CN115360300A - Perovskite solar cell containing ammonium fluoride modified stannic oxide electron transport layer - Google Patents
Perovskite solar cell containing ammonium fluoride modified stannic oxide electron transport layer Download PDFInfo
- Publication number
- CN115360300A CN115360300A CN202211018859.6A CN202211018859A CN115360300A CN 115360300 A CN115360300 A CN 115360300A CN 202211018859 A CN202211018859 A CN 202211018859A CN 115360300 A CN115360300 A CN 115360300A
- Authority
- CN
- China
- Prior art keywords
- tin dioxide
- transport layer
- ammonium fluoride
- electron transport
- solar cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- -1 ammonium fluoride modified stannic oxide Chemical class 0.000 title claims abstract description 16
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims abstract description 131
- DDFHBQSCUXNBSA-UHFFFAOYSA-N 5-(5-carboxythiophen-2-yl)thiophene-2-carboxylic acid Chemical compound S1C(C(=O)O)=CC=C1C1=CC=C(C(O)=O)S1 DDFHBQSCUXNBSA-UHFFFAOYSA-N 0.000 claims abstract description 49
- 238000002360 preparation method Methods 0.000 claims abstract description 15
- 229910052751 metal Inorganic materials 0.000 claims abstract description 12
- 239000002184 metal Substances 0.000 claims abstract description 12
- 230000007547 defect Effects 0.000 claims abstract description 10
- 125000001153 fluoro group Chemical group F* 0.000 claims abstract description 6
- OUUQCZGPVNCOIJ-UHFFFAOYSA-N hydroperoxyl Chemical compound O[O] OUUQCZGPVNCOIJ-UHFFFAOYSA-N 0.000 claims abstract description 5
- 239000002243 precursor Substances 0.000 claims description 15
- 238000004528 spin coating Methods 0.000 claims description 14
- 230000005525 hole transport Effects 0.000 claims description 12
- 239000010931 gold Substances 0.000 claims description 8
- 239000000758 substrate Substances 0.000 claims description 8
- 238000000137 annealing Methods 0.000 claims description 7
- 239000010949 copper Substances 0.000 claims description 4
- 239000006185 dispersion Substances 0.000 claims description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical group [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 4
- 229910052737 gold Inorganic materials 0.000 claims description 4
- OFULWSFBIJPJLM-UHFFFAOYSA-N COC1=CC=C(C=C1)N(C1=CC=C(C=C1)OC)C1(C=C2C3(C4=CC(C=CC4=C2C=C1)(N(C1=CC=C(C=C1)OC)C1=CC=C(C=C1)OC)N(C1=CC=C(C=C1)OC)C1=CC=C(C=C1)OC)C1=CC=CC=C1C=1C=CC=CC=13)N(C1=CC=C(C=C1)OC)C1=CC=C(C=C1)OC Chemical group COC1=CC=C(C=C1)N(C1=CC=C(C=C1)OC)C1(C=C2C3(C4=CC(C=CC4=C2C=C1)(N(C1=CC=C(C=C1)OC)C1=CC=C(C=C1)OC)N(C1=CC=C(C=C1)OC)C1=CC=C(C=C1)OC)C1=CC=CC=C1C=1C=CC=CC=13)N(C1=CC=C(C=C1)OC)C1=CC=C(C=C1)OC OFULWSFBIJPJLM-UHFFFAOYSA-N 0.000 claims description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 238000002156 mixing Methods 0.000 claims description 3
- 230000004048 modification Effects 0.000 claims description 3
- 238000012986 modification Methods 0.000 claims description 3
- 229910052709 silver Inorganic materials 0.000 claims description 3
- 239000004332 silver Substances 0.000 claims description 3
- AUHZEENZYGFFBQ-UHFFFAOYSA-N 1,3,5-trimethylbenzene Chemical compound CC1=CC(C)=CC(C)=C1 AUHZEENZYGFFBQ-UHFFFAOYSA-N 0.000 claims 2
- 150000001412 amines Chemical class 0.000 claims 1
- 239000011248 coating agent Substances 0.000 claims 1
- 238000000576 coating method Methods 0.000 claims 1
- 230000005540 biological transmission Effects 0.000 abstract description 6
- 238000004519 manufacturing process Methods 0.000 abstract description 5
- 238000000605 extraction Methods 0.000 abstract description 3
- 230000031700 light absorption Effects 0.000 abstract description 3
- 230000009286 beneficial effect Effects 0.000 abstract 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 35
- 229910017855 NH 4 F Inorganic materials 0.000 description 28
- 239000000243 solution Substances 0.000 description 19
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 16
- 239000008367 deionised water Substances 0.000 description 15
- 229910021641 deionized water Inorganic materials 0.000 description 15
- 239000000843 powder Substances 0.000 description 14
- 238000000034 method Methods 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 9
- 239000010408 film Substances 0.000 description 7
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 6
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 6
- 230000001133 acceleration Effects 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- XDXWNHPWWKGTKO-UHFFFAOYSA-N 207739-72-8 Chemical compound C1=CC(OC)=CC=C1N(C=1C=C2C3(C4=CC(=CC=C4C2=CC=1)N(C=1C=CC(OC)=CC=1)C=1C=CC(OC)=CC=1)C1=CC(=CC=C1C1=CC=C(C=C13)N(C=1C=CC(OC)=CC=1)C=1C=CC(OC)=CC=1)N(C=1C=CC(OC)=CC=1)C=1C=CC(OC)=CC=1)C1=CC=C(OC)C=C1 XDXWNHPWWKGTKO-UHFFFAOYSA-N 0.000 description 5
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- 229920001167 Poly(triaryl amine) Polymers 0.000 description 3
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 239000004408 titanium dioxide Substances 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 238000002207 thermal evaporation Methods 0.000 description 2
- UUIMDJFBHNDZOW-UHFFFAOYSA-N 2-tert-butylpyridine Chemical compound CC(C)(C)C1=CC=CC=N1 UUIMDJFBHNDZOW-UHFFFAOYSA-N 0.000 description 1
- VCUFZILGIRCDQQ-KRWDZBQOSA-N N-[[(5S)-2-oxo-3-(2-oxo-3H-1,3-benzoxazol-6-yl)-1,3-oxazolidin-5-yl]methyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C1O[C@H](CN1C1=CC2=C(NC(O2)=O)C=C1)CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F VCUFZILGIRCDQQ-KRWDZBQOSA-N 0.000 description 1
- 238000000026 X-ray photoelectron spectrum Methods 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 238000004630 atomic force microscopy Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- RQQRAHKHDFPBMC-UHFFFAOYSA-L lead(ii) iodide Chemical compound I[Pb]I RQQRAHKHDFPBMC-UHFFFAOYSA-L 0.000 description 1
- QSZMZKBZAYQGRS-UHFFFAOYSA-N lithium;bis(trifluoromethylsulfonyl)azanide Chemical compound [Li+].FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F QSZMZKBZAYQGRS-UHFFFAOYSA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000013082 photovoltaic technology Methods 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 229920006267 polyester film Polymers 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000009210 therapy by ultrasound Methods 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 238000001132 ultrasonic dispersion Methods 0.000 description 1
- 238000002525 ultrasonication Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
Landscapes
- Photovoltaic Devices (AREA)
Abstract
Description
技术领域technical field
本发明属于太阳能电池技术领域,更具体地,涉及含有氟化铵修饰二氧化锡电子传输层的钙钛矿太阳能电池,尤其涉及一种氟化铵改善二氧化锡电子传输层的方法,以及优化后的二氧化锡薄膜在钙钛矿电池中的应用。The invention belongs to the technical field of solar cells, more specifically, relates to a perovskite solar cell containing ammonium fluoride modified tin dioxide electron transport layer, especially relates to a method for ammonium fluoride to improve tin dioxide electron transport layer, and optimization Application of the final tin dioxide thin film in perovskite batteries.
背景技术Background technique
在国家提倡“碳达峰”、“碳中和”的背景下,太阳能电池作为重要的可再生清洁能源具有很好的发展前景。在过去的十年中,有机-无机杂化钙钛矿被认为是下一代光伏技术的潜在材料,以取代传统的晶体硅,因为它具有独特的性能,例如可调带隙、高光吸收率、长载流子扩散长度和低的成本的制造。由于钙钛矿非凡光电特性受到人们广泛关注,钙钛矿太阳能电池的光电转换效率由3.8%飙升至25.5%。In the context of the country's advocacy of "carbon peaking" and "carbon neutrality", solar cells, as an important renewable and clean energy source, have good development prospects. In the past decade, organic-inorganic hybrid perovskite has been considered as a potential material for next-generation photovoltaic technology to replace traditional crystalline silicon because of its unique properties, such as tunable bandgap, high light absorption, Long carrier diffusion length and low cost fabrication. Since the extraordinary photoelectric properties of perovskite have attracted widespread attention, the photoelectric conversion efficiency of perovskite solar cells has soared from 3.8% to 25.5%.
钙钛矿的器件结构可以大体分为p-i-n和n-i-p两种类型,n-i-p电池结构由于其低生产成本和高功率转换效率被认为是更具有应用潜力。最常见的n-i-p钙钛矿电池结构是以致密二氧化钛和介孔二氧化钛作为电子传输层,这需要400℃以上的高温退火限制了钙钛矿太阳能电池的大规模商业化应用。因此寻找低温处理稳定和能级匹配的电子传输层已经成为高效稳定钙钛矿太阳能电池的重要的科学课题之一。The device structure of perovskite can be roughly divided into two types: p-i-n and n-i-p. The n-i-p battery structure is considered to have more application potential due to its low production cost and high power conversion efficiency. The most common n-i-p perovskite cell structure uses dense titanium dioxide and mesoporous titanium dioxide as the electron transport layer, which requires high-temperature annealing above 400 °C, which limits the large-scale commercial application of perovskite solar cells. Therefore, finding an electron transport layer that is stable at low temperature and matches the energy level has become one of the important scientific topics for efficient and stable perovskite solar cells.
相较于二氧化钛,二氧化锡展现出以下优越特性:高达240cm 2V-1s-1电子迁移率和高电导率;宽带隙和高透射率;良好的化学稳定性;可以低温加工应用于柔性大面积的钙钛矿太阳能电池模组。然而,传统的二氧化锡表面存在大量的羟基,从而导致钙钛矿和二氧化锡的界面含有高浓度缺陷,阻碍电子的传输,这大大降低了钙钛矿太阳能电池的转换效率和长期稳定。因此,钙钛矿与二氧化锡界面的优化是需要迫切解决的问题。Compared with titanium dioxide, tin dioxide exhibits the following superior characteristics: up to 240cm 2 V -1 s -1 electron mobility and high electrical conductivity; wide band gap and high transmittance; good chemical stability; can be processed at low temperature for flexible Large-area perovskite solar cell modules. However, there are a large number of hydroxyl groups on the surface of conventional tin dioxide, which leads to a high concentration of defects at the interface of perovskite and tin dioxide, which hinders the transport of electrons, which greatly reduces the conversion efficiency and long-term stability of perovskite solar cells. Therefore, the optimization of the interface between perovskite and tin dioxide is an urgent problem to be solved.
发明内容Contents of the invention
针对现有技术中钙钛矿和二氧化锡界面缺陷的问题,阻碍电子的传输,这大大降低了钙钛矿太阳能电池的转换效率和长期稳定的技术问题。本发明提供了一种将氟化铵引入二氧化锡前驱体溶液来有效钝化界面缺陷的方法。氟原子能够有效钝化二氧化锡表面羟基缺陷,减少开路电压的损耗,进而提升钙钛矿太阳能电池的效率和稳定性。此外,氟化铵成本低廉有利于钙钛矿电池器件的大规模生产。Aiming at the problem of interface defects between perovskite and tin dioxide in the prior art, it hinders the transmission of electrons, which greatly reduces the conversion efficiency and long-term stability of perovskite solar cells. The invention provides a method for introducing ammonium fluoride into a tin dioxide precursor solution to effectively passivate interface defects. Fluorine atoms can effectively passivate the hydroxyl defects on the surface of tin dioxide, reduce the loss of open circuit voltage, and improve the efficiency and stability of perovskite solar cells. In addition, the low cost of ammonium fluoride facilitates the large-scale production of perovskite battery devices.
根据本发明第一方面,提供了一种含有氟化铵修饰二氧化锡电子传输层的钙钛矿太阳能电池,自下而上依次包括二氧化锡电子传输层、钙钛矿吸光层、空穴传输层和金属电极,所述二氧化锡电子传输层经过氟化铵修饰。According to the first aspect of the present invention, a perovskite solar cell containing an ammonium fluoride-modified tin dioxide electron transport layer is provided, which sequentially includes a tin dioxide electron transport layer, a perovskite light-absorbing layer, and a hole A transport layer and a metal electrode, wherein the tin dioxide electron transport layer is modified with ammonium fluoride.
优选地,所述氟化铵修饰降低了二氧化锡薄膜表面的粗糙度,提高了二氧化锡传输层的导电率;且氟原子取代二氧化锡的部分羟基氧,钝化了二氧化锡和钙钛矿界面的缺陷。Preferably, the ammonium fluoride modification reduces the roughness of the tin dioxide film surface and improves the conductivity of the tin dioxide transmission layer; and the fluorine atoms replace part of the hydroxyl oxygen of the tin dioxide, passivating the tin dioxide and Defects at the perovskite interface.
优选地,所述二氧化锡电子传输层的厚度为30~100nm。Preferably, the thickness of the tin dioxide electron transport layer is 30-100 nm.
优选地,所述钙钛矿吸光层为MAPbI3、FAPbI3、CsPbI3、(FAPbI3)0.87(MAPbBr3)0.13、Cs0.05(MA0.17FA0.83)0.95Pb(I0.83Br0.17)或FA0.83Cs0.17PbI3;所述空穴传输层为2,2,7,7-四[N,N-二(4-甲氧基苯基)氨基]-9,9-螺二芴或聚[双(4-苯基)(2,4,6-三甲基苯基)胺];所述金属电极为金、银或铜。Preferably, the perovskite light-absorbing layer is MAPbI 3 , FAPbI 3 , CsPbI 3 , (FAPbI 3 ) 0.87 (MAPbBr 3 ) 0.13 , Cs 0.05 (MA 0.17 FA 0.83 ) 0.95 Pb(I 0.83 Br 0.17 ) or FA 0.83 Cs 0.17 PbI 3 ; the hole transport layer is 2,2,7,7-tetrakis[N,N-bis(4-methoxyphenyl)amino]-9,9-spirobifluorene or poly[bis (4-phenyl) (2,4,6-trimethylphenyl) amine]; The metal electrode is gold, silver or copper.
根据本发明另一方面,提供了任一项所述含有氟化铵修饰二氧化锡电子传输层的钙钛矿太阳能电池的制备方法,包括以下步骤:According to another aspect of the present invention, the preparation method of any one of the perovskite solar cells containing ammonium fluoride modified tin dioxide electron transport layer is provided, comprising the following steps:
(1)将氟化铵加入二氧化锡分散液,充分混匀,得到前驱体;(1) adding ammonium fluoride to the tin dioxide dispersion, and fully mixing to obtain a precursor;
(2)将步骤(1)得到的前驱体旋涂在基底上,并进行退火,得到电子传输层;(2) spin coating the precursor obtained in step (1) on the substrate, and annealing to obtain an electron transport layer;
(3)在步骤(2)得到的电子传输层上依次制备钙钛矿吸光层、空穴传输层和金属电极,即得到含有氟化铵修饰二氧化锡电子传输层的钙钛矿太阳能电池。(3) On the electron transport layer obtained in step (2), a perovskite light-absorbing layer, a hole transport layer and a metal electrode are sequentially prepared to obtain a perovskite solar cell containing an ammonium fluoride-modified tin dioxide electron transport layer.
优选地,所述氟化铵的质量为二氧化锡质量的1%-40%。Preferably, the mass of the ammonium fluoride is 1%-40% of the mass of the tin dioxide.
优选地,步骤(2)中,所述退火的温度为100℃~180℃,时间为20min~40min。Preferably, in step (2), the temperature of the annealing is 100°C-180°C, and the time is 20min-40min.
优选地,步骤(2)中,所述旋涂的速度3000~5000rpm,旋涂加速度为1000~2000rpm/s。Preferably, in step (2), the speed of the spin coating is 3000-5000 rpm, and the spin coating acceleration is 1000-2000 rpm/s.
总体而言,通过本发明所构思的以上技术方案与现有技术相比,主要具备以下的技术优点:Generally speaking, compared with the prior art, the above technical solution conceived by the present invention mainly has the following technical advantages:
(1)本发明通过引入氟化铵改善二氧化锡电子传输层,降低了二氧化锡薄膜表面的粗糙度,有效提高了二氧化锡传输层的导电率,F原子取代二氧化锡部分羟基氧,钝化了二氧化锡和钙钛矿界面的缺陷,提高了电荷提取导致了更好的能级排布。由于更低的能量损耗,最终的钙钛矿太阳能电池开路电压和效率提升显著。此外,本发明制备工艺简单,生产条件温和,成本低廉并且可重复性高,有助于钙钛矿太阳能电池的商业化应用。(1) The present invention improves the tin dioxide electron transport layer by introducing ammonium fluoride, reduces the roughness of the tin dioxide thin film surface, effectively improves the conductivity of the tin dioxide transport layer, F atoms replace tin dioxide part of the hydroxyl oxygen , passivating the defects at the interface between SnO2 and perovskite improves the charge extraction leading to better energy level arrangement. Due to the lower energy loss, the open-circuit voltage and efficiency of the final perovskite solar cells are significantly improved. In addition, the invention has simple preparation process, mild production conditions, low cost and high repeatability, and is conducive to the commercial application of perovskite solar cells.
(2)本发明将上述SnO2-NH4F电子传输层应用于n-i-p型钙钛矿太阳能电池中,开路电压提升平均提升了70mV,最高光电转换池效率达到22.12%,与此同时,钙钛矿太阳能电池器件的热稳定性和湿度稳定性提升明显。(2) In the present invention, the above-mentioned SnO 2 -NH 4 F electron transport layer is applied to nip type perovskite solar cells, the open circuit voltage is increased by 70mV on average, and the highest photoelectric conversion cell efficiency reaches 22.12%. At the same time, perovskite The thermal stability and humidity stability of the mining solar cell device are significantly improved.
(3)本发明制备工艺简单,生产条件温和,成本低廉并且可重复性高,有助于钙钛矿太阳能电池的商业化应用。(3) The preparation process of the present invention is simple, the production conditions are mild, the cost is low and the reproducibility is high, which is conducive to the commercial application of perovskite solar cells.
附图说明Description of drawings
图1为本发明实施例1所得基于SnO2-NH4F电子传输层的钙钛矿太阳能电池的截面扫描电子显微镜SEM示意图(标尺为500nm)。Fig. 1 is a cross-sectional scanning electron microscope (SEM) schematic diagram of the perovskite solar cell based on the SnO 2 -NH 4 F electron transport layer obtained in Example 1 of the present invention (the scale bar is 500 nm).
图2为本发明对比例中传统SnO2电子传输层和实施例1中SnO2-NH4F电子传输层的原子力显微镜3D AFM示意图。FIG. 2 is a schematic diagram of the atomic force microscope 3D AFM of the conventional SnO 2 electron transport layer in the comparative example of the present invention and the SnO 2 -NH 4 F electron transport layer in Example 1. FIG.
图3为本发明对比例中传统SnO2电子传输层和实施例1中SnO2-NH4F电子传输层的X射线光电子能谱XPS图基于Sn、O和F元素。Fig. 3 is the X-ray photoelectron spectroscopy XPS diagram of the traditional SnO 2 electron transport layer in the comparative example of the present invention and the SnO 2 -NH 4 F electron transport layer in Example 1 based on Sn, O and F elements.
图4为本发明对比例和实施例1所得钙钛矿太阳能电池的电流密度-电压曲线图。Fig. 4 is a graph showing current density-voltage curves of the perovskite solar cells obtained in the comparative example and Example 1 of the present invention.
具体实施方式Detailed ways
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described here are only used to explain the present invention, not to limit the present invention. In addition, the technical features involved in the various embodiments of the present invention described below can be combined with each other as long as they do not constitute a conflict with each other.
本发明一种氟化铵改善二氧化锡电子传输层的方法及钙钛矿太阳能电池的制备,包括将氟化铵引入二氧化锡前驱体,氟化铵修饰二氧化锡电子传输层的制备,钙钛矿吸光层的沉积,空穴传输层的旋涂以及金属电极的热蒸镀;所述氟化铵的分子式为:NH4F,氟化铵改善后的二氧化锡传输层命名为:SnO2-NH4F。The invention discloses a method for improving the tin dioxide electron transport layer by ammonium fluoride and the preparation of a perovskite solar cell, comprising introducing ammonium fluoride into a tin dioxide precursor, and preparing the tin dioxide electron transport layer modified by ammonium fluoride, The deposition of the perovskite light-absorbing layer, the spin coating of the hole transport layer and the thermal evaporation of the metal electrode; the molecular formula of the ammonium fluoride is: NH 4 F, and the ammonium fluoride-improved tin dioxide transport layer is named: SnO2 - NH4F .
本发明一种氟化铵改善二氧化锡薄膜制备钙钛矿太阳能电池的方法,包括以下步骤:A kind of ammonium fluoride of the present invention improves the method for tin dioxide film preparation perovskite solar cell, comprises the following steps:
(1)将一定量的氟化铵加入二氧化锡分散液中并在超声机中分散30分钟;(1) Add a certain amount of ammonium fluoride into the tin dioxide dispersion and disperse in an ultrasonic machine for 30 minutes;
(2)超声后的氟化铵二氧化锡前驱体将其旋涂在透明导电玻璃或柔性透明导电基底上制备SnO2-NH4F电子传输层,再进行退火;(2) The ammonium fluoride tin dioxide precursor after ultrasonication is spin-coated on transparent conductive glass or flexible transparent conductive substrate to prepare SnO 2 -NH 4 F electron transport layer, and then annealed;
(3)在步骤(2)所得SnO2-NH4F电子传输层上依次制备钙钛矿吸光层、空穴传输层和金属电极,最终得到基于SnO2-NH4F电子传输层的钙钛矿太阳能电池器件。(3) On the SnO 2 -NH 4 F electron transport layer obtained in step (2), a perovskite light absorbing layer, a hole transport layer and a metal electrode are sequentially prepared, and finally the perovskite based on the SnO 2 -NH 4 F electron transport layer is obtained mine solar cell devices.
一些实施例中,步骤(1)中二氧化锡分散液为质量分数2~5%的二氧化锡水溶液。In some embodiments, the tin dioxide dispersion in step (1) is an aqueous solution of tin dioxide with a mass fraction of 2-5%.
一些实施例中,步骤(2)中旋涂条件为:在旋转速度3000~5000rpm下旋涂30s,旋转加速度为1000~2000rpm/s。In some embodiments, the spin coating conditions in step (2) are: spin coating for 30 seconds at a rotation speed of 3000-5000 rpm, and a rotation acceleration of 1000-2000 rpm/s.
一些实施例中,步骤(2)中退火条件为:在100~180℃下退火20~40min。In some embodiments, the annealing condition in step (2) is: annealing at 100-180° C. for 20-40 minutes.
一些实施例中,步骤(2)中透明导电玻璃为ITO或FTO玻璃,柔性透明导电基底为聚酯薄膜(PEN或PET)。In some embodiments, the transparent conductive glass in step (2) is ITO or FTO glass, and the flexible transparent conductive substrate is polyester film (PEN or PET).
一些实施例中,SnO2-NH4F电子传输层层厚度为30~100nm。In some embodiments, the thickness of the SnO 2 -NH 4 F electron transport layer is 30-100 nm.
一些实施例中,电池结构为n-i-p型钙钛矿太阳能电池,钙钛矿吸光层可以为MAPbI3、FAPbI3、CsPbI3、(FAPbI3)0.87、(MAPbBr3)0.13、Cs0.05(MA0.17FA0.83)0.95Pb(I0.83Br0.17)或FA0.83Cs0.17PbI3;所述空穴传输层为2,2,7,7-四[N,N-二(4-甲氧基苯基)氨基]-9,9-螺二芴(Spiro-OMeTAD)或聚[双(4-苯基)(2,4,6-三甲基苯基)胺](PTAA);所述金属电极为金(Au)、银(Ag)或铜(Cu)。In some embodiments, the cell structure is a nip type perovskite solar cell, and the perovskite light absorbing layer can be MAPbI 3 , FAPbI 3 , CsPbI 3 , (FAPbI 3 ) 0.87 , (MAPbBr 3 ) 0.13 , Cs 0.05 (MA 0.17 FA 0.83 ) 0.95 Pb(I 0.83 Br 0.17 ) or FA 0.83 Cs 0.17 PbI 3 ; the hole transport layer is 2,2,7,7-tetra[N,N-bis(4-methoxyphenyl)amino ]-9,9-spirobifluorene (Spiro-OMeTAD) or poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA); the metal electrode is gold ( Au), silver (Ag) or copper (Cu).
实施例1Example 1
本实施例制备了10%氟化铵(氟化铵的质量为二氧化锡质量的10%)添加的二氧化锡电子传输层并应用于钙钛矿太阳能上,器件截面SEM示意图如图1所示,依次为:ITO/SnO2-NH4F/perovskite/Spiro-OMeTAD/Au。In this example, a tin dioxide electron transport layer added with 10% ammonium fluoride (the mass of ammonium fluoride is 10% of the mass of tin dioxide) was prepared and applied to perovskite solar energy. The SEM schematic diagram of the cross-section of the device is shown in Figure 1 As shown, the order is: ITO/SnO 2 -NH 4 F/perovskite/Spiro-OMeTAD/Au.
制备方法包括如下步骤:The preparation method comprises the following steps:
步骤1:基底清洗:Step 1: Base Cleaning:
本实施例选用ITO导电玻璃作为基底,大小为20mm*20mm,放入指定容器内,分别在去离子水、丙酮和异丙醇中超声清洗各20min,超生处理后的ITO基底使用氮气吹干,然后使用氧等离子体处理10min增强表面附着力。In this embodiment, ITO conductive glass is selected as the substrate, the size is 20mm*20mm, put it into a designated container, and ultrasonically clean it in deionized water, acetone and isopropanol for 20 minutes respectively, and dry the ITO substrate after ultrasonic treatment with nitrogen. Then oxygen plasma treatment was used for 10 min to enhance the surface adhesion.
步骤2:制备SnO2-NH4F电子传输层:Step 2: Preparation of SnO 2 -NH 4 F electron transport layer:
步骤2.1:用电子天平称量3.7mg氟化铵粉末溶解在1mL去离子水中并搅拌1h后得到氟化铵溶液;将购买的15%二氧化锡水溶液、氟化铵溶液和去离子水按照1:1:5的体积比混合并超声分散30min得到SnO2-NH4F前驱体溶液。Step 2.1: Weigh 3.7 mg of ammonium fluoride powder with an electronic balance, dissolve it in 1 mL of deionized water and stir for 1 hour to obtain an ammonium fluoride solution; : 1:5 volume ratio mixing and ultrasonic dispersion for 30min to obtain SnO 2 -NH 4 F precursor solution.
步骤2.2:用移液枪吸取200μL的SnO2-NH4F前驱体溶液旋涂在步骤1所得ITO基底上;旋涂条件为:转速4000rpm,加速度2000rpm/s,旋涂时间30s;然后在加热板上150℃条件下退火30min得到SnO2-NH4F电子传输层,厚度大约为40nm,并转移到手套箱内备用。Step 2.2: Spin-coat 200 μL of SnO 2 -NH 4 F precursor solution on the ITO substrate obtained in
步骤3:制备(FAPbI3)0.87(MAPbBr3)0.13钙钛矿吸光层:Step 3: Prepare (FAPbI3) 0.87 (MAPbBr3) 0.13 perovskite light-absorbing layer:
步骤3.1:用电子天平称量645.4mg的PbI2粉末溶解在1mL的N,N-二甲基甲酰胺(DMF)和二甲基亚砜(DMSO)体积比为9:1的混合溶剂中,然后在70℃的加热板上搅拌过夜得到1.4M PbI2溶液A。Step 3.1: Use an electronic balance to weigh 645.4 mg of PbI powder and dissolve it in 1 mL of a mixed solvent of N,N-dimethylformamide (DMF) and dimethyl sulfoxide (DMSO) at a volume ratio of 9:1, It was then stirred overnight on a hot plate at 70 °C to obtain a 1.4 M PbI2 solution A.
步骤3.2:用电子天平称量110mg的FAI、11mg的MABr和12mg的MACl溶解在1.5mL异丙醇(IPA),在室温条件下搅拌2h得到FAI/MABr/MACl的混合溶液B。Step 3.2: Dissolve 110 mg of FAI, 11 mg of MABr and 12 mg of MACl in 1.5 mL of isopropanol (IPA) with an electronic balance, and stir at room temperature for 2 h to obtain a mixed solution B of FAI/MABr/MACl.
步骤3.3:在氩气氛围手套箱条件下,吸取50μL的溶液A旋涂在SnO2-NH4F电子传输层的ITO基底上,70℃退火1min得到PbI2薄膜。旋涂转速为1500rpm,加速度为3000rpm/s,旋涂时间为30s。Step 3.3: Under the condition of an argon atmosphere glove box, draw 50 μL of solution A and spin-coat it on the ITO substrate of the SnO 2 -NH 4 F electron transport layer, and anneal at 70°C for 1 min to obtain a PbI 2 film. The rotation speed of spin coating is 1500rpm, the acceleration is 3000rpm/s, and the spin coating time is 30s.
步骤3.4:待步骤3.3中PbI2薄膜冷却到室温,吸取90μL的溶液B旋涂在PbI2薄膜上,旋涂转速为1600rpm,加速度为3000rpm/s,旋涂时间为30s。Step 3.4: After the PbI 2 film in step 3.3 is cooled to room temperature, take 90 μL of solution B and spin-coat it on the PbI 2 film at a spin-coating speed of 1600 rpm, an acceleration of 3000 rpm/s, and a spin-coating time of 30 s.
步骤3.5:将步骤3.4所得的薄膜迅速转移到30%~40%湿度空气氛围下,在150℃条件下退火20min得到(FAPbI3)1-x(MAPbBr3)x钙钛矿吸光层。Step 3.5: quickly transfer the film obtained in step 3.4 to an air atmosphere with a humidity of 30% to 40%, and anneal at 150° C. for 20 minutes to obtain a (FAPbI3) 1-x (MAPbBr3) x perovskite light-absorbing layer.
步骤4:制备Spiro-OMeTAD空穴传输层:Step 4: Preparation of Spiro-OMeTAD hole transport layer:
本发明可以选用多种空穴传输层,本实施例将72.3mg的2,2,7,7-四[N,N-二(4-甲氧基苯基)氨基]-9,9-螺二芴(Spiro-OMeTAD)、17.5μL双三氟甲磺酰亚胺锂(LiTFSI)和、28.8μL叔丁基吡啶(TBP)溶解在1mL氯苯溶剂中搅拌30min得到溶液C。随后将30μL的溶液C旋涂于(FAPbI3)0.87(MAPbBr3)0.13钙钛矿吸光层表面得到Spiro-OMeTAD空穴传输层,转速为3000rpm,加速度为2000rpm/s,时间30s。The present invention can choose a variety of hole transport layers. In this embodiment, 72.3 mg of 2,2,7,7-tetra[N,N-bis(4-methoxyphenyl)amino]-9,9-spiro Difluorene (Spiro-OMeTAD), 17.5 μL lithium bistrifluoromethanesulfonimide (LiTFSI) and 28.8 μL tert-butylpyridine (TBP) were dissolved in 1 mL chlorobenzene solvent and stirred for 30 min to obtain solution C. Then 30 μL of solution C was spin-coated on the surface of (FAPbI3) 0.87 (MAPbBr3) 0.13 perovskite light-absorbing layer to obtain a Spiro-OMeTAD hole transport layer at a rotation speed of 3000 rpm and an acceleration of 2000 rpm/s for 30 s.
步骤5:沉积金属电极Au:Step 5: Deposit the metal electrode Au:
本实例采用真空热蒸镀法在步骤4得到的空穴传输层上通过掩膜版在蒸镀80nm厚的金Au作为金属电极,最终得到完整的钙钛矿太阳能电池器件。In this example, gold Au with a thickness of 80 nm is evaporated on the hole transport layer obtained in step 4 through a mask plate as a metal electrode by vacuum thermal evaporation method, and finally a complete perovskite solar cell device is obtained.
实施例2Example 2
本实施例按照实施例1的步骤制备了5%氟化铵(氟化铵的质量为二氧化锡质量的5%)添加的二氧化锡电子传输层并应用于钙钛矿太阳能上,与实施例1相比,区别仅在于在步骤2.1制备SnO2-NH4F前驱体溶液的过程中,将3.7mg的氟化铵粉末溶解在1mL的去离子水中,调整为将0.37mg的氟化铵粉末溶解在1mL的去离子水中;其他步骤不变。According to the steps of Example 1, the present embodiment prepared a tin dioxide electron transport layer added with 5% ammonium fluoride (the quality of ammonium fluoride is 5% of the mass of tin dioxide) and applied it to perovskite solar energy. Compared with Example 1, the only difference is that in the process of preparing the SnO 2 -NH 4 F precursor solution in step 2.1, 3.7 mg of ammonium fluoride powder was dissolved in 1 mL of deionized water, and adjusted to 0.37 mg of ammonium fluoride The powder was dissolved in 1 mL of deionized water; other steps were unchanged.
实施例3Example 3
本实施例按照实施例1的步骤制备了5%氟化铵(氟化铵的质量为二氧化锡质量的5%)添加的二氧化锡电子传输层并应用于钙钛矿太阳能上,与实施例1相比,区别仅在于在步骤2.1制备SnO2-NH4F前驱体溶液的过程中,将3.7mg的氟化铵粉末溶解在1mL的去离子水中,调整为将1.85mg的氟化铵粉末溶解在1mL的去离子水中;其他步骤不变。According to the steps of Example 1, the present embodiment prepared a tin dioxide electron transport layer added with 5% ammonium fluoride (the quality of ammonium fluoride is 5% of the mass of tin dioxide) and applied it to perovskite solar energy. Compared with Example 1, the only difference is that in the process of preparing the SnO 2 -NH 4 F precursor solution in step 2.1, 3.7 mg of ammonium fluoride powder was dissolved in 1 mL of deionized water, and adjusted to 1.85 mg of ammonium fluoride The powder was dissolved in 1 mL of deionized water; other steps were unchanged.
实施例4Example 4
本实施例按照实施例1的步骤制备了15%氟化铵(氟化铵的质量为二氧化锡质量的15%)添加的二氧化锡电子传输层并应用于钙钛矿太阳能上,与实施例1相比,区别仅在于在步骤2.1制备SnO2-NH4F前驱体溶液的过程中,将3.7mg的氟化铵粉末溶解在1mL的去离子水中,调整为将5.55mg的氟化铵粉末溶解在1mL的去离子水中;其他步骤不变。According to the steps of Example 1, the present embodiment prepared a tin dioxide electron transport layer added with 15% ammonium fluoride (the quality of ammonium fluoride is 15% of the mass of tin dioxide) and applied it to perovskite solar energy. Compared with Example 1, the only difference is that in the process of preparing the SnO 2 -NH 4 F precursor solution in step 2.1, 3.7 mg of ammonium fluoride powder was dissolved in 1 mL of deionized water, and adjusted to 5.55 mg of ammonium fluoride The powder was dissolved in 1 mL of deionized water; other steps were unchanged.
实施例5Example 5
本实施例按照实施例1的步骤制备了20%氟化铵(氟化铵的质量为二氧化锡质量的20%)添加的二氧化锡电子传输层并应用于钙钛矿太阳能上,与实施例1相比,区别仅在于在步骤2.1制备SnO2-NH4F前驱体溶液的过程中,将3.7mg的氟化铵粉末溶解在1mL的去离子水中,调整为将7.4mg的氟化铵粉末溶解在1mL的去离子水中;其他步骤不变。According to the steps of Example 1, this embodiment prepared a tin dioxide electron transport layer added with 20% ammonium fluoride (the quality of ammonium fluoride is 20% of the mass of tin dioxide) and applied it to perovskite solar energy. Compared with Example 1, the only difference is that in the process of preparing the SnO 2 -NH 4 F precursor solution in step 2.1, 3.7 mg of ammonium fluoride powder was dissolved in 1 mL of deionized water, and adjusted to 7.4 mg of ammonium fluoride The powder was dissolved in 1 mL of deionized water; other steps were unchanged.
实施例6Example 6
本实施例按照实施例1的步骤制备了40%氟化铵(氟化铵的质量为二氧化锡质量的40%)添加的二氧化锡电子传输层并应用于钙钛矿太阳能上,与实施例1相比,区别仅在于在步骤2.1制备SnO2-NH4F前驱体溶液的过程中,将3.7mg的氟化铵粉末溶解在1mL的去离子水中,调整为将14.8mg的氟化铵粉末溶解在1mL的去离子水中;其他步骤不变。According to the steps of Example 1, the present embodiment prepared a tin dioxide electron transport layer added with 40% ammonium fluoride (the quality of ammonium fluoride is 40% of the tin dioxide mass) and applied it to perovskite solar energy. Compared with Example 1, the only difference is that in the process of preparing the SnO 2 -NH 4 F precursor solution in step 2.1, 3.7 mg of ammonium fluoride powder was dissolved in 1 mL of deionized water, and adjusted to 14.8 mg of ammonium fluoride The powder was dissolved in 1 mL of deionized water; other steps were unchanged.
对比例comparative example
本实施例按照实施例1的步骤制备了没有氟化铵添加的二氧化锡电子传输层对比例并应用于钙钛矿太阳能上,与实施例1相比,区别仅在于在步骤2.1制备SnO2-NH4F前驱体溶液的过程中,将3.7mg氟化铵粉末溶解在1mL去离子水中并搅拌1h后得到氟化铵溶液;将购买的15%二氧化锡水溶液、氟化铵溶液和去离子水按照1:1:5的体积比混合,调整为不添加氟化铵粉末在1mL的去离子水中;将购买的15%二氧化锡水溶液和去离子水按照1:6的体积比混合,其他步骤不变。In this example, according to the steps of Example 1, a comparative example of a tin dioxide electron transport layer without ammonium fluoride was prepared and applied to perovskite solar energy. Compared with Example 1, the difference is only in the preparation of SnO2 in step 2.1 -NH 4 F precursor solution, 3.7mg of ammonium fluoride powder was dissolved in 1mL deionized water and stirred for 1h to obtain ammonium fluoride solution; purchased 15% tin dioxide aqueous solution, ammonium fluoride solution and deionized Ionized water is mixed according to the volume ratio of 1:1:5, and adjusted so that no ammonium fluoride powder is added to 1 mL of deionized water; the purchased 15% tin dioxide aqueous solution and deionized water are mixed according to the volume ratio of 1:6, Other steps remain unchanged.
下面对上述实施例和对比例进行分析测试:Below above-mentioned embodiment and comparative example are analyzed and tested:
实施例1所得基于SnO2-NH4F电子传输层的钙钛矿太阳能电池的截面扫描电子显微镜SEM示意图1所示,由此可以观察整个器件结构并估算各层厚度;将实施例1中所得10%氟化铵添加的二氧化锡电子传输层(SnO2-NH4F)与对比例所得传统二氧化锡电子传输层(SnO2)进行原子力显微镜测试,3D AFM结果如图2所示,SnO2-NH4F薄膜的粗糙度更低,只有1.7nm,而SnO2薄膜的粗糙度达到3.2nm。NH4F的添加降低了SnO2薄膜表面粗糙度,改善了电子传输层和钙钛矿界面的接触问题。The cross-sectional scanning electron microscope SEM schematic diagram of the perovskite solar cell based on the SnO 2 -NH 4 F electron transport layer obtained in Example 1 is shown in Figure 1, from which the entire device structure can be observed and the thickness of each layer can be estimated; the obtained in Example 1 10% ammonium fluoride-added tin dioxide electron transport layer (SnO 2 -NH 4 F) and the traditional tin dioxide electron transport layer (SnO 2 ) obtained in the comparative example were tested by atomic force microscopy, and the 3D AFM results are shown in Figure 2. The roughness of SnO 2 -NH 4 F thin film is lower, only 1.7nm, while the roughness of SnO 2 thin film reaches 3.2nm. The addition of NH 4 F reduces the surface roughness of the SnO 2 film and improves the contact problem between the electron transport layer and the perovskite interface.
进一步地,对实施例1所得SnO2-NH4F电子传输层和对比例所得SnO2电子传输层进行了X射线光电子能谱测试,分别对Sn 3d,O 1s和F1s XPS光谱进行分析,如图3所示Sn 3d轨道特征峰向高结合能位置移动,证明SnO2电子传输层与F原子之间存在相互作用,F取代部分羟基氧可以钝化SnO2电子传输层表面缺陷。Further, the SnO 2 -NH 4 F electron transport layer obtained in Example 1 and the SnO 2 electron transport layer obtained in the comparative example were tested by X-ray photoelectron spectroscopy, and the
进一步地,对实施例1中所得的SnO2-NH4F电子传输层钙钛矿太阳能电池与对比例中所得SnO2钙钛矿太阳能电池进行器件光电转换效率,电池面积都为0.04cm2,测试条件为25℃空气条件下标准模拟太阳光AM 1.5。Further, the device photoelectric conversion efficiency of the SnO 2 -NH 4 F electron transport layer perovskite solar cell obtained in Example 1 and the SnO 2 perovskite solar cell obtained in the comparative example, the cell area is 0.04cm 2 , The test condition is the standard simulated sunlight AM 1.5 under the air condition of 25°C.
最优的短路电流-开路电压的反向扫描如图4所示,相对于传统的SnO2钙钛矿太阳能电池,SnO2-NH4F电池器件效率由19.87%提升至22.12%,更为明显的是开路电压的大幅提升,平均开路电压提升了70mV。这主要得益于界面缺陷的降低和电荷提取效率的提升减少了能量的损耗。The optimal short-circuit current-open-circuit voltage reverse scan is shown in Figure 4. Compared with the traditional SnO 2 perovskite solar cell, the device efficiency of the SnO 2 -NH 4 F cell is increased from 19.87% to 22.12%, which is more obvious The most important thing is that the open circuit voltage has been greatly improved, and the average open circuit voltage has increased by 70mV. This is mainly due to the reduction of interface defects and the improvement of charge extraction efficiency to reduce energy loss.
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。It is easy for those skilled in the art to understand that the above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present invention, All should be included within the protection scope of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211018859.6A CN115360300A (en) | 2022-08-24 | 2022-08-24 | Perovskite solar cell containing ammonium fluoride modified stannic oxide electron transport layer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211018859.6A CN115360300A (en) | 2022-08-24 | 2022-08-24 | Perovskite solar cell containing ammonium fluoride modified stannic oxide electron transport layer |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115360300A true CN115360300A (en) | 2022-11-18 |
Family
ID=84004491
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211018859.6A Pending CN115360300A (en) | 2022-08-24 | 2022-08-24 | Perovskite solar cell containing ammonium fluoride modified stannic oxide electron transport layer |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115360300A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115884611A (en) * | 2023-02-23 | 2023-03-31 | 北京科技大学 | CsPbI 3 Perovskite solar cell and preparation method thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104451610A (en) * | 2014-11-24 | 2015-03-25 | 辽宁大学 | Preparation method for fluorine-doped tin oxide transparent conductive thin film |
BR102017000059A2 (en) * | 2017-01-02 | 2017-09-19 | Renato Oliveira Svierszcz Paulo | Solar And PHOTOVOLTAIC BATTERY CELL OF FINE ORGANIC FILM AND METHOD FOR OBTAINING SOLAR AND PHOTOVOLTAIC BATTERY OF FINE ORGANIC FILM |
CN113193124A (en) * | 2021-04-09 | 2021-07-30 | 电子科技大学 | Perovskite solar cell modified by triethylamine hydrochloride and preparation method thereof |
CN114497390A (en) * | 2022-01-11 | 2022-05-13 | 中国科学院大学 | A kind of perovskite solar cell and preparation method thereof |
-
2022
- 2022-08-24 CN CN202211018859.6A patent/CN115360300A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104451610A (en) * | 2014-11-24 | 2015-03-25 | 辽宁大学 | Preparation method for fluorine-doped tin oxide transparent conductive thin film |
BR102017000059A2 (en) * | 2017-01-02 | 2017-09-19 | Renato Oliveira Svierszcz Paulo | Solar And PHOTOVOLTAIC BATTERY CELL OF FINE ORGANIC FILM AND METHOD FOR OBTAINING SOLAR AND PHOTOVOLTAIC BATTERY OF FINE ORGANIC FILM |
CN113193124A (en) * | 2021-04-09 | 2021-07-30 | 电子科技大学 | Perovskite solar cell modified by triethylamine hydrochloride and preparation method thereof |
CN114497390A (en) * | 2022-01-11 | 2022-05-13 | 中国科学院大学 | A kind of perovskite solar cell and preparation method thereof |
Non-Patent Citations (1)
Title |
---|
EUI HYUK JUNG等: "Bifunctional Surface Engineering on SnO2 Reduces Energy Loss in Perovskite Solar Cells", ACS ENERGY LETTERS, no. 5, 4 August 2020 (2020-08-04), pages 2796 - 2801 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115884611A (en) * | 2023-02-23 | 2023-03-31 | 北京科技大学 | CsPbI 3 Perovskite solar cell and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109802041B (en) | Non-fullerene perovskite planar heterojunction solar cell and preparation method thereof | |
CN111525038B (en) | A kind of perovskite solar cell doped with multifunctional additive and its preparation method | |
CN105576150A (en) | Perovskite type solar energy battery with quantum dot size performing gradient change and preparation method | |
CN110649163A (en) | Perovskite solar cell with sandwich structure electron transport layer and preparation method | |
CN113659079B (en) | Trans-planar structure quasi-two-dimensional perovskite solar cell and preparation method thereof | |
CN107946465A (en) | A high-efficiency and stable perovskite solar cell prepared in air and its preparation method | |
WO2023142624A1 (en) | Perovskite solar cell, thin film composite electrode and preparation method, power generation apparatus, and electric apparatus | |
Zheng et al. | Mesostructured perovskite solar cells based on Zn2SnO4 Single Crystal Mesoporous Layer with efficiency of 18.32% | |
CN116801652A (en) | Crystalline silicon perovskite laminated solar cell and preparation method thereof | |
CN115360300A (en) | Perovskite solar cell containing ammonium fluoride modified stannic oxide electron transport layer | |
CN112349843B (en) | Hole transport layer material of solar cell, antimony-based solar cell and preparation method of antimony-based solar cell | |
CN109859950A (en) | Biologic solar cell and preparation method thereof with three layers of chlorophyll structure | |
CN111063806B (en) | Perovskite solar cell and preparation method thereof | |
CN113471363B (en) | Perovskite battery based on black phosphorus quantum dot passivation and preparation method thereof | |
CN113394343B (en) | Back-incident p-i-n structure perovskite solar cell and preparation method thereof | |
CN114864822A (en) | Perovskite solar cell and preparation method thereof | |
CN108461635B (en) | A kind of method and application of boron compound surface modification perovskite thin film | |
CN111430484B (en) | Inorganic inverted perovskite solar cell, and preparation method and application thereof | |
CN112054123A (en) | Electron transport layer and preparation method thereof, perovskite solar cell and preparation method thereof | |
CN115867093B (en) | Preparation method and application of perovskite solar cell graphene electron transport layer | |
CN114899322B (en) | Fullerene di (ethoxycarbonyl) methylene derivative electron transport material, application thereof, solar cell and preparation method thereof | |
Mukametkali et al. | Phthalocyanine and metal phthalocyanine are hole transport buffer layers for perovskite solar cell fabrication | |
CN116322221A (en) | Preparation method of vanadium oxide-tin oxide core-shell structure nanocrystalline electron transport layer material and perovskite battery | |
CN116963511A (en) | A kind of phenylphosphate modified perovskite solar cell and preparation method thereof | |
CN118019417A (en) | Preparation method and application of electron transport layer solution with uniform passivation effect of photoactive layer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |