚定UE可以使用HARQ技术与侧行链路接收UE进行通信,以提高通信可靠性。例如,侧行链路接收UE可以在物理侧行链路反馈信道(PSFCH)上将反馈消息(例如,HARQ ACK/NACK)传送给锚定UE。
图2示出了根据本公开内容的实施例的提供侧行链路通信的无线通信网络200的示例。网络200可以对应于网络100的一部分。出于讨论的简单的目的,图2示出了两个BS205(被示为205a和205b)和六个UE 215(被示为215a1、215a2、215a3、215a4、215b1和215b2),但是将要认识到的是,本公开内容的实施例可以扩展到任何合适数量的UE 215(例如,大约2、3、4、5、7或更多个)和/或BS 205(例如,大约1、3或更多个)。BS 205和UE 215可以分别类似于BS 105和UE 115。BS 205和UE 215可以共享相同的射频频带用于通信。在一些实例中,射频频带可以是2.4GHz非许可的频带、5GHz非许可的频带、或6GHz非许可的频带。一般而言,共享射频频带可以在任何合适的频率处。
BS 205a和UE 215a1-215a4可以由第一网络操作实体操作。BS 205b和UE 215b1-215b2可以由第二网络操作实体操作。在一些方面中,第一网络操作实体可以利用与第二网络操作实体相同的RAT。例如,第一网络操作实体的BS 205a和UE 215a1-215a4以及第二网络操作实体的BS 205b和UE 215b1-215b2是NR-U设备。在一些其它方面中,第一网络操作实体可以利用与第二网络操作实体不同的RAT。例如,第一网络操作实体的BS 205a和UE215a1-215a4可以利用NR-U技术,而第二网络操作实体的BS 205b和UE 215b1-215b2可以利用WiFi或LAA技术。
在网络200中,UE 215a1-215a4中的一些UE可以在对等通信中与彼此进行通信。例如,UE215a1可以在侧行链路252上与UE 215a2进行通信,UE 215a3可以在另一侧行链路251上与UE 215a4进行通信,并且UE 215b1可以在又一侧行链路254上与UE 215b2进行通信。侧行链路251、252和254是单播双向链路。UE 215中的一些UE还可以经由通信链路253在UL方向和/或DL方向上与BS 205a或BS 205b进行通信。例如,UE 215a1、215a3和215a4在BS 205a的覆盖区域210内,并且因此可以与BS 205a进行通信。UE 215a2在覆盖区域210的外部,并且因此可以不与BS 205a直接通信。在一些实例中,UE 215a1可以操作为用于UE 215a2的中继器以到达BS 205a。类似地,UE 215b1在BS 205b的覆盖区域212内,并且因此可以与BS205b通信,并且可以操作为用于UE215b2的中继器以到达BS 205b。在一些方面中,UE 215中的一些UE与车辆(例如,类似于UE 115i-k)相关联,并且侧行链路251、252和254上的通信可以是C-V2X通信。C-V2X通信可以指车辆与蜂窝网络中的任何其它无线通信设备之间的通信。
如上文所讨论的,NR支持独立侧行链路通信机制。在一些方面中,第一用户设备(UE)包括:处理器,其被配置为确定系统参数信息,以发起侧行链路通信;以及收发机,其被配置为在第一时间周期期间在共享射频内的多个子带中的一个或多个第一子带中发送系统参数信息,并且基于系统参数信息在与第一时间周期不同的第二时间周期期间在多个子带中的第二子带中与第二UE传送侧行链路数据。
在NR和NR-U系统中,同步子帧可以由发现和通信模式来触发,因此,可能不存在“独立”广播/同步过程。然而,主题技术提供了侧行链路锚定UE,以通过发起独立广播/同步过程来将同步子帧传送给其它侧行链路接收UE。例如,UE 215a2可以充当侧行链路锚定UE,并且UE 215a1可以充当侧行链路接收UE,其中,UE 215a2在侧行链路广播信道(例如,PSBCH)上发送包括时序同步信号的系统参数信息,使得UE 215a1可以接收和恢复资源配置和时序信息,以促进与UE 215a2的侧行链路通信。出于说明和讨论的简洁的目的,针对图2的剩余描述将参照UE 215a1(例如,侧行链路接收UE)和UE 215a2(例如,侧行链路锚定UE)来讨论。
可以通过被称为传输侧行链路发现信道(SL-DCH)的传输信道、以及其物理对应体(即物理侧行链路发现信道(例如,PSDCH))的使用来促进其它侧行链路发送UE(诸如,其它锚定节点)的侧行链路发现。在一些方面中,侧行链路发送UE可以发送一个或多个公告消息,所述一个或多个公告消息是使用具有零介质访问控制开销的物理层传输块生成的。例如,UE 215a2可以在PSDCH上广播公告消息,以公告其状态为锚定节点。
在各种实施例中,侧行链路锚定UE可以利用侧行链路发现过程以进行以下操作:1)通过发送包含其应用信息或其它有用信息字段(例如,GSP坐标、时间等)的消息来将其作为锚定UE的存在公告给可能邻近的侧行链路UE,并且2)通过检测和解码对应的发现消息来监测其它邻近的侧行链路UE的存在,并且使用类似的发现消息来响应于侧行链路发送UE。在一些实例中,发现消息可以包括有关正在被执行的发现的类型的信息和/或由侧行链路发送UE提供的内容的类型(例如,公告、查询)。例如,UE 215a2可以在PSDCH上广播发现消息,其中,发现消息包括对发现消息属于其锚定节点状态的公告的指示。
在一些方面中,取决于实现方式,UE 215a2可以在发现信道(诸如,PSDCH)、或侧行链路广播信道(诸如,PSBCH)中的一者或多者上执行感测操作。如果UE 215a2没有在发现信道上检测到现有的锚定UE,则UE 215a2可以将其自身配置成锚定UE,并且广播将其自身指示为锚定UE的公告。如果UE 215a2检测到现有的锚定UE,则UE 215a2可以确定对其而言是否需要成为无线通信网络200内的锚定节点。
在一些实例中,在无线通信网络200中,可能存在多个锚定节点。侧行链路锚定UE(诸如,UE 215a2)可以在侧行链路发现信道上执行感测操作。在一些方面中,当两个锚定UE感测到彼此时,一个锚定UE可以采用另一锚定UE的系统参数来维持无线通信网络200中的系统参数的本地一致性。在一些实例中,覆盖中的锚定UE(例如,现有的小区的覆盖区域内的侧行链路锚定UE)可以在确定系统参数方面具有优先级。例如,UE 215a1可以被配置成锚定节点,使得UE 215a2将UE215a2感测为锚定节点,并且基于其位置在BS 205a的覆盖区域内来确定其是覆盖中的锚定UE。在一些实施例中,采用新系统参数的锚定UE可以在侧行链路广播信道上将其更新的系统参数广播给其它侧行链路接收UE。例如,UE 215a2可以采用UE 215a1的系统参数,并且进而,UE 215a2可以将其更新的系统参数广播给其它相邻侧行链路接收UE(例如,215a3、215a4、215b2)。在其它实施例中,侧行链路锚定UE可以经由单播或组播传输与其它侧行链路接收UE活跃地通信,以指示系统参数的改变。
对于覆盖中的侧行链路操作,其中,发送UE和侧行链路接收UE两者存在于BS的相同覆盖区域中,由BS提供时间同步,并且对于UE 215a2而言可能不需要成为锚定UE以通过执行侧行链路特定的同步来发起侧行链路操作。然而,可能存在若干个场景,其中,对于UE215a2而言可能需要成为锚定UE以执行侧行链路特定的操作:(i)在多小区覆盖中之中,其中,侧行链路接收UE存在于相对于侧行链路发送UE不同的异步小区中;(ii)在部分覆盖中,其中,侧行链路接收UE在覆盖之外,并且可能需要从覆盖中的侧行链路发送UE获取同步;和/或(iii)在覆盖之外,其中,两个侧行链路UE在小区的覆盖的外部,并且侧行链路发送UE决定充当参考同步源(被称为锚定UE)。
在一些方面中,UE 215a2可以评价其它因素,包括但不限于:UE 215a2的传输优先级水平、UE 215a2的应用类型、UE 215a2的同步范围内的侧行链路UE参与者的数量、和/或UE 215a2的侧行链路覆盖区域内的网络拥塞水平。
在一些方面中,如果UE 215a2通过定量和/或定性分析确定上述因素中的一个或多个因素被满足,则UE 215a2可以确定其可以成为锚定节点。在该方面中,UE 215a2可以采用检测到的锚定UE(例如,UE 215a1)的系统参数和任何相关联的时序参数。在一些方面中,检测到的锚定UE可以将其系统参数传播给UE 215a2。这将允许多个锚定UE共存于网络200中,而锚定UE具有对应的系统参数来维持侧行链路系统操作的本地一致性。
在各种实施例中,作为锚定节点的UE 215a2可以自主地形成模式特定的时间和频率无线电资源池。UE 215a2可以为其它侧行链路接收UE分配来自这些无线电资源池的用于控制和数据的特定资源。在一些实例中,UE 215a2可以形成用于发现通信的无线电资源池(在下文中被称为“侧行链路发现资源池”)。在其它实例中,UE 215a2可以形成用于控制和数据通信的无线电资源池,诸如,控制信道资源池(在下文中被称为“PSCCH资源池”)和数据信道资源池(在下文中被称为“PSSCH资源池”)。在各种实施例中,UE 215a2可以提供传输资源池配置,所述传输资源池配置包括用于发现资源池配置以及控制/数据通信资源池配置的配置信息。
侧行链路接收UE(例如,UE 215a1)可以监测多个资源,以侦听由锚定UE(例如,UE215a2)传送的发现公告,以最小化和/或避免侧行链路UE干扰。在一些实施例中,UE 215a2可以自主地确定包含携带侧行链路控制信号的某些子帧的侧行链路发现资源池,而子帧中的剩余部分可以携带侧行链路数据。在该方面中,侧行链路接收UE可以被分配时间和频率资源,用于向其它侧行链路接收UE发送来自侧行链路发现资源池的发现消息和/或监测来自侧行链路发现资源池的发现消息。在从池选择资源时,UE 215a2可以尝试避免公共时间/频率资源到不同侧行链路接收UE的分配。在一些实施例中,UE 215a2可以使用随机化参数从资源池选择时间和频率资源,以最小化(或至少减少)资源分配冲突的数量。
在一些实施例中,发现资源池配置可以指示哪些RB可用于发现传输、是否可以响应于发现消息来触发广播同步信号、此类广播同步信号是要一次性发送还是周期性发送、和/或对侧行链路无线电资源如何(例如,由侧行链路锚定UE或侧行链路发送UE自主地)分配给不同的发现传输的指示。发现资源池配置可以包括指示侧行链路接收UE可以监测哪些资源用于识别潜在的发现公告消息的附加参数信息、以及用于调谐侧行链路接收UE处的信道估计和信道解码操作的其它参数信息。在发现模式的操作中,发现消息可以根据发现资源池配置中定义的时间/频率资源配置来遵循广播同步信号的传输。
在独立侧行链路通信中,用于PSCCH和PSSCH的无线电资源池可以是分开的。在一些实例中,相对于PSCCH无线电资源池,PSSCH无线电资源池可以在固定的时间偏移处开始。在一些实施例中,作为锚定节点的UE 215a2可以基于随机化参数来从PSCCH无线电资源池自主地选择时间/频率资源,以为侧行链路控制信道PSCCH分配资源。UE 215a2还可以基于UE特定的子帧位图来从PSSCH无线电资源池自主地选择时间/频率资源,以为侧行链路共享信道PSSCH分配资源。在各种实施例中,可以通过传输信道(即,传输侧行链路共享信道(SL-SCH))及其物理对应体(即,PSSCH)的使用来促进侧行链路UE之间的侧行链路通信。
可以由侧行链路广播传输信道SL-BCH及其物理对应体PSBCH来促进由侧行链路接收UE(例如,215a1)进行的时序同步和系统信息获取。这些信道可以用于在UE 215a2附近广播前导码的集合和系统参数信息。主和辅前导码PSS和SSS的集合可以用于侧行链路接收UE(例如,215a1)的同步。如本文中所述的,侧行链路主信息块SL-MIB可以携带侧行链路系统参数信息。通过PSS/SSS前导码的获取,邻近的侧行链路接收UE(例如,UE 215a1)可以获取与侧行链路锚定UE(例如,UE 215a2)的时间同步,并且获得其物理标识。SL-MIB可以包括用于初始网络接入的系统信息以及用于RMSI的调度信息。SL-MIB还可以包括初始BWP配置的一个或多个预定义集合和/或初始传输资源池配置。在一些方面中,S-SSB是在于初始BWP配置中定义的带宽内发送的。
在解码SL-MIB之后,侧行链路接收UE(例如,UE 215a1)可以基于被包括在SL-MIB的改变用途的比特字段中的指针来恢复RMSI。RMSI可以包括附加的系统参数。在一些方面中,RMSI包括用于NR-U系统的小区内保护频带信息,以由侧行链路接收UE(例如,UE 215a1)用于得到资源块集合。在各种实施例中,RMSI包括发送资源池配置信息和/或接收资源池配置信息。发送资源池配置信息可以定义用于从侧行链路锚定UE(例如,215a2)进行侧行链路发送的可用子帧和资源块的子集。接收资源池配置信息可以定义用于由侧行链路锚定UE进行侧行链路接收的可用子帧和资源块的子集。在一些方面中,RMSI包括传输模式信息,诸如,用于速率匹配目的的S-SSB传输模式和/或用于监测目的的RMSI传输模式。
在一些方面中,RMSI可以包括活动BWP配置,以将活动侧行链路BWP分配给侧行链路接收UE。侧行链路锚定UE可以使用被包括在RMSI中的活动侧行链路BWP配置,动态地分配侧行链路接收UE以在特定侧行链路BWP(例如,系统BW的特定部分)上操作。侧行链路接收UE可以在活动侧行链路BWP中监测来自侧行链路锚定UE的信令信息。在一些实施例中,活动侧行链路BWP配置可以对应于初始侧行链路BWP配置,或在其它实施例中,活动侧行链路BWP配置可以不同于初始侧行链路BWP配置。在一些方面中,活动侧行链路BWP配置和初始侧行链路BWP配置可以包括分开的数字方案(numerology)。在该方面中,UE 215a2可以在活动侧行链路BWP中调度UE 215a1用于侧行链路通信。
图3示出了根据本公开内容的一些方面的侧行链路通信方案300。方案300可以由网络(诸如,网络100和/或200)中的UE(诸如,UE 115和/或215)采用。具体地,侧行链路UE可以采用方案300在共享射频频带上(例如,在共享频谱或非许可的频谱中)传送侧行链路。如图2中所讨论的,共享射频频带可以由多个RAT共享。在图3中,x轴表示一些任意单位的时间,并且y轴表示一些任意单位的频率。
在方案300中,共享射频频带301在频率上被划分成多个子信道或频率子带302(被示为302S0、302S1、302S2、……),并且在时间上被划分为多个侧行链路帧304(被示为304a、304b、304c、304d、……),用于侧行链路通信。频带301可以在任何合适的频率处(例如,在大约2.4GHz、5GHz、或6GHz处)。频带301可以具有任何合适的BW,并且可以被划分成过任何合适的数量个频率子带302。频率子带302的数量可以取决于侧行链路通信BW要求。频带301可以在任何合适的频率处。在一些方面中,频带301是2.4GHz非许可的频带,并且可以具有被划分为大约十五个5MHz的频率子带302的大约80兆赫(MHz)的带宽。
侧行链路UE(例如,UE 115和/或215)可以配备有宽带接收机和窄带发射机。例如,UE可以利用窄带发射机来接入频率子带302S2,以利用帧结构304进行侧链路传输。在每个频率子带302中重复帧结构304。在一些实例中,例如,如图3中所示,在相邻的频率子带302之间可以存在频率间隙或保护频带,以减轻相邻频带的干扰。因此,多个侧链路数据可以在不同的频率子带302(例如,FDM)中同时被传送。帧结构304也在时间上重复。例如,可以用帧结构304将频率子带302S2时间分割成多个帧。
帧结构304包括每个频率子带302中的侧行链路资源306。图例305指示了侧行链路资源306内的侧行链路信道的类型。侧行链路资源306可以具有与NR侧行链路资源基本上类似的结构。例如,侧行链路资源306可以包括多个子载波或RB(在频率上)以及多个符号(在时间上)。在一些实例中,侧行链路资源306可以具有在大约一毫秒(ms)到大约20ms之间的持续时间。每个侧行链路资源306可以包括PSCCH 310和PSSCH 320。PSCCH 310和PSSCH 320可以在时间和/或频率上复用。在图3的示出的示例中,对于每个侧行链路资源306,PSCCH310处于侧行链路资源306的开始符号(例如,大约1个符号或大约2个符号)期间,并且占用对应的频率子带302的一部分,并且PSSCH 320占用侧行链路资源306中的剩余时频资源。在一些实例中,侧行链路资源306还可以包括例如处于侧行链路资源306的结束符号期间的物理侧行链路反馈信道(PSFCH)。一般而言,PSCCH 310、PSSCH 320和/或PSFCH可以在侧行链路资源306内的任何合适的配置中被复用。
如上文所讨论的,主题技术提供了被配置成侧行链路锚定UE(例如,115j、215a2)的侧行链路UE,用于配置针对其它侧行链路接收UE的资源分配。如此,侧行链路锚定UE可以用指示频带301和/或子带302中的资源和/或与侧行链路帧304相关联的时序信息的资源池配置来配置侧行链路接收UE。例如,侧行链路锚定UE可以向侧行链路接收UE提供资源分配信息。在一些方面中,侧行链路锚定UE可以在RMSI中传送发送资源池配置,其中,发送资源池配置指示哪些无线电资源被分配给侧行链路锚定UE,供侧行链路锚定UE发送侧行链路通信。在一些方面中,侧行链路锚定UE可以在RMSI中传送接收资源池配置,其中,接收资源池配置指示哪些无线电资源被分配给侧行链路锚定UE,供侧行链路锚定UE接收侧行链路通信。在该方面中,侧行链路接收UE可以基于发送资源池配置来接收并解码来自侧行链路锚定UE的物理通信信道(例如,PSCCH 310、PSSCH 320),并且基于接收资源池配置来编码PSCCH 310和PSSCH 320并向侧行链路锚定UE发送PSCCH 310和PSSCH 320。
在侧行链路通信中,为了使侧行链路接收UE成功地解码PSCCH 310和PSSCH 320,描述由侧行链路锚定UE分配用于传输的特定资源以及传输配置的信息可以被携带在侧行链路控制信息SCI中。在该方面,用于侧行链路通信的控制信息可以以SCI消息的形式来传送。SCI消息可以在PSCCH 310上发送,其携带与PSSCH 320上的数据的传输相关的信息。
SCI可以将资源保留间隔、初始传输和重传的频率位置、初始传输和重传之间的时间间隙、以及用于调制在PSSCH 320上发送的数据的调制和编码方案(MCS)通知给侧行链路接收UE。
可以基于无线电资源分配的模式(例如,模式1RRA或模式2RRA)来填充SCI消息。对于模式1RRA,SCI可以使用由L3控制信令(例如,RRC、以及在小区(诸如,BS 215)处配置的L1控制信令)携带的更高层信息来填充。对于模式2RRA,可以基于由每个侧行链路锚定UE采取的自主决策来填充SCI。SCI消息的结构可以包括跳频标志字段、资源块分配和跳频资源分配字段、时间资源模式字段、MCS字段、时间提前字段以及组目的地标识符字段。SCI消息的结构可以包括适合于支持V2X控制信令的其它附加字段。跳频标志字段以及资源块分配和跳频资源分配字段可以为侧行链路接收UE提供信息,以标识数据信道(例如,PSSCH 320)存在在其中的RB。侧行链路锚定UE可以自主地配置这两个字段中的每个字段。经标识的RB可以属于侧行链路通信资源池(例如,PSSCH资源池)。时间资源模式字段可以提供用于数据信道(例如,PSSCH 320)的时域资源分配,以及特别地,用于PSSCH传输的潜在子帧。MCS字段可以提供用于PSSCH 320的MCS,其可以由侧行链路锚定UE自主地选择。时序提前字段可以提供用于模式2RRA或其它适用的模式的侧行链路时间调整。组目的地标识符字段可以指示对来自侧行链路锚定UE的发送消息可能感兴趣的侧行链路接收UE的组。这可以由侧行链路接收UE使用,以忽略目的地在于侧行链路UE的其它组的消息。
在一些方面中,SCI消息可以用传输信道编码来处理,以生成SCI消息传输块,其然后接着用物理信道编码来生成对应的PSCCH块。PSCCH块被携带在相应的子帧资源单元上用于传输。侧行链路接收UE可以在相应的子帧上接收一个或多个资源单元,以恢复控制信令信息,并且可以提取数据信道分配和传输配置。
PSCCH 310可以用于携带SCI 330。PSSCH 320可以用于携带侧行链路数据。取决于侧行链路应用,侧行链路数据可以是各种形式和类型的。例如,当侧行链路应用是V2X应用时,侧行链路数据可以携带V2X数据(例如,车辆位置信息、行驶速度和/或方向、车辆感测测量等)。可替代地,当侧行链路应用是IIoT应用时,侧行链路数据可以携带IIoT数据(例如,传感器测量、设备测量、温度读数等)。PSFCH可以用于携带反馈信息,例如,针对在早期侧行链路数据资源306中接收的侧行链路数据的HARQ ACK/NACK。
在一些方面中,方案300用于同步侧行链路通信。换言之,侧行链路UE在时间上是同步的,并且在符号边界、侧行链路资源边界(例如,侧行链路帧304的起始时间)方面是对齐的。当在BS的覆盖中时,侧行链路UE可以例如基于从侧行链路UE接收的侧行链路SSB和/或从BS(例如,BS 105和/或205)接收的NR-U SSB,来以多种形式执行同步。在一些方面中,例如当根据模式1RRA配置在服务BS的覆盖中时,可以用频带301中的资源池308来预配置侧行链路UE。资源池308可以包括多个侧行链路资源306。
在NR侧行链路帧结构中,资源池308中的侧行链路帧304可以在时间上是连续的。侧行链路接收UE(例如,UE 115和/或215)可以在SCI 330中包括针对随后的侧行链路帧304中的侧行链路资源306的保留。因此,另一侧行链路UE(例如,在相同的NR-U侧行链路系统中的UE)可以在资源池308中执行SCI感测,以确定侧行链路资源306可用还是被占用。例如,如果侧行链路UE检测到指示针对侧行链路306的保留的SCI,则侧行链路UE可以避免在保留的侧行链路资源306中进行发送。如果侧行链路UE确定不存在检测到的针对侧行链路资源306的保留,则侧行链路UE可以在侧行链路资源306中进行发送。如此,SCI感测可以帮助UE识别目标频率子带302,以保留侧行链路通信,并且避免与NR侧行链路系统中的另一侧行链路UE的系统内冲突。在一些方面中,可以用用于SCI感测或监测的SCI的感测窗口来配置UE,以减少系统内冲突。
在一些方面中,可以用跳频模式来配置侧行链路UE。在这一点上,侧行链路UE可以从一个侧行链路帧304中的频率子带302跳频到另一侧行链路帧304中的另一频率子带302。在图3的示出的示例中,在侧行链路帧304a期间,侧行链路UE在处于频率子带302S2中的侧行链路资源306中发送SCI 330,以保留在处于频率子带302S1处的下一侧行链路帧304b中的侧行链路资源306。类似地,在侧行链路帧304b期间,侧行链路UE在处于频率子带302S1中的侧行链路资源306中发送SCI 332,以保留在处于频率子带302S1处的下一侧行链路帧304c中的侧行链路资源306。在侧行链路帧304c期间,侧行链路UE在处于频率子带302S1中的侧行链路资源306中发送SCI 334,以保留在处于频率子带302S0处的下一侧行链路帧304d中的侧行链路资源306。在侧行链路帧304d期间,侧行链路UE在处于频率子带302S0中的侧行链路资源306中发送SCI 336。SCI 336可以保留在随后的侧行链路帧304中的侧行链路资源306。
SCI还可以指示调度信息和/或标识用于下一侧行链路资源306的目标侧行链路接收UE的目的地标识符(ID)。因此,侧行链路UE可以监测由其它侧行链路UE发送的SCI。在于侧行链路资源306中检测到SCI之后,侧行链路UE可以基于目的地ID来确定侧行链路UE是否是目标接收机。如果侧行链路UE是目标接收机,则侧行链路UE可以继续接收并解码由SCI指示的侧行链路数据。在一些方面中,多个侧行链路UE可以在不同的频率子带中(例如,经由FDM)在侧行链路帧304中同时地传送侧行链路数据。例如,在侧行链路帧304b中,一对侧行链路UE可以使用频率子带302S2中的侧行链路资源306来传送侧行链路数据,而另一对侧行链路UE可以使用频率子带302S1中的侧行链路资源306来传送侧行链路数据。
图4是根据本公开内容的一些方面的侧行链路主信息块的示例性帧结构400的简化框图。帧结构400包括侧行链路带宽字段402、覆盖中指示符字段404、时分双工(TDD)配置字段406、保留字段408、帧编号字段410以及子帧编号字段412。然而,并非可以要求所有的所示帧结构字段,并且一个或多个实现方式可以包括在图中未示出的附加帧结构字段。可以对帧结构字段的布置和类型做出变化,而不脱离本文中所阐述的权利要求的范围。可以提供附加的帧结构字段、不同的帧结构字段或更少的帧结构字段。
如本文中所述的,侧行链路主信息块可以携带系统参数信息。侧行链路主信息块可以与NR和NR-U系统中的MIB类似。在NR或NR-U系统中,MIB可以包含配置CORESET 0和类型0PDCCH监测的8比特信息字段。然而,在侧行链路通信中,侧行链路主信息块可以不包含对应于CORESET0和类型0PDCCH监测的此类比特字段信息。在一些实施例中,S-SSB中的SL-MIB改变8比特信息字段的用途,以指示RMSI的位置。例如,侧行链路主信息块的保留字段408和/或TDD配置字段406中的多个比特的用途可以由侧行链路锚定UE改变成初始侧行链路资源配置字段414。
侧行链路主信息块可以被映射到特定频率处的参考子帧和/或时间资源配置。如图4中所示,侧行链路主信息块的帧结构400可以包括40比特序列。在一些实例中,侧行链路带宽字段402可以提供带宽模式(例如,5、10、15、20MHz)。覆盖中指示符字段404可以将侧行链路锚定UE的覆盖状态(例如,覆盖中、部分覆盖、覆盖外)通知给侧行链路接收UE。帧字段410和子帧字段412可以分别在帧和子帧时间尺度上提供时序参考信息。
如图4中所示,TDD配置字段406和保留字段408的用途已经被改变成初始侧行链路配置字段414。在一些实例中,初始侧行链路配置字段414可以包括指针,所述指针向RMSI指示位置,以由侧行链路接收UE用于在定位S-SSB之后恢复RMSI。在一些方面中,侧行链路锚定UE可以在初始侧行链路资源配置字段414中分配比特字段,以指示初始侧行链路BWP配置的多个预定义集合中的至少一个预定义集合。在一些方面中,侧行链路主信息块包括在初始侧行链路配置字段414内的一个或多个比特位置处的初始传输无线电资源池配置。初始传输无线电资源池配置可以包括多个子信道、多个调制符号或在其期间RMSI被发送的时域时隙的集合中的一者或多者。
在解码侧行链路主信息块之后,侧行链路接收UE可以基于在初始侧行链路配置字段414内提供的指针来接收和恢复RMSI。在其它实例中,锚定UE可以分配初始侧行链路配置字段414中的比特位置,以包括对侧行链路主信息块是否包括RMSI的指示。例如,侧行链路主信息块指示可以指示不存在RMSI,并且侧行链路接收UE可以不尝试监测RMSI。
图5是根据本公开内容的一些方面的示例性非锚定UE 500的框图。非锚定UE 500可以是图1中的在上文所讨论的网络100中的UE 115或图2中的在上文所讨论的UE 215。如所示,非锚定UE500可以包括处理器502、存储器504、侧行链路通信模块508、收发机510(包括调制解调器子系统512和射频(RF)单元514)、以及一个或多个天线516。这些元件可以直接或间接地与彼此通信,例如经由一个或多个总线。
处理器502可包括被配置为执行本文中所述的操作的中央处理单元(CPU)、数字信号处理器(DSP)、专用集成电路(ASIC)、控制器、现场可编程门阵列(FPGA)设备、另一硬件设备、固件设备,或其任何组合。处理器502还可以被实现为计算设备的组合,例如,DSP与微处理器的组合、多个微处理器、一个或多个微处理器与DSP核心的结合、或者任何其它这样的配置。
存储器504可以包括高速缓冲存储器(例如,处理器502的高速缓冲存储器)、随机存取存储器(RAM)、磁阻RAM(MRAM)、只读存储器(ROM)、可编程只读存储器(PROM)、可擦除可编程只读存储器(EPROM)、电擦除可编程只读存储器(EEPROM)、闪存、固态存储器设备、硬盘驱动器、其它形式的易失性和非易失性存储器,或不同类型的存储器的组合。在一个方面中,存储器504包括非暂时性计算机可读介质。存储器504可以存储或在其上已经记录了指令506。指令506可以包括当由处理器502执行时,使处理器502执行本文中参照UE 115结合本公开内容的方面(例如,图1-4、8和10的方面)所述的操作的指令。指令506也可以被称为程序代码。程序代码可以用于使无线通信设备执行这些操作,例如通过使一个或多个处理器(诸如,处理器502)控制或命令无线通信设备执行这些操作。术语“指令”和“代码”应当被广义地解释为包含任何类型的计算机可读语句。例如,术语“指令”和“代码”可以指一个或多个程序、例程、子例程、功能、过程等。“指令”和“代码”可以包括一个计算机可读语句或许多计算机可读语句。
侧行链路通信模块508可以经由硬件、软件或其组合来实现。例如,侧行链路通信模块508可以被实现为处理器、电路和/或存储在存储器504中并由处理器502执行的指令506。在一些实例中,侧行链路通信模块508可以被集成在调制解调器子系统512内。例如,侧行链路通信模块508可以由调制解调器子系统512内的软件组件(例如,由DSP或通用处理器执行)和硬件组件(例如,逻辑门和电路系统)的组合来实现。
侧行链路通信模块508可以用于本公开内容的各个方面,例如,图1-4、8和10的方面。在一些方面中,侧行链路通信模块508适于从BS(例如,BS 105和/或205)接收SSB,从侧行链路锚定UE(例如,UE 115、215和/或600)接收SSB,基于接收的SSB执行同步,接收来自BS的指示资源池(例如,资源池308)的侧行链路配置、跳频模式、侧行链路通信帧结构(例如,帧结构304),和/或根据接收的侧行链路配置执行侧行链路通信。
如所示,收发机510可以包括调制解调器子系统512和RF单元514。收发机510可以被配置为与其它设备(诸如,BS 105)进行双向通信。调制解调器子系统512可以被配置为根据调制和编码方案(MCS)(例如,低密度奇偶校验(LDPC)编码方案、Turbo编码方案、卷积编码方案、极性编码方案、数字波束成形方案等)调制和/或编码来自存储器504和/或侧行链路通信模块508的数据。RF单元514可以被配置为处理(例如,执行模数转换或数模转换等)来自调制解调器子系统512(在出站传输上)的或源自另一来源(诸如,UE 115或BS 105)的传输的经调制/经编码的数据(例如,SCI、侧行链路数据、同步信号、SSB)。RF单元514还可以被配置为执行模拟波束成形连同数字波束成形。尽管所示的是一起集成在收发机510中,但是调制解调器子系统512与RF单元514可以是在UE 115处被耦合在一起使得UE 115能够与其它设备通信的分开的设备。
RF单元514可以向天线516提供经调制和/或经处理的数据,例如数据分组(或者更概括地,可以包含一个或多个数据分组及其它信息的数据消息),以便向一个或多个其它设备传输。RF单元514可以处理经调制和/或经处理的数据,并且在经由天线516传输之前使用SC-FDMA调制生成对应的时域波形。在其它实例中,RF单元514可以利用OFDM调制来生成时域波形。天线516还可以接收自其它设备发送的数据消息。天线516可以提供经接收的数据消息,用于在收发机510处进行处理和/或解调。收发机510可以将经调制和经编码的数据(例如,侧行链路配置、SCI、侧行链路数据、SCI保留冲突信息、同步信号、SSB)提供给侧行链路通信模块508以用于处理。天线516可以包括具有相似或不同设计的多个天线,以维持多个传输链路。RF单元514可以配置天线516。在一些方面中,RF单元514可以包括各种RF组件,诸如,本地振荡器(LO)、模拟滤波器、和/或混合机。可以基于特定的信道中心频率来配置LO和混合机。取决于信道BW,模拟滤波器可以被配置为具有特定的通带。RF组件可以被配置为在各种功率模式(例如,正常功率模式、低功率模式、断电模式)处操作,并且取决于锚定UE500处的发送和/或接收要求,可以在不同的功率模式之间被切换。
在一个方面中,非锚定UE 500可以包括实现不同RAT(例如,NR和LTE)的多个收发机510。在一个方面中,非锚定UE 500可以包括实现多个RAT(例如,NR和LTE)的单个收发机510。在一个方面中,收发机510可以包括各种组件,其中,组件的不同组合可以实现不同的RAT。
在一些方面中,收发机510可以监测侧行链路广播信道(例如,PSBCH)或侧行链路发现信道(例如,PSDCH)。例如,非锚定UE 500可以监测任何锚定UE和/或任何侧行链路发送UE(例如,非锚定节点)。在一些方面中,收发机510可以在侧行链路广播信道上获得一个或多个侧行链路同步信号块。在一些实例中,侧行链路通信模块508与处理器502可以从侧行链路同步信号块恢复同步前导码序列(例如,PSS、SSS)。
在一些方面中,侧行链路通信模块508与处理器502可以从侧行链路同步信号块恢复侧行链路主信息块。在一些方面中,侧行链路通信模块508与处理器502可以从侧行链路主信息块获得初始侧行链路BWP配置。在一些方面中,侧行链路通信模块508与处理器502可以从侧行链路主信息块获得初始发送资源池配置。在一些实例中,处理器502可以确定RMSI是否存在于侧行链路主信息块内。如果存在RMSI,则处理器502可以从初始发送资源池配置确定RMSI通过其被发送的无线电资源。
在一些方面中,收发机510可以基于RMSI无线电资源来调谐至包含PSCCH的子带。在一些实例中,收发机510可以在PSCCH上获得RMSI。在一些方面中,侧行链路通信模块508与处理器502可以从RMSI恢复发送资源池配置和接收资源池配置。在该方面中,收发机510可以基于发送资源池配置来调谐至包含PSSCH的子带。在各种实例中,收发机510可以在PSSCH上接收侧行链路数据。
图6是根据本公开内容的一些方面的示例性锚定UE 600的框图。锚定UE 600可以是图1中的在上文所讨论的网络100中的UE 115或图2中的在上文所讨论的UE 215。如所示,锚定UE 600可以包括处理器602、存储器604、侧行链路配置模块608、收发机610(包括调制解调器子系统612和RF单元614)、以及一个或多个天线616。这些元件可以直接或间接地与彼此通信,例如经由一个或多个总线。
处理器602可以具有作为特定类型处理器的各种特征。例如,这些可以包括被配置为执行本文中所述操作的CPU、DSP、ASIC、控制器、FPGA设备、另一硬件设备、固件设备,或其任何组合。处理器602还可以被实现为计算设备的组合,例如,DSP与微处理器的组合、多个微处理器、一个或多个微处理器与DSP核心的结合、或者任何其它这样的配置。
存储器604可以包括高速缓冲存储器(例如,处理器602的高速缓冲存储器)、RAM、MRAM、ROM、PROM、EPROM、EEPROM、闪存、固态存储器设备、一个或多个硬盘驱动器、基于忆阻器的阵列、其它形式的易失性和非易失性存储器,或不同类型的存储器的组合。在一些方面中,存储器604包括非临时性计算机可读介质。存储器604可以存储指令606。指令606可以包括当由处理器602执行时使处理器602执行本文中所述的操作(例如,图1-4、7和9的方面)的指令。指令606还可以被称为代码,其应当被广义地解释为包含上文中参照图5所讨论的任何类型的计算机可读语句。
侧行链路配置模块608可以经由硬件、软件或其组合来实现。例如,侧行链路配置模块608可以被实现为处理器、电路和/或存储在存储器604中并由处理器602执行的指令606。在一些实例中,侧行链路配置模块608可以被集成在调制解调器子系统612内。例如,侧行链路配置模块608可以由调制解调器子系统612内的软件组件(例如,由DSP或通用处理器执行)和硬件组件(例如,逻辑门和电路系统)的组合来实现。
侧行链路配置模块608可以用于本公开内容的各个方面,例如,图1-4、7和9的方面。例如,侧行链路配置模块608被配置为向侧行链路接收UE(例如,UE 115、215和/或500)发送指示侧行链路资源池的侧行链路配置、侧行链路通信参数、侧行链路资源池、和/或跳频模式。侧行链路配置可以指示侧行链路资源池中的时频资源。例如,配置可以指示频带信息(例如,频带301、PSCCH处于在其中的控制信道、PSCCH复用配置、用于跳频基接入的PSSCH)、PSCCH到PSSCH的映射、和/或侧行链路帧时序信息。侧行链路通信参数可以包括跳频模式。在一些方面中,侧行链路配置模块608被配置为向UE发送CBR/CR表。CBR/CR表可以包括指示在给定的CBR处的用于源自发射机的SCI的可允许的CR以及用于源自接收机的SCI的可允许的CR的条目,以控制系统内冲突。
如所示,收发机610可以包括调制解调器子系统612和RF单元614。收发机610可以被配置为与其它设备(诸如,UE 115和/或600和/或另一核心网络元件)进行双向通信。调制解调器子系统612可以被配置为根据MCS(例如,LDPC编码方案、Turbo编码方案、卷积编码方案、极性编码方案、数字波束成形方案等)调制和/或编码数据。RF单元614可以被配置为处理(例如,执行模数转换或数模转换等)来自调制解调器子系统612(在出站传输上)的或源自另一来源(诸如,UE 115和/或UE 600)的传输的经调制/经编码的数据(例如,PDCCH、PDSCH、SSB、侧行链路配置、侧行链路资源池配置、SSB、用于侧行链路通信的跳频模式)。RF单元614还可以被配置为执行模拟波束成形连同数字波束成形。尽管所示的是一起集成在收发机610中,但是调制解调器子系统612和/或RF单元614可以是在UE 115处被耦合在一起使得UE 115能够与其它设备通信的分开的设备。
RF单元614可以向天线616提供经调制和/或经处理的数据,例如数据分组(或者更概括地,可以包含一个或多个数据分组及其它信息的数据消息),以便向一个或多个其它设备传输。RF单元614可以处理经调制和/或经处理的数据,并且在经由天线616传输之前使用SC-FDMA调制生成对应的时域波形。天线616还可以接收自其它设备发送的数据消息以及提供经接收的数据消息,用于在收发机610处进行处理和/或解调。收发机610可以向侧行链路配置模块608提供经解调和经解码的数据以进行处理。天线616可以包括具有相似或不同设计的多个天线,以维持多个传输链路。
在一个方面中,锚定UE 600可以包括实现不同RAT(例如,NR和LTE)的多个收发机610。在一个方面中,锚定UE 600可以包括实现多个RAT(例如,NR和LTE)的单个收发机610。在一个方面中,收发机610可以包括各种组件,其中,组件的不同组合可以实现不同的RAT。
本文中更加详细地描述了用于独立侧行链路通信的机制,其中侧行链路发送UE充当锚定节点以自主地发起在共享射频频带或非许可的频带上的与其它侧行链路接收UE的侧行链路操作。
在一些方面中,处理器602可以确定系统参数信息,以发起侧行链路通信,并且收发机610可以在第一时间周期期间在共享射频内的多个子带中的一个或多个第一子带中发送系统参数信息,并且基于系统参数信息,在与第一时间周期不同的第二时间周期期间在多个子带中的第二子带中与第二UE(例如,非锚定UE 500)传送侧行链路数据。
在一些方面中,侧行链路配置模块608可以发送SSB,以促进UE处的用于同步侧行链路通信的同步。例如,侧行链路通信模块508被配置为向包括非锚定UE 500的其它侧行链路接收UE提供时序同步和控制信令。在一些方面中,处理器602可以生成同步信号,以促进锚定UE 600与非锚定UE 500之间的同步,并且为侧行链路同步信号块(例如,S-SSB)的第一部分分配同步信号,其中,同步信号包括其后是辅同步信号的主同步信号。在一些方面中,处理器602可以确定包括系统参数信息的至少一部分的侧行链路主信息块(例如,SL-MIB),并且为S-SSB的第二部分分配SL-MIB,其中,第二部分跟随在第一部分之后。
在一些方面中,一个或多个第一子带包括在第一时间周期的第一部分中的物理侧行链路广播信道(例如,PSBCH),并且可以发送系统参数信息的收发机610还被配置为在PSBCH上发送S-SSB。在一些方面中,处理器602可以确定初始传输无线电资源池配置,其中,初始传输无线电资源池配置可以包括多个子信道、多个调制符号或在其期间剩余最小系统信息(例如,RMSI)被发送的第一时间周期内的时域时隙的集合中的一项或多项,并且为SL-MIB中的一个或多个位置分配初始传输无线电资源池配置。在一些方面中,处理器602可以在SL-MIB内提供指示是否存在RMSI用于由非锚定UE 500进行处理的指示。
在一些实施例中,锚定UE 600可以以RMSI的形式提供附加系统参数。在一些方面中,RMSI包括与SL-MIB中的系统参数信息的至少一部分不同的附加系统参数信息。在一些方面中,收发机610可以在第一时间周期期间,在第二子带中与非锚定UE 500传送RMSI。在一些方面中,第二子带包括在第一时间周期的第一部分中在时间或频率中的至少一项上被复用的多个物理侧行链路控制信道(例如,PSCCH)以及在第一时间周期的第二部分中在时间或频率中的至少一项上被复用的多个物理侧行链路共享信道(例如,PSSCH),其中,第二部分不同于第一部分。在一些方面中,收发机610可以在多个PSCCH中的一个或多个PSCCH中传送RMSI,并且收发机610还可以在多个PSSCH中的至少一个PSSCH中传送侧行链路数据。在一些方面中,收发机610可以在RMSI中传送对小区内保护频带的指示,以由非锚定UE 500用于恢复一个或多个资源块集合。
在一些实施例中,锚定UE 600可以提供附加系统参数内的带宽分配。在一些方面中,收发机610可以在RMSI中传送侧行链路BWP配置。在一些方面中,处理器602可以确定初始侧行链路带宽部分(BWP)配置的多个预定义集合,并且在SL-MIB中在一个或多个位置内提供指示初始侧行链路BWP配置的多个预定义集合中的至少一个预定义集合的指示。在一些方面中,初始侧行链路BWP配置的多个预定义集合中的至少一个预定义集合可以包括起始RB和RB的数量。在该方面中,初始BWP配置可以包括高达RB的数量的连续RB的组。起始RB可以对应于资源网格中的第一位置,并且S-SSB可以占用资源网格中的至少第二位置,其中,第一位置和第二位置被资源块级偏移分开。在各个方面中,资源网格包括资源块和调制符号(例如,OFDM符号)的二维阵列。在一些方面中,侧行链路BWP配置不同于被包括在SL-MIB中的初始侧行链路BWP配置的多个预定义集合中的至少一个预定义集合中的至少一个初始侧行链路BWP配置。在一些方面中,初始侧行链路BWP配置的多个预定义集合中的每个预定义集合可以包括分开的数字方案。在一些方面中,S-SSB是在于初始BWP配置中定义的带宽内发送的。
在一些实施例中,锚定UE 600可以向侧行链路接收UE提供资源分配信息。在一些方面中,收发机610可以在RMSI中传送发送资源池配置,其中,发送资源池配置可以指示哪些无线电资源被分配给锚定UE 600,供锚定UE 600发送侧行链路通信。在一些方面中,收发机610可以在RMSI中传送接收资源池配置,其中,接收资源池配置可以指示哪些无线电资源被分配给锚定UE 600,供锚定UE 600接收侧行链路通信。在一些方面中,收发机610可以在RMSI中传送S-SSB的传输模式,以使非锚定UE 500能够对S-SSB进行速率匹配。在一些方面中,收发机可以在RMSI中传送RMSI的传输模式,以使非锚定UE 500能够监测RMSI。
在一些实施例中,锚定UE 600可以提供其锚定节点配置的公告,并且监测其它锚定节点,以维持侧行链路系统中的系统参数的本地一致性。在一些方面中,收发机610可以发送输出的公告消息,以公告锚定UE 600是被配置为自主地设置用于包括非锚定UE 500的其它UE的侧行链路操作的锚定节点。在一些方面中,处理器602可以针对用于指示被配置成锚定节点的另一UE的存在的输入的公告消息来监测PSDCH。在一些方面中,当指示被配置成锚定节点的另一UE的存在的输入的公告消息不被锚定UE 600检测到时,收发机610可以在PSDCH中发送包括输出的公告消息的一个或多个发现消息。在一些方面中,当指示被配置成锚定节点的另一UE的存在的输入的公告消息被检测到时,处理器602可以确定一个或多个预先确定的因素被满足,以证明第一UE是锚定节点,并且采用被配置成锚定节点的另一UE的一个或多个系统参数。在一些方面中,处理器602可以接收在PSDCH上从另一UE传播到锚定UE 600的一个或多个系统参数。在一些方面中,处理器602可以用从另一UE采用的一个或多个系统参数来更新本地系统参数,以生成更新的系统参数信息,并且收发机610可以在继第一时间周期之后的第三时间周期期间发送更新的系统参数信息。在一些方面中,收发机610可以在PSBCH上发送更新的系统参数信息。在一些方面中,收发机610可以在单播传输或组播传输中的一者或多者中将更新的系统参数信息发送给具有与锚定UE 600的侧行链路连接的一个或多个其它UE。例如,锚定UE 600可以执行到非锚定UE 500的单播传输,以与非锚定UE 500传送更新的系统参数信息。在一些方面中,处理器602可以基于另一UE的相对于小区(例如,BS 205)的覆盖区域的位置来确定另一UE是否是覆盖中的UE,并且当基于另一UE处于小区的覆盖区域内,另一UE是覆盖中的UE时,确定另一UE具有比锚定UE 600高的优先级,用于确定锚定UE 600与另一UE之间的系统参数。
在一些方面中,收发机610可以基于接收资源池配置,在第二时间周期期间在第二子带中,在多个PSCCH中的至少一个PSCCH中或在多个PSSCH中的至少一个PSSCH中,从非锚定UE 500接收侧行链路消息。在一些方面中,侧行链路消息可以使锚定UE 600建立与非锚定UE 500的侧行链路连接。
图7是根据本公开内容的一些方面的锚定节点发现过程的流程示意图。过程700的方面可以由无线通信设备的计算设备(例如,处理器、处理电路和/或其它合适的组件)或用于执行步骤的其它合适的单元来执行。例如,无线通信设备(诸如,UE 115、215和/或500)可以利用一个或多个组件(诸如,处理器502、存储器504、侧行链路通信模块508、收发机510、调制解调器512和一个或多个天线516)来执行过程700的步骤。如所示,过程700包括多个枚举的步骤,但是过程700的方面在枚举的步骤之前、之后以及中间可以包括附加的步骤。在一些方面中,枚举的步骤中的一个或多个枚举的步骤可以被省略或以不同的顺序执行。
在方框702处,侧行链路发送UE(例如,UE 115j)可以执行感测操作。在一些方面中,感测操作可以在侧行链路发现信道上执行。在一些方面中,侧行链路发现信道可以类似于PSDCH。在一些实例中,侧行链路发送UE可以利用一个或多个组件(诸如,处理器502、侧行链路通信模块508、收发机510、调制解调器512和一个或多个天线516)来执行感测操作。
在方框704处,侧行链路发送UE可以通过在侧行链路发现信道上检测其它锚定UE来确定另一锚定节点是否存在。在一些方面中,其它锚定UE可以用其存在的公告来广播一个或多个发现消息。在一些实例中,侧行链路发送UE可以利用一个或多个组件(诸如,处理器502、侧行链路通信模块508、收发机510和调制解调器512)来确定另一锚定UE的存在。如果侧行链路发送UE检测到其它锚定UE,则过程700进行到方框712。否则,过程700进行到方框706。
在方框706处,当侧行链路发送UE已经确定不存在其它锚定节点时,侧行链路发送UE可以将其自身配置成锚定节点。在一些方面中,侧行链路发送UE可以基于多个因素自主地决定将其自身配置成锚定节点。在一些实例中,侧行链路发送UE可以利用一个或多个组件(诸如,处理器502)来将其自身配置成锚定节点。
在方框708处,侧行链路发送UE可以公告其锚定节点状态。在一些方面中,侧行链路发送UE可以在侧行链路发现信道上广播被标记为公告的一个或多个发现消息。在一些实例中,侧行链路发送UE可以利用一个或多个组件(诸如,处理器502、侧行链路通信模块508、收发机510、调制解调器512和一个或多个天线516)来执行其锚定节点状态的公告。
在方框710处,侧行链路发送UE(现在被配置成锚定节点)可以广播系统参数。在一些方面中,侧行链路发送UE可以在侧行链路广播信道上以侧行链路同步信号块的形式发送系统参数。在一些方面中,侧行链路广播信道可以类似于PSBCH。在一些方面中,侧行链路同步信号块可以包含在时间或频率上与侧行链路主信息块复用的同步信号(例如,PSS、SSS)。侧行链路同步信号块可以包括在时间或频率上与同步信号和/或侧行链路主信息块复用的PSCCH,其中,PSCCH可以携带剩余最小系统信息。在一些实例中,侧行链路发送UE可以利用一个或多个组件(诸如,处理器502、侧行链路通信模块508、收发机510、调制解调器512和一个或多个天线516)来广播系统参数。
在方框712处,侧行链路发送UE可以确定其是否正在将其自身配置成锚定节点。在一些方面中,侧行链路发送UE可以在第一工作流(其中,侧行链路发送UE决定成为新的锚定节点)中或在第二工作流(其中,侧行链路发送UE已经被配置成锚定节点并且执行针对其它锚定节点的常规感测操作)中执行感测操作。如果侧行链路发送UE正在将其自身配置成锚定节点,则过程700进行到方框714。否则,过程700进行到方框716。在一些实例中,侧行链路发送UE可以利用一个或多个组件(诸如,处理器502、侧行链路通信模块508、收发机510和调制解调器512)来确定其是否正在将其自身配置成锚定节点。
在方框714处,侧行链路发送UE可以确定将其自身配置成新的锚定节点是否是有正当理由的。在一些方面中,侧行链路发送UE可以基于多个因素来确定其成为锚定节点的需要。如果需要是有正当理由的,则过程700可以进行到方框720。否则,过程700进行回到立即开始进行方框702。在一些实例中,侧行链路发送UE可以利用一个或多个组件(诸如,处理器502)来确定将其自身配置成锚定节点是否是有正当理由的。
在方框716处,当由于侧行链路发送UE已经是锚定节点,因此侧行链路发送UE不正在将其自身配置成锚定节点时,侧行链路发送UE可以确定其它锚定节点的优先化。在一些方面中,侧行链路发送UE可以考虑其它锚定节点的相对于服务BS的覆盖,使得覆盖中的锚定节点可以具有更高的优先级。在一些实例中,侧行链路发送UE可以利用一个或多个组件(诸如,处理器502)来确定其它锚定节点的优先化。
在方框718处,侧行链路发送UE可以确定其它锚定节点是否具有更高的优先级。在该方面中,侧行链路发射机UE可以确定其相对于服务BS的覆盖区域的覆盖位置。如果侧行链路发送UE确定其它锚定UE的位置在服务BS的覆盖区域内,则侧行链路发送UE断定其它锚定节点具有更高的优先级。在该方面中,过程700进行到方框720。否则,过程700进行到方框722。在一些实例中,侧行链路发送UE可以利用一个或多个组件(诸如,处理器502)来确定其它锚定节点是否具有更高的优先级。
在方框720处,侧行链路发送UE可以采用其它锚定节点的系统参数。在一些方面中,当侧行链路发送UE检测到其它锚定节点并且其发现有正当理由需要成为新的锚定节点时,侧行链路发送UE采用其它锚定节点的系统参数。在其它方面中,当其它锚定节点具有用于确定系统参数的更高的优先级并且侧行链路发送UE(在该示例中被配置成锚定节点)正在退让于其它锚定节点时,侧行链路发送UE采用其它锚定节点的系统参数。在该方面中,通过采用其它锚定节点的系统参数,主题技术的侧行链路系统正在帮助维持系统参数的本地一致性,并且正在帮助降低维持跨越侧行链路系统中的锚定节点的多个、不同的系统参数的复杂性。
返回方框710,侧行链路发送UE可以广播更新的本地系统参数。通过采用其它锚定节点的系统参数,侧行链路发送UE更新其本地系统参数,并且将更新的系统参数公告给侧行链路接收UE。在一些方面中,侧行链路发送UE可以在PSBCH上进行广播,或者可以单播传输上将更新的系统参数发送给特定的侧行链路接收UE或在组播传输上发送给侧行链路接收UE的组。在一些实例中,侧行链路发送UE可以利用一个或多个组件(诸如,处理器502、侧行链路通信模块508、收发机510、调制解调器512和一个或多个天线516)来广播更新的本地系统参数。
在方框722处,侧行链路发送UE可以将其系统参数传播给其它锚定节点。在一些方面中,侧行链路发送UE做出其在设置用于侧行链路操作的系统参数方面具有更高的优先级的确定。在这一点上,其它锚定节点将采用由侧行链路发送UE提供的系统参数。在一些实例中,侧行链路发送UE可以利用一个或多个组件(诸如,处理器502、侧行链路通信模块508、收发机510、调制解调器512和一个或多个天线516)来将其系统参数传播给其它锚定节点。
图8是根据本公开内容的一些方面的侧行链路通信过程800的流程示意图。过程800的方面可以由无线通信设备的计算设备(例如,处理器、处理电路和/或其它合适的组件)或用于执行步骤的其它合适的单元来执行。例如,无线通信设备(诸如,UE 115、215和/或600)可以利用一个或多个组件(诸如,处理器602、存储器604、侧行链路通信模块608、收发机610、调制解调器612和一个或多个天线616)来执行过程800的步骤。如所示,过程800包括多个枚举的步骤,但是过程800的方面在枚举的步骤之前、之后以及中间可以包括附加的步骤。在一些方面中,枚举的步骤中的一个或多个枚举的步骤可以被省略或以不同的顺序执行。
在方框802处,侧行链路接收UE可以监测侧行链路广播信道。在一些方面中,侧行链路广播信道可以类似于PSBCH。在一些实例中,共享射频频带可以类似于频带301,并且子带可以类似于频率子带302。第一时间周期可以类似于侧行链路帧304。在一些实例中,侧行链路接收UE可以利用一个或多个组件(诸如,处理器602、侧行链路通信模块608、收发机610、调制解调器612和一个或多个天线616)来监测侧行链路广播信道。
在方框804处,侧行链路接收UE可以在第一时间周期期间,在共享射频内的多个子带中的第一子带中,在侧行链路广播信道上从锚定UE接收侧行链路同步信号块。在一些实例中,侧行链路接收UE可以利用一个或多个组件(诸如,处理器602、侧行链路通信模块608、收发机610、调制解调器612和一个或多个天线616)来接收侧行链路同步信号块。
在方框806处,侧行链路接收UE可以从侧行链路同步块恢复侧行链路主信息块。在一些方面中,侧行链路主信息块在侧行链路同步信号块中,在时间或频率上与同步信号(例如,PSS、SSS)复用。在一些实例中,侧行链路接收UE可以利用一个或多个组件(诸如,处理器602、侧行链路通信模块608、收发机610和调制解调器612)来恢复侧行链路主信息块。
在方框808处,侧行链路接收UE可以从侧行链路主信息块获得初始侧行链路带宽部分配置。在一些方面中,初始侧行链路带宽部分配置指示具有多个资源块的资源网格以及对资源网格内的起始资源块的指示。在一些实例中,侧行链路接收UE可以利用一个或多个组件(诸如,处理器602、侧行链路通信模块608、收发机610和调制解调器612)来获得初始侧行链路带宽部分配置。
在方框810处,侧行链路接收UE可以从侧行链路主信息块获得初始发送资源池配置。在一些方面中,初始发送资源池可以指示用于由锚定节点发送的侧行链路消息的无线电资源,包括对被分配给剩余最小系统信息的无线电资源的指示。在一些实例中,侧行链路接收UE可以利用一个或多个组件(诸如,处理器602、侧行链路通信模块608、收发机610和调制解调器612)来获得初始发送资源池配置。
在方框812处,侧行链路接收UE确定剩余最小系统信息是否存在于侧行链路同步信号块内。在一些方面中,主信息块包含充当剩余最小系统信息是否存在的指示的指示符。在该方面中,如果指示示出了存在剩余最小系统信息,则过程800进行到方框814,其中,侧行链路接收UE可以尝试恢复剩余最小系统信息。否则,过程800进行回到立即开始进行方框802。
在方框814处,侧行链路接收UE可以从初始发送资源池配置确定通过其剩余最小系统信息被发送的无线电资源。在一些方面中,侧行链路接收UE可以指被包括在主信息块中的指针,其使侧行链路接收UE能够定位和解码剩余最小系统信息。在一些方面中,指针可以对应于侧行链路主信息块内的改变用途的比特字段。在一些实例中,侧行链路接收UE可以利用一个或多个组件(诸如,处理器602、侧行链路通信模块608、收发机610和调制解调器612)来确定剩余最小系统信息的无线电资源。
在方框816处,侧行链路接收UE可以基于剩余最小系统信息的无线电资源来调谐至侧行链路控制信道。在一些方面中,侧行链路控制信道可以类似于PSCCH。在一些实例中,侧行链路接收UE可以利用一个或多个组件(诸如,处理器602、侧行链路通信模块608、收发机610、调制解调器612和一个或多个天线616)来调谐至侧行链路控制信道。
在方框818处,侧行链路接收UE可以在PSCCH上获得剩余最小系统信息。在一些实例中,侧行链路接收UE可以利用一个或多个组件(诸如,处理器602、侧行链路通信模块608、收发机610和调制解调器612)来恢复剩余最小系统信息。
在方框820处,侧行链路接收UE可以从剩余最小系统信息恢复发送资源池配置。在一些方面中,剩余最小系统信息还可以包括接收资源池配置。在一些实例中,侧行链路接收UE可以利用一个或多个组件(诸如,处理器602、侧行链路通信模块608、收发机610和调制解调器612)来恢复发送资源池配置。
在方框822处,侧行链路接收UE可以基于剩余最小系统信息的无线电资源来调谐至侧行链路共享信道。在一些方面中,侧行链路共享信道可以类似于PSSCH。在一些实例中,侧行链路接收UE可以利用一个或多个组件(诸如,处理器602、侧行链路通信模块608、收发机610、调制解调器612和一个或多个天线616)来调谐至侧行链路共享信道。
在方框824处,侧行链路接收UE可以基于发送资源池配置,在与第一时间周期不同的第二时间周期期间,在多个子带中的第二子带中,在PSSCH上从锚定UE接收侧行链路数据。在一些实例中,第一UE可以利用一个或多个组件(诸如,处理器602、侧行链路通信模块608、收发机610、调制解调器612和一个或多个天线616)来接收侧行链路数据。
图9是根据本公开内容的一些方面的侧行链路系统信息广播过程900的流程示意图。过程900的方面可以由无线通信设备的计算设备(例如,处理器、处理电路和/或其它合适的组件)或用于执行步骤的其它合适的单元来执行。例如,无线通信设备(诸如,UE 115、215和/或500)可以利用一个或多个组件(诸如,处理器502、存储器504、侧行链路通信模块508、收发机510、调制解调器512和一个或多个天线516)来执行过程900的步骤。过程900可以至少部分地采用与上文关于图7所讨论的过程700中相似的机制。如所示,过程900包括多个枚举的步骤,但是过程900的方面在枚举的步骤之前、之后以及中间可以包括附加的步骤。在一些方面中,枚举的步骤中的一个或多个枚举的步骤可以被省略或以不同的顺序执行。
在方框910处,侧行链路发送UE(或锚定UE)可以确定系统参数信息,以发起侧行链路通信。在一些方面中,锚定UE自主地并且独立于任何服务BS和/或相关联的核心网络来确定系统参数信息。在一些实例中,侧行链路接收UE可以利用一个或多个组件(诸如,处理器502)来确定系统参数信息。
在方框920处,锚定UE可以在第一时间周期期间,在共享射频内的多个子带中的一个或多个子带中,在侧行链路广播信道上发送系统参数信息。在一些实例中,共享射频频带可以类似于频带301,并且子带可以类似于频率子带302。第一时间周期可以类似于侧行链路帧304。在一些实例中,侧行链路接收UE可以利用一个或多个组件(诸如,处理器502、侧行链路通信模块508、收发机510、调制解调器512和一个或多个天线516)来发送系统参数信息。
在方框930处,锚定UE可以基于系统参数信息,在与第一时间周期不同的第二时间周期期间,在多个子带中的第二子带中,与侧行链路接收UE传送侧行链路数据。在一些实例中,第一UE可以利用一个或多个组件(诸如,处理器502、侧行链路通信模块508、收发机510、调制解调器512和一个或多个天线516)来传送侧行链路数据。
图10是根据本公开内容的一些方面的侧行链路通信过程1000的流程示意图。过程1000的方面可以由无线通信设备的计算设备(例如,处理器、处理电路和/或其它合适的组件)或用于执行步骤的其它合适的单元来执行。例如,无线通信设备(诸如,UE 115、215和/或600)可以利用一个或多个组件(诸如,处理器602、存储器604、侧行链路通信模块608、收发机610、调制解调器612和一个或多个天线616)来执行过程1000的步骤。过程1000可以采用与上文关于图8所讨论的过程800中相似的机制。如所示,过程1000包括多个枚举的步骤,但是过程1000的方面在枚举的步骤之前、之后以及中间可以包括附加的步骤。在一些方面中,枚举的步骤中的一个或多个枚举的步骤可以被省略或以不同的顺序执行。
在方框1010处,侧行链路接收UE可以在第一时间周期期间,在共享射频内的多个子带中的第一子带中,在侧行链路广播信道上从侧行链路发送UE(或锚定UE)接收系统参数信息。在一些实例中,共享射频频带可以类似于频带301,并且子带可以类似于频率子带302。第一时间周期可以类似于侧行链路帧304。在一些实例中,侧行链路接收UE可以利用一个或多个组件(诸如,处理器602、侧行链路通信模块608、收发机610、调制解调器612和一个或多个天线616)来接收系统参数信息。
在方框1020处,侧行链路接收UE可以从系统参数信息恢复剩余最小系统信息。在一些方面中,侧行链路接收UE可以指被包括在主信息块中的作为系统参数信息的部分的指针,其使侧行链路接收UE能够定位和解码剩余最小系统信息。在一些实例中,侧行链路接收UE可以利用一个或多个组件(诸如,处理器602、侧行链路通信模块608、收发机610和调制解调器612)来恢复剩余最小系统信息。
在方框1030处,侧行链路接收UE可以从剩余最小系统信息恢复发送资源池配置。在一些方面中,剩余最小系统信息还可以包括接收资源池配置。在一些实例中,侧行链路接收UE可以利用一个或多个组件(诸如,处理器602、侧行链路通信模块608、收发机610和调制解调器612)来恢复发送资源池配置。
在方框1040处,侧行链路接收UE可以基于发送资源池配置,在与第一时间周期不同的第二时间周期期间,在多个子带中的第二子带中,从锚定UE接收侧行链路数据。在一些实例中,第一UE可以利用一个或多个组件(诸如,处理器602、侧行链路通信模块608、收发机610、调制解调器612和一个或多个天线616)来接收侧行链路数据。
可以利用多种不同的技术和方法来表示信息和信号。例如,可以用电压、电流、电磁波、磁场或磁性粒子、光场或光学粒子或其任意组合来表示整个以上描述中提到的数据、指令、命令、信息、信号、比特、符号和码片。
可以利用被设计为执行本文所述功能的通用处理器、DSP、ASIC、FPGA或其它可编程逻辑器件、分立门或者晶体管逻辑、分立硬件组件或者其任何组合来实现或执行结合本文的公开内容描述的各种说明性的方框和模块。通用处理器可以是微处理器,但是在替代方式中,处理器可以是任何常规的处理器、控制器、微控制器或者状态机。处理器还可以被实现为计算设备的组合(例如,DSP与微处理器的组合、多个微处理器、一个或多个微处理器与DSP内核的结合、或者任何其它这样的配置)。
本文中描述的功能可以在硬件、由处理器执行的软件、固件或其任何组合中实现。如果在由处理器执行的软件中实现,则所述功能可以作为一个或多个指令或代码存储在计算机可读介质上或通过其进行发送。其它示例和实现方式在本公开内容和所附权利要求的范围之内。例如,由于软件的性质,本文描述的功能可以使用由处理器执行的软件、硬件、固件、硬接线或这些项中的任何项的组合来实现。实现功能的特征还可以在物理上处于各个位置处,包括被分布为使得功能中的各部分在不同的物理位置处实现。而且,如本文所使用的(包括在权利要求中),如项目列表(例如,以诸如“中的至少一个”或“中的一个或多个”的短语结束的项目列表)中所使用的“或”指示包含性列表,使得例如A、B或C中的至少一个的列表意指A或B或C或AB或AC或BC或ABC(即A和B和C)。
如本领域技术人员到目前为止将会理解的以及取决于即将发生的特定应用,在不背离本公开内容的精神和范围的前提下,可以对本公开内容的材料、装置、配置和设备使用的方法进行许多修改、替换和变化。鉴于此,本公开内容的范围不应当局限于本文所示和所述的具体实施例的范围,因为它们仅仅是列举其中一些示例,而应当与此后所附的权利要求书及其功能等同物完全相称。
权利要求书(按照条约第19条的修改)
1.一种无线通信的方法,包括:
由第一用户设备(UE)确定系统参数信息,以发起侧行链路通信;
由所述第一UE在第一时间周期期间在共享射频内的多个子带中的一个或多个第一子带中发送所述系统参数信息;以及
由所述第一UE基于所述系统参数信息,在与所述第一时间周期不同的第二时间周期期间在所述多个子带中的第二子带中与第二UE传送侧行链路数据。
2.根据权利要求1所述的方法,还包括:
由所述第一UE生成同步信号,以促进所述第一UE与所述第二UE之间的同步;以及
由所述第一UE为侧行链路同步信号块(S-SSB)的第一部分分配所述同步信号,
其中,所述同步信号包括其后是辅同步信号的主同步信号。
3.根据权利要求2所述的方法,还包括:
由所述第一UE确定包括所述系统参数信息的至少一部分的侧行链路主信息块(SL-MIB);以及
由所述第一UE为所述S-SSB的第二部分分配所述SL-MIB,
其中,所述第二部分跟随所述第一部分。
4.根据权利要求3所述的方法,其中:
所述一个或多个第一子带包括在所述第一时间周期的第一部分中的物理侧行链路广播信道(PSBCH),以及
所述发送所述系统参数信息包括由所述第一UE在所述PSBCH上发送所述S-SSB。
5.根据权利要求3所述的方法,其中,确定所述SL-MIB包括:
由所述第一UE确定初始传输无线电资源池配置,其中,所述初始传输无线电资源池配置包括多个子信道、多个调制符号、或在其期间剩余最小系统信息(RMSI)被发送的所述第一时间周期内的时域时隙的集合中的一项或多项;以及
由所述第一UE为所述SL-MIB中的一个或多个位置分配所述初始传输无线电资源池配置。
6.根据权利要求5所述的方法,还包括:
由所述第一UE在所述第一时间周期期间,在所述第二子带中与所述第二UE传送所述RMSI。
7.根据权利要求1所述的方法,还包括:
由所述第一UE发送输出的公告消息,以公告所述第一UE是被配置为自主地设置用于包括所述第二UE的其它UE的侧行链路操作的锚定节点。
8.一种第一用户设备(UE),包括:
处理器,所述处理器被配置为:
确定系统参数信息,以发起侧行链路通信;以及
收发机,所述收发机被配置为:
在第一时间周期期间在共享射频内的多个子带中的一个或多个第一子带中发送所述系统参数信息;以及
基于所述系统参数信息,在与所述第一时间周期不同的第二时间周期期间在所述多个子带中的第二子带中与第二UE传送侧行链路数据。
9.根据权利要求8所述的第一UE,其中,所述处理器还被配置为:
生成同步信号,以促进所述第一UE与所述第二UE之间的同步;以及
为侧行链路同步信号块(S-SSB)的第一部分分配所述同步信号,
其中,所述同步信号包括其后是辅同步信号的主同步信号。
10.根据权利要求9所述的第一UE,其中,所述处理器还被配置为:
确定包括所述系统参数信息的至少一部分的侧行链路主信息块(SL-MIB);以及
为所述S-SSB的第二部分分配所述SL-MIB,
其中,所述第二部分跟随所述第一部分。
11.根据权利要求10所述的第一UE,其中:
所述一个或多个第一子带包括在所述第一时间周期的第一部分中的物理侧行链路广播信道(PSBCH),以及
所述被配置为发送所述系统参数信息的收发机还被配置为在所述PSBCH上发送所述S-SSB。
12.根据权利要求10所述的第一UE,其中,所述被配置为确定所述SL-MIB的处理器还被配置为:
确定初始传输无线电资源池配置,其中,所述初始传输无线电资源池配置包括多个子信道、多个调制符号、或在其期间剩余最小系统信息(RMSI)被发送的所述第一时间周期内的时域时隙的集合中的一项或多项;以及
为所述SL-MIB中的一个或多个位置分配所述初始传输无线电资源池配置。
13.根据权利要求12所述的第一UE,其中,所述收发机还被配置为:
在所述第一时间周期期间,在所述第二子带中与所述第二UE传送所述RMSI。
14.根据权利要求13所述的第一UE,其中:
所述第二子带包括在所述第一时间周期的第一部分中在时间或频率中的至少一项上被复用的多个物理侧行链路控制信道(PSCCH)以及在所述第一时间周期的第二部分中在时间或频率中的至少一项上被复用的多个物理侧行链路共享信道(PSSCH),所述第二部分不同于所述第一部分,
所述被配置为传送所述RMSI的收发机还被配置为在所述多个PSCCH中的一个或多个PSCCH中传送所述RMSI,以及
所述被配置为传送所述侧行链路数据的收发机还被配置为在所述多个PSSCH中的至少一个PSSCH中传送所述侧行链路数据。
15.根据权利要求12所述的第一UE,其中,所述处理器还被配置为:
在所述SL-MIB内提供用于指示是否存在用于由所述第二UE进行处理的所述RMSI的指示。
16.根据权利要求12所述第一UE,其中,所述RMSI包括与所述SL-MIB中的所述系统参数信息的至少一部分不同的附加系统参数信息。
17.根据权利要求12所述的第一UE,其中,所述被配置为确定所述SL-MIB的处理器还被配置为:
确定初始侧行链路带宽部分(BWP)配置的多个预定义集合;以及
在所述SL-MIB中的一个或多个位置内提供用于指示初始侧行链路BWP配置的所述多个预定义集合中的至少一个预定义集合的指示。
18.根据权利要求17所述的第一UE,其中:
初始侧行链路BWP配置的所述多个预定义集合中的所述至少一个预定义集合包括起始资源块(RB)和RB的数量,以及
所述起始RB对应于资源网格中的第一位置,并且所述S-SSB占用所述资源网格中的至少第二位置,所述第一位置和所述第二位置被资源块级偏移分开。
19.根据权利要求17所述的第一UE,其中,所述收发机还被配置为:
在所述RMSI中传送侧行链路BWP配置。
20.根据权利要求19所述的第一UE,其中,所述侧行链路BWP配置不同于被包括在所述SL-MIB中的初始侧行链路BWP配置的所述多个预定义集合中的所述至少一个预定义集合中的至少一个初始侧行链路BWP配置。
21.根据权利要求12所述的第一UE,其中,所述收发机还被配置为:
在所述RMSI中传送对小区内保护频带的指示,以由所述第二UE用于恢复一个或多个资源块集合。
22.根据权利要求12所述的第一UE,其中,所述收发机还被配置为:
在所述RMSI中传送发送资源池配置,所述发送资源池配置指示哪些无线电资源被分配给所述第一UE,以用于所述第一UE发送侧行链路通信。
23.根据权利要求14所述的第一UE,其中,所述收发机还被配置为:
在所述RMSI中传送接收资源池配置,所述接收资源池配置指示哪些无线电资源被分配给所述第一UE,以用于所述第一UE接收侧行链路通信。
24.根据权利要求23所述的第一UE,其中,所述被配置为传送所述侧行链路数据的收发机还被配置为:
基于所述接收资源池配置,在所述第二时间周期期间在所述第二子带中,在所述多个PSCCH中的至少一个PSCCH中或在所述多个PSSCH中的至少一个PSSCH中从所述第二UE接收侧行链路消息,所述侧行链路消息使所述第一UE建立与所述第二UE的侧行链路连接。
25.根据权利要求12所述的第一UE,其中,所述收发机还被配置为:
在所述RMSI中传送所述S-SSB的传输模式,以使所述第二UE能够对所述S-SSB进行速率匹配。
26.根据权利要求12所述的第一UE,其中,所述收发机还被配置为:
在所述RMSI中传送所述RMSI的传输模式,以使所述第二UE能够监测所述RMSI。
27.根据权利要求8所述的第一UE,其中,所述收发机还被配置为:
发送输出的公告消息,以公告所述第一UE是被配置为自主地设置用于包括所述第二UE的其它UE的侧行链路操作的锚定节点。
28.根据权利要求27所述的第一UE,其中,所述处理器还被配置为:
针对指示被配置成锚定节点的另一UE的存在的输入的公告消息,监测物理侧行链路发现信道(PSDCH)。
29.根据权利要求28所述的第一UE,其中,所述被配置为发送所述输出的公告消息的收发机还被配置为:
当指示被配置成所述锚定节点的所述另一UE的所述存在的所述输入的公告消息不被所述第一UE检测到时,在所述PSDCH中发送包括所述输出的公告消息的一个或多个发现消息。
30.根据权利要求28所述的第一UE,其中,所述处理器还被配置为:
当指示被配置成所述锚定节点的所述另一UE的所述存在的所述输入的公告消息被检测到时,确定一个或多个预先确定的因素被满足,以证明所述第一UE是所述锚定节点;以及
采用被配置成所述锚定节点的所述另一UE的一个或多个系统参数。
31.根据权利要求30所述的第一UE,其中,所述被配置为采用所述一个或多个系统参数的处理器还被配置为:
接收在所述PSDCH上从所述另一UE传播到所述第一UE的所述一个或多个系统参数。
32.根据权利要求30所述的第一UE,其中:
所述处理器还被配置为:
利用从所述另一UE采用的所述一个或多个系统参数来更新本地系统参数,以生成更新的系统参数信息;并且
所述收发机还被配置为:
在所述第一时间周期之后的第三时间周期期间,发送所述更新的系统参数信息。
33.根据权利要求32所述的第一UE,其中,所述被配置为发送所述更新的系统参数信息的收发机还被配置为:
在物理侧行链路广播信道(PSBCH)上发送所述更新的系统参数信息。
34.根据权利要求32所述的第一UE,其中,所述被配置为发送所述更新的系统参数信息的收发机还被配置为:
在单播传输或组播传输中的一者或多者中将所述更新的系统参数信息发送给具有与所述第一UE的侧行链路连接的一个或多个其它UE。
35.根据权利要求30所述的第一UE,其中,所述被配置为采用所述一个或多个系统参数的处理器还被配置为:
基于所述另一UE的相对于小区的覆盖区域的位置来确定所述另一UE是否是覆盖中的UE;以及
当基于所述另一UE处于所述小区的所述覆盖区域内,所述另一UE是覆盖中的UE时,确定针对确定所述第一UE与所述另一UE之间的系统参数,所述另一UE具有比所述第一UE高的优先级。

Claims (112)

1.一种无线通信的方法,包括:
由第一用户设备(UE)确定系统参数信息,以发起侧行链路通信;
由所述第一UE在第一时间周期期间在共享射频内的多个子带中的一个或多个第一子带中发送所述系统参数信息;以及
由所述第一UE基于所述系统参数信息,在与所述第一时间周期不同的第二时间周期期间在所述多个子带中的第二子带中与第二UE传送侧行链路数据。
2.根据权利要求1所述的方法,还包括:
由所述第一UE生成同步信号,以促进所述第一UE与所述第二UE之间的同步;以及
由所述第一UE为侧行链路同步信号块(S-SSB)的第一部分分配所述同步信号,
其中,所述同步信号包括其后是辅同步信号的主同步信号。
3.根据权利要求2所述的方法,还包括:
由所述第一UE确定包括所述系统参数信息的至少一部分的侧行链路主信息块(SL-MIB);以及
由所述第一UE为所述S-SSB的第二部分分配所述SL-MIB,
其中,所述第二部分跟随所述第一部分。
4.根据权利要求3所述的方法,其中:
所述一个或多个第一子带包括在所述第一时间周期的第一部分中的物理侧行链路广播信道(PSBCH),以及
所述发送所述系统参数信息包括由所述第一UE在所述PSBCH上发送所述S-SSB。
5.根据权利要求3所述的方法,其中,确定所述SL-MIB包括:
由所述第一UE确定初始传输无线电资源池配置,其中,所述初始传输无线电资源池配置包括多个子信道、多个调制符号、或在其期间剩余最小系统信息(RMSI)被发送的所述第一时间周期内的时域时隙的集合中的一项或多项;以及
由所述第一UE为所述SL-MIB中的一个或多个位置分配所述初始传输无线电资源池配置。
6.根据权利要求5所述的方法,还包括:
由所述第一UE在所述第一时间周期期间,在所述第二子带中与所述第二UE传送所述RMSI。
7.根据权利要求6所述的方法,其中:
所述第二子带包括在所述第一时间周期的第一部分中在时间或频率中的至少一项上被复用的多个物理侧行链路控制信道(PSCCH)以及在所述第一时间周期的第二部分中在时间或频率中的至少一项上被复用的多个物理侧行链路共享信道(PSSCH),所述第二部分不同于所述第一部分,
传送所述RMSI包括由所述第一UE在所述多个PSCCH中的一个或多个PSCCH中传送所述RMSI,以及
传送所述侧行链路数据包括由所述第一UE在所述多个PSSCH中的至少一个PSSCH中传送所述侧行链路数据。
8.根据权利要求5所述的方法,还包括:
由所述第一UE在所述SL-MIB内提供用于指示是否存在用于由所述第二UE进行处理的所述RMSI的指示。
9.根据权利要求5所述的方法,其中,所述RMSI包括与所述SL-MIB中的所述系统参数信息的至少一部分不同的附加系统参数信息。
10.根据权利要求5所述的方法,其中,确定所述SL-MIB包括:
由所述第一UE确定初始侧行链路带宽部分(BWP)配置的多个预定义集合;以及
由所述第一UE在所述SL-MIB中的一个或多个位置内提供用于指示初始侧行链路BWP配置的所述多个预定义集合中的至少一个预定义集合的指示。
11.根据权利要求10所述的方法,其中:
初始侧行链路BWP配置的所述多个预定义集合中的所述至少一个预定义集合包括起始资源块(RB)和RB的数量,以及
所述起始RB对应于资源网格中的第一位置,并且所述S-SSB占用所述资源网格中的至少第二位置,所述第一位置和所述第二位置被资源块级偏移分开。
12.根据权利要求10所述的方法,还包括:
由所述第一UE在所述RMSI中传送侧行链路BWP配置。
13.根据权利要求12所述的方法,其中,所述侧行链路BWP配置不同于被包括在所述SL-MIB中的初始侧行链路BWP配置的所述多个预定义集合中的所述至少一个预定义集合中的至少一个初始侧行链路BWP配置。
14.根据权利要求5所述的方法,还包括:
由所述第一UE在所述RMSI中传送对小区内保护频带的指示,以由所述第二UE用于恢复一个或多个资源块集合。
15.根据权利要求5所述的方法,还包括:
由所述第一UE在所述RMSI中传送发送资源池配置,所述发送资源池配置指示哪些无线电资源被分配给所述第一UE,以用于所述第一UE发送侧行链路通信。
16.根据权利要求7所述的方法,还包括:
由所述第一UE在所述RMSI中传送接收资源池配置,所述接收资源池配置指示哪些无线电资源被分配给所述第一UE,以用于所述第一UE接收侧行链路通信。
17.根据权利要求16所述的方法,其中,传送所述侧行链路数据包括:
由所述第一UE基于所述接收资源池配置,在所述第二时间周期期间在所述第二子带中,在所述多个PSCCH中的至少一个PSCCH中或在所述多个PSSCH中的至少一个PSSCH中从所述第二UE接收侧行链路消息,所述侧行链路消息使所述第一UE建立与所述第二UE的侧行链路连接。
18.根据权利要求5所述的方法,还包括:
由所述第一UE在所述RMSI中传送所述S-SSB的传输模式,以使所述第二UE能够对所述S-SSB进行速率匹配。
19.根据权利要求5所述的方法,还包括:
由所述第一UE在所述RMSI中传送所述RMSI的传输模式,以使所述第二UE能够监测所述RMSI。
20.根据权利要求1所述的方法,还包括:
由所述第一UE发送输出的公告消息,以公告所述第一UE是被配置为自主地设置用于包括所述第二UE的其它UE的侧行链路操作的锚定节点。
21.根据权利要求20所述的方法,还包括:
由所述第一UE针对指示被配置成锚定节点的另一UE的存在的输入的公告消息,监测物理侧行链路发现信道(PSDCH)。
22.根据权利要求21所述的方法,其中,所述发送所述输出的公告消息包括:
当指示被配置成所述锚定节点的所述另一UE的所述存在的所述输入的公告消息不被所述第一UE检测到时,由所述第一UE在所述PSDCH中发送包括所述输出的公告消息的一个或多个发现消息。
23.根据权利要求21所述的方法,还包括:
当指示被配置成所述锚定节点的所述另一UE的所述存在的所述输入的公告消息被检测到时,由所述第一UE确定一个或多个预先确定的因素被满足,以证明所述第一UE是所述锚定节点;以及
由所述第一UE采用被配置成所述锚定节点的所述另一UE的一个或多个系统参数。
24.根据权利要求23所述的方法,其中,采用所述一个或多个系统参数包括:
由所述第一UE接收在所述PSDCH上从所述另一UE传播到所述第一UE的所述一个或多个系统参数。
25.根据权利要求23所述的方法,还包括:
由所述第一UE利用从所述另一UE采用的所述一个或多个系统参数来更新本地系统参数,以生成更新的系统参数信息;以及
由所述第一UE在所述第一时间周期之后的第三时间周期期间,发送所述更新的系统参数信息。
26.根据权利要求25所述的方法,其中,发送所述更新的系统参数信息包括:
由所述第一UE在物理侧行链路广播信道(PSBCH)上发送所述更新的系统参数信息。
27.根据权利要求25所述的方法,其中,发送所述更新的系统参数信息包括:
由所述第一UE在单播传输或组播传输中的一者或多者中将所述更新的系统参数信息发送给具有与所述第一UE的侧行链路连接的一个或多个其它UE。
28.根据权利要求23所述的方法,其中,采用所述一个或多个系统参数包括:
由所述第一UE基于所述另一UE的、相对于小区的覆盖区域的位置来确定所述另一UE是否是覆盖中的UE;以及
当基于所述另一UE处于所述小区的所述覆盖区域内,所述另一UE是覆盖中的UE时,由所述第一UE确定针对确定所述第一UE与所述另一UE之间的系统参数,所述另一UE具有比所述第一UE高的优先级。
29.一种第一用户设备(UE),包括:
处理器,所述处理器被配置为:
确定系统参数信息,以发起侧行链路通信;以及
收发机,所述收发机被配置为:
在第一时间周期期间在共享射频内的多个子带中的一个或多个第一子带中发送所述系统参数信息;以及
基于所述系统参数信息,在与所述第一时间周期不同的第二时间周期期间在所述多个子带中的第二子带中与第二UE传送侧行链路数据。
30.根据权利要求29所述的第一UE,其中,所述处理器还被配置为:
生成同步信号,以促进所述第一UE与所述第二UE之间的同步;以及
为侧行链路同步信号块(S-SSB)的第一部分分配所述同步信号,
其中,所述同步信号包括其后是辅同步信号的主同步信号。
31.根据权利要求30所述的第一UE,其中,所述处理器还被配置为:
确定包括所述系统参数信息的至少一部分的侧行链路主信息块(SL-MIB);以及
为所述S-SSB的第二部分分配所述SL-MIB,
其中,所述第二部分跟随所述第一部分。
32.根据权利要求31所述的第一UE,其中:
所述一个或多个第一子带包括在所述第一时间周期的第一部分中的物理侧行链路广播信道(PSBCH),以及
所述被配置为发送所述系统参数信息的收发机还被配置为在所述PSBCH上发送所述S-SSB。
33.根据权利要求31所述的第一UE,其中,所述被配置为确定所述SL-MIB的处理器还被配置为:
确定初始传输无线电资源池配置,其中,所述初始传输无线电资源池配置包括多个子信道、多个调制符号、或在其期间剩余最小系统信息(RMSI)被发送的所述第一时间周期内的时域时隙的集合中的一项或多项;以及
为所述SL-MIB中的一个或多个位置分配所述初始传输无线电资源池配置。
34.根据权利要求33所述的第一UE,其中,所述收发机还被配置为:
在所述第一时间周期期间,在所述第二子带中与所述第二UE传送所述RMSI。
35.根据权利要求34所述的第一UE,其中:
所述第二子带包括在所述第一时间周期的第一部分中在时间或频率中的至少一项上被复用的多个物理侧行链路控制信道(PSCCH)以及在所述第一时间周期的第二部分中在时间或频率中的至少一项上被复用的多个物理侧行链路共享信道(PSSCH),所述第二部分不同于所述第一部分,
所述被配置为传送所述RMSI的收发机还被配置为在所述多个PSCCH中的一个或多个PSCCH中传送所述RMSI,以及
所述被配置为传送所述侧行链路数据的收发机还被配置为在所述多个PSSCH中的至少一个PSSCH中传送所述侧行链路数据。
36.根据权利要求33所述的第一UE,其中,所述处理器还被配置为:
在所述SL-MIB内提供用于指示是否存在用于由所述第二UE进行处理的所述RMSI的指示。
37.根据权利要求33所述第一UE,其中,所述RMSI包括与所述SL-MIB中的所述系统参数信息的至少一部分不同的附加系统参数信息。
38.根据权利要求33所述的第一UE,其中,所述被配置为确定所述SL-MIB的处理器还被配置为:
确定初始侧行链路带宽部分(BWP)配置的多个预定义集合;以及
在所述SL-MIB中的一个或多个位置内提供用于指示初始侧行链路BWP配置的所述多个预定义集合中的至少一个预定义集合的指示。
39.根据权利要求38所述的第一UE,其中:
初始侧行链路BWP配置的所述多个预定义集合中的所述至少一个预定义集合包括起始资源块(RB)和RB的数量,以及
所述起始RB对应于资源网格中的第一位置,并且所述S-SSB占用所述资源网格中的至少第二位置,所述第一位置和所述第二位置被资源块级偏移分开。
40.根据权利要求38所述的第一UE,其中,所述收发机还被配置为:
在所述RMSI中传送侧行链路BWP配置。
41.根据权利要求40所述的第一UE,其中,所述侧行链路BWP配置不同于被包括在所述SL-MIB中的初始侧行链路BWP配置的所述多个预定义集合中的所述至少一个预定义集合中的至少一个初始侧行链路BWP配置。
42.根据权利要求33所述的第一UE,其中,所述收发机还被配置为:
在所述RMSI中传送对小区内保护频带的指示,以由所述第二UE用于恢复一个或多个资源块集合。
43.根据权利要求33所述的第一UE,其中,所述收发机还被配置为:
在所述RMSI中传送发送资源池配置,所述发送资源池配置指示哪些无线电资源被分配给所述第一UE,以用于所述第一UE发送侧行链路通信。
44.根据权利要求35所述的第一UE,其中,所述收发机还被配置为:
在所述RMSI中传送接收资源池配置,所述接收资源池配置指示哪些无线电资源被分配给所述第一UE,以用于所述第一UE接收侧行链路通信。
45.根据权利要求44所述的第一UE,其中,所述被配置为传送所述侧行链路数据的收发机还被配置为:
基于所述接收资源池配置,在所述第二时间周期期间在所述第二子带中,在所述多个PSCCH中的至少一个PSCCH中或在所述多个PSSCH中的至少一个PSSCH中从所述第二UE接收侧行链路消息,所述侧行链路消息使所述第一UE建立与所述第二UE的侧行链路连接。
46.根据权利要求33所述的第一UE,其中,所述收发机还被配置为:
在所述RMSI中传送所述S-SSB的传输模式,以使所述第二UE能够对所述S-SSB进行速率匹配。
47.根据权利要求33所述的第一UE,其中,所述收发机还被配置为:
在所述RMSI中传送所述RMSI的传输模式,以使所述第二UE能够监测所述RMSI。
48.根据权利要求29所述的第一UE,其中,所述收发机还被配置为:
发送输出的公告消息,以公告所述第一UE是被配置为自主地设置用于包括所述第二UE的其它UE的侧行链路操作的锚定节点。
49.根据权利要求48所述的第一UE,其中,所述处理器还被配置为:
针对指示被配置成锚定节点的另一UE的存在的输入的公告消息,监测物理侧行链路发现信道(PSDCH)。
50.根据权利要求49所述的第一UE,其中,所述被配置为发送所述输出的公告消息的收发机还被配置为:
当指示被配置成所述锚定节点的所述另一UE的所述存在的所述输入的公告消息不被所述第一UE检测到时,在所述PSDCH中发送包括所述输出的公告消息的一个或多个发现消息。
51.根据权利要求49所述的第一UE,其中,所述处理器还被配置为:
当指示被配置成所述锚定节点的所述另一UE的所述存在的所述输入的公告消息被检测到时,确定一个或多个预先确定的因素被满足,以证明所述第一UE是所述锚定节点;以及
采用被配置成所述锚定节点的所述另一UE的一个或多个系统参数。
52.根据权利要求51所述的第一UE,其中,所述被配置为采用所述一个或多个系统参数的处理器还被配置为:
接收在所述PSDCH上从所述另一UE传播到所述第一UE的所述一个或多个系统参数。
53.根据权利要求51所述的第一UE,其中:
所述处理器还被配置为:
利用从所述另一UE采用的所述一个或多个系统参数来更新本地系统参数,以生成更新的系统参数信息;并且
所述收发机还被配置为:
在所述第一时间周期之后的第三时间周期期间,发送所述更新的系统参数信息。
54.根据权利要求53所述的第一UE,其中,所述被配置为发送所述更新的系统参数信息的收发机还被配置为:
在物理侧行链路广播信道(PSBCH)上发送所述更新的系统参数信息。
55.根据权利要求53所述的第一UE,其中,所述被配置为发送所述更新的系统参数信息的收发机还被配置为:
在单播传输或组播传输中的一者或多者中将所述更新的系统参数信息发送给具有与所述第一UE的侧行链路连接的一个或多个其它UE。
56.根据权利要求51所述的第一UE,其中,所述被配置为采用所述一个或多个系统参数的处理器还被配置为:
基于所述另一UE的相对于小区的覆盖区域的位置来确定所述另一UE是否是覆盖中的UE;以及
当基于所述另一UE处于所述小区的所述覆盖区域内,所述另一UE是覆盖中的UE时,确定针对确定所述第一UE与所述另一UE之间的系统参数,所述另一UE具有比所述第一UE高的优先级。
57.一种具有记录在其上的程序代码的非临时性计算机可读介质,所述程序代码包括:
用于使第一用户设备(UE)确定系统参数信息以发起侧行链路通信的代码;
用于使所述第一UE在第一时间周期期间在共享射频内的多个子带中的一个或多个第一子带中发送所述系统参数信息的代码;以及
用于使所述第一UE基于所述系统参数信息来在与所述第一时间周期不同的第二时间周期期间在所述多个子带中的第二子带中与第二UE传送侧行链路数据的代码。
58.根据权利要求57所述的非临时性计算机可读介质,其中,所述程序代码还包括:
用于使所述第一UE生成同步信号以促进所述第一UE与所述第二UE之间的同步的代码;以及
用于使所述第一UE为侧行链路同步信号块(S-SSB)的第一部分分配所述同步信号的代码,
其中,所述同步信号包括其后是辅同步信号的主同步信号。
59.根据权利要求58所述的非临时性计算机可读介质,其中,所述程序代码还包括:
用于使所述第一UE确定包括所述系统参数信息的至少一部分的侧行链路主信息块(SL-MIB)的代码;以及
用于使所述第一UE为所述S-SSB的第二部分分配所述SL-MIB的代码,
其中,所述第二部分跟随所述第一部分。
60.根据权利要求59所述的非临时性计算机可读介质,其中:
所述一个或多个第一子带包括在所述第一时间周期的第一部分中的物理侧行链路广播信道(PSBCH),以及
所述用于使所述第一UE发送所述系统参数信息的代码还被配置为在所述PSBCH上发送所述S-SSB。
61.根据权利要求59所述的非临时性计算机可读介质,其中,所述用于使所述第一UE确定所述SL-MIB的代码还被配置为:
确定初始传输无线电资源池配置,其中,所述初始传输无线电资源池配置包括多个子信道、多个调制符号、或在其期间剩余最小系统信息(RMSI)被发送的所述第一时间周期内的时域时隙的集合中的一项或多项;以及
为所述SL-MIB中的一个或多个位置分配所述初始传输无线电资源池配置。
62.根据权利要求61所述的非临时性计算机可读介质,其中,所述程序代码还包括:
用于使所述第一UE在所述第一时间周期期间在所述第二子带中与所述第二UE传送所述RMSI的代码。
63.根据权利要求62所述的非临时性计算机可读介质,其中:
所述第二子带包括在所述第一时间周期的第一部分中在时间或频率中的至少一项上被复用的多个物理侧行链路控制信道(PSCCH)以及在所述第一时间周期的第二部分中在时间或频率中的至少一项上被复用的多个物理侧行链路共享信道(PSSCH),所述第二部分不同于所述第一部分,
所述用于使所述第一UE传送所述RMSI的代码还被配置为在所述多个PSCCH中的一个或多个PSCCH中传送所述RMSI,以及
所述用于使所述第一UE传送所述侧行链路数据的代码还被配置为在所述多个PSSCH中的至少一个PSSCH中传送所述侧行链路数据。
64.根据权利要求61所述的非临时性计算机可读介质,其中,所述程序代码还包括:
用于使所述第一UE在所述SL-MIB内提供用于指示是否存在用于由所述第二UE进行处理的所述RMSI的指示的代码。
65.根据权利要求61所述的非临时性计算机可读介质,其中,所述RMSI包括与所述SL-MIB中的所述系统参数信息的至少一部分不同的附加系统参数信息。
66.根据权利要求61所述的非临时性计算机可读介质,其中,所述用于使所述第一UE确定所述SL-MIB的代码还被配置为:
确定初始侧行链路带宽部分(BWP)配置的多个预定义集合;以及
在所述SL-MIB中的一个或多个位置内提供用于指示初始侧行链路BWP配置的所述多个预定义集合中的至少一个预定义集合的指示。
67.根据权利要求66所述的非临时性计算机可读介质,其中:
初始侧行链路BWP配置的所述多个预定义集合中的所述至少一个预定义集合包括起始资源块(RB)和RB的数量,以及
所述起始RB对应于资源网格中的第一位置,并且所述S-SSB占用所述资源网格中的至少第二位置,所述第一位置和所述第二位置被资源块级偏移分开。
68.根据权利要求66所述的非临时性计算机可读介质,其中,所述程序代码还包括:
用于使所述第一UE在所述RMSI中传送侧行链路BWP配置的代码。
69.根据权利要求68所述的非临时性计算机可读介质,其中,所述侧行链路BWP配置不同于被包括在所述SL-MIB中的初始侧行链路BWP配置的所述多个预定义集合中的所述至少一个预定义集合中的至少一个初始侧行链路BWP配置。
70.根据权利要求61所述的非临时性计算机可读介质,其中,所述程序代码还包括:
用于使所述第一UE在所述RMSI中传送对小区内保护频带的指示以由所述第二UE用于恢复一个或多个资源块集合的代码。
71.根据权利要求61所述的非临时性计算机可读介质,其中,所述程序代码还包括:
用于使所述第一UE在所述RMSI中传送发送资源池配置的代码,所述发送资源池配置指示哪些无线电资源被分配给所述第一UE,以用于所述第一UE发送侧行链路通信。
72.根据权利要求63所述的非临时性计算机可读介质,其中,所述程序代码还包括:
用于使所述第一UE在所述RMSI中传送接收资源池配置的代码,所述接收资源池配置指示哪些无线电资源被分配给所述第一UE,以用于所述第一UE接收侧行链路通信。
73.根据权利要求72所述的非临时性计算机可读介质,其中,所述用于使所述第一UE传送所述侧行链路数据的代码还被配置为:
基于所述接收资源池配置,在所述第二时间周期期间在所述第二子带中,在所述多个PSCCH中的至少一个PSCCH中或在所述多个PSSCH中的至少一个PSSCH中从所述第二UE接收侧行链路消息,所述侧行链路消息使所述第一UE建立与所述第二UE的侧行链路连接。
74.根据权利要求61所述的非临时性计算机可读介质,其中,所述程序代码还包括:
用于使所述第一UE在所述RMSI中传送所述S-SSB的传输模式以使所述第二UE能够对所述S-SSB进行速率匹配的代码。
75.根据权利要求61所述的非临时性计算机可读介质,其中,所述程序代码还包括:
用于使所述第一UE在所述RMSI中传送所述RMSI的传输模式以使所述第二UE能够监测所述RMSI的代码。
76.根据权利要求67所述的非临时性计算机可读介质,其中,所述程序代码还包括:
用于使所述第一UE发送输出的公告消息以公告所述第一UE是被配置为自主地设置用于包括所述第二UE的其它UE的侧行链路操作的锚定节点的代码。
77.根据权利要求76所述的非临时性计算机可读介质,其中,所述程序代码还包括:
用于使所述第一UE针对指示被配置成锚定节点的另一UE的存在的输入的公告消息来监测物理侧行链路发现信道(PSDCH)的代码。
78.根据权利要求77所述的非临时性计算机可读介质,其中,所述用于使所述第一UE发送所述输出的公告消息的代码还被配置为:
当指示被配置成所述锚定节点的所述另一UE的所述存在的所述输入的公告消息不被所述第一UE检测到时,在所述PSDCH中发送包括所述输出的公告消息的一个或多个发现消息。
79.根据权利要求77所述的非临时性计算机可读介质,其中,所述程序代码还包括:
用于当指示被配置成所述锚定节点的所述另一UE的所述存在的所述输入的公告消息被检测到时,使所述第一UE确定一个或多个预先确定的因素被满足以证明所述第一UE是锚定节点的代码;以及
用于使所述第一UE采用被配置成所述锚定节点的所述另一UE的一个或多个系统参数的代码。
80.根据权利要求79所述的非临时性计算机可读介质,其中,所述用于使所述第一UE采用所述一个或多个系统参数的代码还被配置为:
接收在所述PSDCH上从所述另一UE传播到所述第一UE的所述一个或多个系统参数。
81.根据权利要求79所述的非临时性计算机可读介质,其中,所述程序代码还包括:
用于使所述第一UE利用从所述另一UE采用的所述一个或多个系统参数来更新本地系统参数以生成更新的系统参数信息的代码;以及
用于使所述第一UE在所述第一时间周期之后的第三时间周期期间发送所述更新的系统参数信息的代码。
82.根据权利要求81所述的非临时性计算机可读介质,其中,所述用于使所述第一UE发送所述更新的系统参数信息的代码还被配置为:
在物理侧行链路广播信道(PSBCH)上发送所述更新的系统参数信息。
83.根据权利要求81所述的非临时性计算机可读介质,其中,所述用于使所述第一UE发送所述更新的系统参数信息的代码还被配置为:
在单播传输或组播传输中的一者或多者中将所述更新的系统参数信息发送给具有与所述第一UE的侧行链路连接的一个或多个其它UE。
84.根据权利要求79所述的非临时性计算机可读介质,其中,所述用于使所述第一UE采用所述一个或多个系统参数的代码还被配置为:
基于所述另一UE的相对于小区的覆盖区域的位置来确定所述另一UE是否是覆盖中的UE;以及
当基于所述另一UE处于所述小区的所述覆盖区域内,所述另一UE是覆盖中的UE时,确定针对确定所述第一UE与所述另一UE之间的系统参数,所述另一UE具有比所述第一UE高的优先级。
85.一种第一用户设备(UE),包括:
用于确定系统参数信息以发起侧行链路通信的单元;
用于在第一时间周期期间在共享射频内的多个子带中的一个或多个第一子带中发送所述系统参数信息的单元;以及
用于基于所述系统参数信息来在与所述第一时间周期不同的第二时间周期期间在所述多个子带中的第二子带中与第二UE传送侧行链路数据的单元。
86.根据权利要求85所述的第一UE,还包括:
用于生成同步信号以促进所述第一UE与所述第二UE之间的同步的单元;以及
用于为侧行链路同步信号块(S-SSB)的第一部分分配所述同步信号的单元,
其中,所述同步信号包括其后是辅同步信号的主同步信号。
87.根据权利要求86所述的第一UE,还包括:
用于确定包括所述系统参数信息的至少一部分的侧行链路主信息块(SL-MIB)的单元;以及
用于为所述S-SSB的第二部分分配所述SL-MIB的单元,
其中,所述第二部分跟随所述第一部分。
88.根据权利要求87所述的第一UE,其中:
所述一个或多个第一子带包括在所述第一时间周期的第一部分中的物理侧行链路广播信道(PSBCH),以及
所述用于发送所述系统参数信息的单元还被配置为在所述PSBCH上发送所述S-SSB。
89.根据权利要求87所述的第一UE,其中,所述用于确定所述SL-MIB的单元还被配置为:
确定初始传输无线电资源池配置,其中,所述初始传输无线电资源池配置包括多个子信道、多个调制符号、或在其期间剩余最小系统信息(RMSI)被发送的所述第一时间周期内的时域时隙的集合中的一项或多项;以及
为所述SL-MIB中的一个或多个位置分配所述初始传输无线电资源池配置。
90.根据权利要求89所述的第一UE,还包括:
用于在所述第一时间周期期间在所述第二子带中与所述第二UE传送所述RMSI的单元。
91.根据权利要求90所述的第一UE,其中:
所述第二子带包括在所述第一时间周期的第一部分中在时间或频率中的至少一项上被复用的多个物理侧行链路控制信道(PSCCH)以及在所述第一时间周期的第二部分中在时间或频率中的至少一项上被复用的多个物理侧行链路共享信道(PSSCH),所述第二部分不同于所述第一部分,
所述用于传送所述RMSI的单元还被配置为在所述多个PSCCH中的一个或多个PSCCH中传送所述RMSI,以及
所述用于传送所述侧行链路数据的单元还被配置为在所述多个PSSCH中的至少一个PSSCH中传送所述侧行链路数据。
92.根据权利要求89所述的第一UE,还包括:
用于在所述SL-MIB内提供用于指示是否存在用于由所述第二UE进行处理的所述RMSI的指示的单元。
93.根据权利要求89所述第一UE,其中,所述RMSI包括与所述SL-MIB中的所述系统参数信息的至少一部分不同的附加系统参数信息。
94.根据权利要求89所述的第一UE,其中,所述用于确定所述SL-MIB的单元还被配置为:
确定初始侧行链路带宽部分(BWP)配置的多个预定义集合;以及
在所述SL-MIB中的一个或多个位置内提供用于指示初始侧行链路BWP配置的所述多个预定义集合中的至少一个预定义集合的指示。
95.根据权利要求94所述的第一UE,其中:
初始侧行链路BWP配置的所述多个预定义集合中的所述至少一个预定义集合包括起始资源块(RB)和RB的数量,以及
所述起始RB对应于资源网格中的第一位置,并且所述S-SSB占用所述资源网格中的至少第二位置,所述第一位置和所述第二位置被资源块级偏移分开。
96.根据权利要求94所述的第一UE,还包括:
用于在所述RMSI中传送侧行链路BWP配置的单元。
97.根据权利要求96所述的第一UE,其中,所述侧行链路BWP配置不同于被包括在所述SL-MIB中的初始侧行链路BWP配置的所述多个预定义集合中的所述至少一个预定义集合中的至少一个初始侧行链路BWP配置。
98.根据权利要求89所述的第一UE,还包括:
用于在所述RMSI中传送对小区内保护频带的指示以由所述第二UE用于恢复一个或多个资源块集合的单元。
99.根据权利要求89所述的第一UE,还包括:
用于在所述RMSI中传送发送资源池配置的单元,所述发送资源池配置指示哪些无线电资源被分配给所述第一UE,以用于所述第一UE发送侧行链路通信。
100.根据权利要求91所述的第一UE,还包括:
用于在所述RMSI中传送接收资源池配置的单元,所述接收资源池配置指示哪些无线电资源被分配给所述第一UE,以用于所述第一UE接收侧行链路通信。
101.根据权利要求100所述的第一UE,其中,所述用于传送所述侧行链路数据的单元还被配置为:
基于所述接收资源池配置,在所述第二时间周期期间在所述第二子带中,在所述多个PSCCH中的至少一个PSCCH中或在所述多个PSSCH中的至少一个PSSCH中从所述第二UE接收侧行链路消息,所述侧行链路消息使所述第一UE建立与所述第二UE的侧行链路连接。
102.根据权利要求89所述的第一UE,还包括:
用于在所述RMSI中传送所述S-SSB的传输模式以使所述第二UE能够对所述S-SSB进行速率匹配的单元。
103.根据权利要求89所述的第一UE,还包括:
用于在所述RMSI中传送所述RMSI的传输模式以使所述第二UE能够监测所述RMSI的单元。
104.根据权利要求85所述的第一UE,还包括:
用于发送输出的公告消息以公告所述第一UE是被配置为自主地设置用于包括所述第二UE的其它UE的侧行链路操作的锚定节点的单元。
105.根据权利要求104所述的第一UE,还包括:
用于针对指示被配置成锚定节点的另一UE的存在的输入的公告消息来监测物理侧行链路发现信道(PSDCH)的单元。
106.根据权利要求105所述的第一UE,其中,所述用于发送所述输出的公告消息的单元还被配置为:
当指示被配置成所述锚定节点的所述另一UE的所述存在的所述输入的公告消息不被所述第一UE检测到时,在所述PSDCH中发送包括所述输出的公告消息的一个或多个发现消息。
107.根据权利要求105所述的第一UE,还包括:
用于当指示被配置成所述锚定节点的所述另一UE的所述存在的所述输入的公告消息被检测到时,确定一个或多个预先确定的因素被满足以证明所述第一UE是所述锚定节点的单元;以及
用于采用被配置成所述锚定节点的所述另一UE的一个或多个系统参数的单元。
108.根据权利要求107所述的第一UE,其中,所述用于采用所述一个或多个系统参数的单元还被配置为:
接收在所述PSDCH上从所述另一UE传播到所述第一UE的所述一个或多个系统参数。
109.根据权利要求107所述的第一UE,还包括:
用于利用从所述另一UE采用的所述一个或多个系统参数来更新本地系统参数以生成更新的系统参数信息的单元;以及
用于在所述第一时间周期之后的第三时间周期期间发送所述更新的系统参数信息的单元。
110.根据权利要求109所述的第一UE,其中,所述用于发送所述更新的系统参数信息的单元还被配置为:
在物理侧行链路广播信道(PSBCH)上发送所述更新的系统参数信息。
111.根据权利要求109所述的第一UE,其中,所述用于发送所述更新的系统参数信息的单元还被配置为:
在单播传输或组播传输中的一者或多者中将所述更新的系统参数信息发送给具有与所述第一UE的侧行链路连接的一个或多个其它UE。
112.根据权利要求107所述的第一UE,其中,所述用于采用所述一个或多个系统参数的单元还被配置为:
基于所述另一UE的相对于小区的覆盖区域的位置来确定所述另一UE是否是覆盖中的UE;以及
当基于所述另一UE处于所述小区的所述覆盖区域内,所述另一UE是覆盖中的UE时,确定针对确定所述第一UE与所述另一UE之间的系统参数,所述另一UE具有比所述第一UE高的优先级。
CN202080099505.1A 2020-04-15 2020-04-15 非许可的频带上的独立侧行链路通信 Pending CN115362733A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/084855 WO2021207961A1 (en) 2020-04-15 2020-04-15 Stand-alone sidelink communication over unlicensed band

Publications (1)

Publication Number Publication Date
CN115362733A true CN115362733A (zh) 2022-11-18

Family

ID=78084861

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080099505.1A Pending CN115362733A (zh) 2020-04-15 2020-04-15 非许可的频带上的独立侧行链路通信

Country Status (4)

Country Link
US (1) US20230127485A1 (zh)
EP (1) EP4136904A4 (zh)
CN (1) CN115362733A (zh)
WO (1) WO2021207961A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022087957A1 (en) * 2020-10-29 2022-05-05 Apple Inc. Enhanced sidelink channel cellular coverage
US20230319744A1 (en) * 2022-04-01 2023-10-05 Qualcomm Incorporated Sidelink synchronization signal block based sidelink resource determination
US20230361954A1 (en) * 2022-05-04 2023-11-09 Qualcomm Incorporated Remaining minimum system information in a discovery reference signal for sidelink in an unlicensed band
WO2024016246A1 (en) * 2022-07-20 2024-01-25 Lenovo (Beijing) Limited Methods and apparatuses for s-ssb transmission in unlicensed spectra
WO2024069375A1 (en) * 2022-09-26 2024-04-04 Lenovo (Singapore) Pte. Ltd. Configuration of sidelink transmission

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018084758A1 (en) * 2016-11-03 2018-05-11 Telefonaktiebolaget Lm Ericsson (Publ) Variable subband configuration of search space
WO2018175553A1 (en) * 2017-03-23 2018-09-27 Intel Corporation Prioritized messaging and resource selection in vehicle-to-vehicle (v2v) sidelink communication
WO2018170920A1 (zh) * 2017-03-24 2018-09-27 华为技术有限公司 信号处理方法及装置
CN110870374B (zh) * 2017-07-06 2023-05-26 Lg电子株式会社 在无线通信系统中处理多个参数集的方法和设备
US10841914B2 (en) * 2017-09-08 2020-11-17 Asustek Computer Inc. Method and apparatus for channel usage in unlicensed spectrum considering beamformed transmission in a wireless communication system
JP7383008B2 (ja) * 2018-08-09 2023-11-17 インターデイジタル パテント ホールディングス インコーポレイテッド Nr v2x用ビームフォーミング及びグルーピング

Also Published As

Publication number Publication date
US20230127485A1 (en) 2023-04-27
EP4136904A4 (en) 2024-02-07
WO2021207961A1 (en) 2021-10-21
EP4136904A1 (en) 2023-02-22

Similar Documents

Publication Publication Date Title
CN112514509B (zh) 下行链路非授权部署的初始网络接入
US11711849B2 (en) Network controlled sidelink off-loading over unlicensed carrier
CN112205062B (zh) 按需覆盖扩展广播信号
CN114788377A (zh) 免许可频带上的自主侧链路
CN115380488A (zh) 用于侧行链路通信的信道占用时间(cot)共享时的循环前缀(cp)扩展
WO2021223072A1 (en) Slot or mini-slot bundling for sidelink communication in a wireless communications network
US11483803B2 (en) Autonomous sidelink over unlicensed band
CN112005599A (zh) 免许可频谱中利用载波跳频的频率分集
US20230127485A1 (en) Stand-alone sidelink communication over unlicensed band
CN112438072A (zh) 用于随机接入过程的先听后说(lbt)模式
CN112243598A (zh) 跨多个毗邻载波的同步频谱共享
CN112470541A (zh) 用于新无线电非许可(nr-u)和新无线电同步共享(nr-ss)的传输机会(txop)结构
CN112930654A (zh) 用于新无线电未授权(nr-u)的具有灵活起始位置的上行链路(ul)发射
CN116250309A (zh) 从远程用户设备(ue)到中继ue的侧行链路传输
CN114747156A (zh) 用于全双工系统中的a-csi-rs的qcl确定
CN115280822A (zh) 用于新无线电未许可(nr-u)light的寻呼增强功能
US20230239072A1 (en) Transmission of reverse-link grants for anchor based sidelink communication
CN115428387A (zh) 全双工中的同步信号块(ssb)
CN115462171A (zh) 用于工业物联网(iiot)的独立侧行链路
CN113767588A (zh) 新无线电未许可(nr-u)中发现参考信号(drs)传输的信道接入
US20220110142A1 (en) Resource partitioning for sidelink
CN118020265A (zh) 物理侧行链路信道中的信道状态信息收集
CN113170313A (zh) 用于非授权新无线电(nr-u)的紧密频率复用着色
US20230007462A1 (en) Discovery signal transmission for sidelink communication over unlicensed band
US20230135581A1 (en) Multiplexing sidelink synchronization signal blocks and channel state information reference signals

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination