CN115359143A - 一种施源器自动重建方法和装置 - Google Patents

一种施源器自动重建方法和装置 Download PDF

Info

Publication number
CN115359143A
CN115359143A CN202211087439.3A CN202211087439A CN115359143A CN 115359143 A CN115359143 A CN 115359143A CN 202211087439 A CN202211087439 A CN 202211087439A CN 115359143 A CN115359143 A CN 115359143A
Authority
CN
China
Prior art keywords
applicator
image
sample image
reconstruction model
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211087439.3A
Other languages
English (en)
Inventor
王佳浩
谢洪玲
屠晔强
周鹏飞
唐秋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Womens Hospital of Zhejiang University School of Medicine
Original Assignee
Womens Hospital of Zhejiang University School of Medicine
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Womens Hospital of Zhejiang University School of Medicine filed Critical Womens Hospital of Zhejiang University School of Medicine
Priority to CN202211087439.3A priority Critical patent/CN115359143A/zh
Publication of CN115359143A publication Critical patent/CN115359143A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/003Reconstruction from projections, e.g. tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1001X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy using radiation sources introduced into or applied onto the body; brachytherapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/40Image enhancement or restoration using histogram techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/90Dynamic range modification of images or parts thereof
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • A61N2005/1061Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam using an x-ray imaging system having a separate imaging source
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10081Computed x-ray tomography [CT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20084Artificial neural networks [ANN]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20112Image segmentation details
    • G06T2207/20132Image cropping

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computing Systems (AREA)
  • Artificial Intelligence (AREA)
  • Data Mining & Analysis (AREA)
  • Molecular Biology (AREA)
  • Computational Linguistics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Evolutionary Computation (AREA)
  • Veterinary Medicine (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

本申请实施例公开了一种施源器自动重建方法和装置,所述方法包括:获取训练数据集,训练数据集中包含多组CT样本图像组,每组CT样本图像组中的施源器的类型不同,每组CT样本图像组中包含多个CT样本图像和每个CT样本图像对应的标签真值图;将训练数据集输入初始施源器重建模型中,输出每个CT样本图像的预测真值图;根据所有CT样本图像的预测真值图和每个CT样本图像对应的标签真值图确定损失值;利用损失值对初始施源器重建模型的参数进行优化,得到施源器重建模型;将采集的CT图像输入施源器重建模型,输出CT图像的施源器重建CT图像。

Description

一种施源器自动重建方法和装置
技术领域
本申请涉及深度学习领域,尤其涉及一种施源器自动重建方法和装置。
背景技术
目前在近距离放疗中对施源器进行重建,大多依靠物理师人工来完成。然而受物理师主观因素等的影响,存在重建效率慢、误差大等缺点。因此迫切需要一种施源器自动重建方法,能够在解放物理师劳动密集型工作的同时,提高施源器重建的准确率。
发明内容
本申请提供一种施源器自动重建方法和装置,以解决上述的技术问题。
为此,本申请实施例一方面提供一种施源器自动重建方法,所述方法包括:
获取训练数据集,所述训练数据集中包含多组CT样本图像组,每组CT样本图像组中的施源器的类型不同,所述每组CT样本图像组中包含多个CT样本图像和每个CT样本图像对应的标签真值图;
将所述训练数据集输入初始施源器重建模型中,输出每个CT样本图像的预测真值图;
根据所有CT样本图像的预测真值图和每个CT样本图像对应的标签真值图确定损失值;
利用所述损失值对所述初始施源器重建模型的参数进行优化,得到施源器重建模型;
将采集的CT图像输入所述施源器重建模型,输出所述CT图像的施源器重建CT图像。
其中,所述获取训练数据集之后,还包括:
对所述训练数据集中的每个CT样本图像进行直方图均衡化处理;
将所述每个CT样本图像和每个CT样本图像对应的标签真值图的中心点作为裁剪中心点,按照预设尺寸进行裁剪;
对裁剪后的每个CT样本图像和每个CT样本图像对应的标签真值图进行数据增强处理。
其中,所述将所述训练数据集输入初始施源器重建模型中,输出每个CT样本图像的预测真值图,包括:
利用所述初始施源器重建模型从所述CT样本图像进行特征提取,得到特征数据;
将所述特征数据输入激活函数,输出所述CT样本图像的预测真值图。
其中,所述根据所有CT样本图像的预测真值图和每个CT样本图像对应的标签真值图确定损失值,包括:
根据每个CT样本图像的预测真值图和每个CT样本图像对应的标签真值图确定该CT样本图像的子损失值;
根据所有CT样本图像的子损失值、预设值确定所述训练数据集的损失值。
其中,所述利用所述损失值对所述初始施源器重建模型的参数进行优化,得到施源器重建模型,包括:
利用所述损失值对所述初始施源器重建模型的参数进行优化;
判断所述初始施源器重建模型是否收敛;
若否,则利用优化后的初始施源器重建模型对所述训练数据集进行重建,并重新计算损失值;
利用重新计算的损失值对所述优化后的初始施源器重建模型的参数进行优化;
直到所述初始施源器重建模型收敛,得到所述施源器重建模型
本申请实施例另一方面提供一种施源器自动重建装置,所述装置包括:
采集模块,用于获取训练数据集,所述训练数据集中包含多组CT样本图像,每组CT样本图像中的施源器的类型不同,所述每组CT样本图像中包含多个CT样本图像和每个CT样本图像对应的标签真值图;
深度学习模块,用于将所述训练数据集输入初始施源器重建模型中,输出每个CT样本图像的预测真值图;
计算模块,用于根据所有CT样本图像的预测真值图和每个CT样本图像对应的标签真值图确定损失值;
所述深度学习模块,还用于利用所述损失值对所述初始施源器重建模型的参数进行优化,得到施源器重建模型;
所述深度学习模块,还用于将采集的CT图像输入所述施源器重建模型,输出所述CT图像的施源器重建CT图像。
其中,还包括:
处理模块,用于对所述训练数据集中的每个CT样本图像进行直方图均衡化处理;
所述处理模块,还用于将所述每个CT样本图像和每个CT样本图像对应的标签真值图的中心点作为裁剪中心点,按照预设尺寸进行裁剪;
所述处理模块,还用于对裁剪后的每个CT样本图像和每个CT样本图像对应的标签真值图进行数据增强处理。
其中,所述深度学习模块,还用于利用所述初始施源器重建模型从所述CT样本图像进行特征提取,得到特征数据;
所述深度学习模块,还用于将所述特征数据输入激活函数,输出所述CT样本图像的预测真值图。
其中,所述计算模块,还用于根据每个CT样本图像的预测真值图和每个CT样本图像对应的标签真值图确定该CT样本图像的子损失值;
所述计算模块,还用于根据所有CT样本图像的子损失值、预设值确定所述训练数据集的损失值。
其中,所述深度学习模块,还用于利用所述损失值对所述初始施源器重建模型的参数进行优化;
所述深度学习模块,还用于判断所述初始施源器重建模型是否收敛;
所述计算模块,还用于若否,则利用优化后的初始施源器重建模型对所述训练数据集进行重建,并重新计算损失值;
所述深度学习模块,还用于利用重新计算的损失值对所述优化后的初始施源器重建模型的参数进行优化;
所述深度学习模块,还用于直到所述初始施源器重建模型收敛,得到所述施源器重建模型。
通过多个不同施源器的CT样本图像组组成的训练数据集,对初始施源器重建模型进行训练,得到每个CT样本图像的预测真值图。将所有CT样本图像的预测真值图和每个CT样本图像对应的标签真值图确定损失值,再利用损失值对初始施源器重建模型的参数进行优化,得到施源器重建模型,最后利用施源器重建模型对采集的CT图像进行施源器重建,得到该CT图像的施源器重建CT图像。由于利用多个不同施源器的CT样本图像组组成的训练数据集对初始施源器重建模型进行训练,从而使得最终得到的施源器重建模型能够对多个不同类型的施源器的CT图像进行重建。而利用预测真值图和专家标记的标签真值图确定损失值,并利用损失值对初始施源器重建模型的参数进行优化,使得最终得到的施源器重建模型对CT图像进行施源器重建的效率和准确度得到了显著的提高。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1示出了根据本申请的一个实施例的施源器自动重建方法的流程图;
图2示出了根据本申请的另一个实施例的CT样本图像的预处理方法的流程图;
图3示出了根据本申请的另一个实施例的预测真值图的确定方法的流程图;
图4示出了根据本申请的另一个实施例的损失值确定方法的流程图;
图5示出了根据本申请的另一个实施例的施源器重建模型的参数优化方法的流程图;
图6示出了根据本申请的一个实施例的施源器自动重建装置的结构示意图。
具体实施方式
为使本申请的目的、特征、优点能够更加的明显和易懂,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而非全部实施例。基于本申请中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
技术问题。
为了提高施源器重建的效率和准确度,本申请一实施例提供了一种施源器自动重建方法,如图1所示,该方法包括:
步骤101,获取训练数据集,所述训练数据集中包含多组CT样本图像组,每组CT样本图像组中的施源器的类型不同,所述每组CT样本图像组中包含多个CT样本图像和每个CT样本图像对应的标签真值图。
施源器的类型有多种,如金属三通道妇科施源器、插植针、环形施源器、乌德勒支施源器、阴道圆柱施源器等。
在本实施例中,扫描CT的层厚为3mm,重建矩阵尺寸为512×512,每个CT样本图像的图像分辨率为0.1cmx0.1cmx0.3cm,CT样本图像的层数设置为70-94层。在其他实施方式中,扫描CT的层厚、重建矩阵尺寸、CT样本图像的图像分辨率和层数可根据采集设备的不同或者需求的不同进行设置。
每组CT样本图像组中的CT样本图像的施源器的类型不同。例如,某个训练数据集中包含3个CT样本图像组,第一组CT样本图像组为环形施源器组,第一组CT样本图像组中的CT样本图像均为环形施源器的CT样本图像;第二组CT样本图像组为乌德勒支施源器组,第二组CT样本图像组中的CT样本图像均为乌德勒支施源器的CT样本图像;第三组CT样本图像组为插植针,第三组CT样本图像组中的CT样本图像均为插植针的CT样本图像。
每个CT样本图像需要在采集后,利用物理师手动进行施源器重建。施源器重建是物理师对CT样本图像中施源器的位置进行标注,得到标注的多个点位。在本实施例中,CT样本图像在采集后,由初级物理师手动进行施源器重建及标注。标注后由高级物理师进行审核,最终得到标注的点位。
在物理师对每个CT样本图像进行标注后,根据标注的多个点位得到该CT样本图像对应的标签真值图。标签真值图大小与CT样本图像相同,每个体素的值为0或1,为1表征该体素为标注区域,为0表征该体素为非标注区域。
步骤102,将所述训练数据集输入初始施源器重建模型中,输出每个CT样本图像的预测真值图。
预测真值图与CT样本图像和标签真值图的大小相同,预测真值图中每个体素为0-1的值,表征该体素为施源器所在位置的概率。
步骤103,根据所有CT样本图像的预测真值图和每个CT样本图像对应的标签真值图确定损失值。
步骤104,利用所述损失值对所述初始施源器重建模型的参数进行优化,得到施源器重建模型。
初始施源器重建模型选择改进的U-Net模型。
改进的U-Net模型是建立在2D 和 3D U-Nets基础上的,该模型会生成三种不同的U-Net配置:一个2D U-Net、一个以全图像分辨率运行的3D U-Net和一个3D U-Net级联,交叉验证后,会根据经验选择性能最佳的配置或整体。
步骤105,将采集的CT图像输入所述施源器重建模型,输出所述CT图像的施源器重建CT图像。
通过多个不同施源器的CT样本图像组组成的训练数据集,对初始施源器重建模型进行训练,得到每个CT样本图像的预测真值图。将所有CT样本图像的预测真值图和每个CT样本图像对应的标签真值图确定损失值,再利用损失值对初始施源器重建模型的参数进行优化,得到施源器重建模型,最后利用施源器重建模型对采集的CT图像进行施源器重建,得到该CT图像的施源器重建CT图像。由于利用多个不同施源器的CT样本图像组组成的训练数据集对初始施源器重建模型进行训练,从而使得最终得到的施源器重建模型能够对多个不同类型的施源器的CT图像进行重建。而利用预测真值图和专家标记的标签真值图确定损失值,并利用损失值对初始施源器重建模型的参数进行优化,使得最终得到的施源器重建模型对CT图像进行施源器重建的效率和准确度得到了显著的提高。
如图2所示,在本申请一示例中还提供了一种CT样本图像的预处理方法,包括:
步骤201,对所述训练数据集中的每个CT样本图像进行直方图均衡化处理。
对每个CT样本图像进行直方图均衡化处理,能够增强CT样本图像中施源器与背景之间的对比度,让施源器的特征更加明显。进而提高了施源器重建模型从CT样本图像中提取出的特征数据的准确度。
步骤202,将所述每个CT样本图像和每个CT样本图像对应的标签真值图的中心点作为裁剪中心点,按照预设尺寸进行裁剪。
例如,对某个CT样本图像进行裁剪时,预设尺寸为128像素*128像素,则将该CT样本图像的图像中心点作为裁剪的中心点,裁剪出128像素*128像素的图像,并将裁剪出的图像替换掉该CT样本图像。
对CT样本图像进行裁剪,使得每个CT样本图像的大小都相同,能够提高模型对裁剪后的CT样本图像的处理效率。
步骤203,对裁剪后的每个CT样本图像和每个CT样本图像对应的标签真值图进行数据增强处理。
对裁剪后的每个CT样本图像和每个CT样本图像对应的标签真值图进行数据增强处理。数据增强处理包含旋转、放大、平移等方式。增强后的CT样本图像中的施源器的特征更加明显。进而提高了施源器重建模型从CT样本图像中提取出的特征数据的准确度。
如图3所示,在本申请一示例中还提供了一种预测真值图的确定方法,包括:
步骤301,利用所述初始施源器重建模型从所述CT样本图像进行特征提取,得到特征数据;
步骤302,将所述特征数据输入激活函数,输出所述CT样本图像的预测真值图。
将特征数据输入激活函数,能够将特征数据的值映射到0-1之间,那么得到的预测真值图中的每个体素的值均为0-1之间的值。使得预测真值图可以与标签真值图进行计算,从而得到损失值。
如图4所示,在本申请一示例中还提供了一种损失值确定方法,包括:
步骤401,根据每个CT样本图像的预测真值图和每个CT样本图像对应的标签真值图确定该CT样本图像的子损失值。
具体可根据以下公式确定每个CT样本图像的子损失值
Figure 28253DEST_PATH_IMAGE001
Figure 15931DEST_PATH_IMAGE002
其中,
Figure 819939DEST_PATH_IMAGE003
为该CT样本图像中的第
Figure 142336DEST_PATH_IMAGE003
个体素,
Figure 689992DEST_PATH_IMAGE004
为该CT样本图像的体素总数,
Figure 529248DEST_PATH_IMAGE005
为预测真值图中第
Figure 769736DEST_PATH_IMAGE003
个体素的预测值,
Figure 313850DEST_PATH_IMAGE006
为标签真值图中第
Figure 665197DEST_PATH_IMAGE003
个体素的标签值。
步骤402,根据所有CT样本图像的子损失值、预设值确定所述训练数据集的损失值。
具体可根据以下公式确定每个CT样本图像的损失值
Figure 361889DEST_PATH_IMAGE007
Figure 773278DEST_PATH_IMAGE008
其中,
Figure DEST_PATH_IMAGE009
为训练数据集中第
Figure 7951DEST_PATH_IMAGE009
个CT样本图像,K为训练数据集中CT样本图像的总数,
Figure 772775DEST_PATH_IMAGE010
为训练数据集中第
Figure 714187DEST_PATH_IMAGE009
个CT样本图像的子损失值。
如图5所示,在本申请一示例中还提供了一种施源器重建模型的参数优化方法,包括:
步骤501,利用所述损失值对所述初始施源器重建模型的参数进行优化。
步骤502,判断所述初始施源器重建模型是否收敛。
步骤503,若否,则利用优化后的初始施源器重建模型对所述训练数据集进行重建,并重新计算损失值。
步骤504,利用重新计算的损失值对所述优化后的初始施源器重建模型的参数进行优化。
步骤505,直到所述初始施源器重建模型收敛,得到所述施源器重建模型。
通过判断模型是否收敛来确定训练是否结束,对于未收敛的模型,则继续训练,直到模型收敛为止。使得模型能够得到有效的训练,提高模型对CT图像进行施源器重建的准确度。
下面通过一个实施例来说明上述的过程:
初始模型选择改进的U-net网络。
采集60个使用插值针(3针)的患者的CT样本图像,从60个CT样本图像中随机选择50个组成训练数据集,剩下的10个CT样本图像组成测试数据集。
将训练数据集输入改进的U-net网络中,输出每个CT样本图像的预测真值图。
根据所有CT样本图像的预测真值图和每个CT样本图像对应的标签真值图确定损失值。
利用损失值对改进的U-net网络的参数进行优化。
直到改进的U-net网络收敛,得到施源器重建模型。
将测试数据集输入施源器重建模型,输出测试数据集中每个CT样本图像的施源器重建CT图像。
而根据输出的测试数据集中每个CT样本图像的施源器重建CT图像计算多个插值针3针的评估数据,如骰子相似系数(DSC)、豪斯多夫距离、杰卡德系数(JC)。插值针3针的骰子相似系数分别为0.9、0.91、0.89;插值针3针的豪斯多夫距离分别为0.71、0.72、0.61;插值针3针的杰卡德系数分别为0.77、0.79、0.78。多个评估数据充分说明了本实施例中的施源器自动重建方法对CT图像进行施源器重建的准确度较高。
为了实现上述的施源器自动重建方法,如图6所示,本申请一示例来提供了一种施源器自动重建装置,包括:
采集模块10,用于获取训练数据集,所述训练数据集中包含多组CT样本图像,每组CT样本图像中的施源器的类型不同,所述每组CT样本图像中包含多个CT样本图像和每个CT样本图像对应的标签真值图;
深度学习模块20,用于将所述训练数据集输入初始施源器重建模型中,输出每个CT样本图像的预测真值图;
计算模块30,用于根据所有CT样本图像的预测真值图和每个CT样本图像对应的标签真值图确定损失值;
所述深度学习模块20,还用于利用所述损失值对所述初始施源器重建模型的参数进行优化,得到施源器重建模型;
所述深度学习模块20,还用于将采集的CT图像输入所述施源器重建模型,输出所述CT图像的施源器重建CT图像。
其中,还包括:
处理模块40,用于对所述训练数据集中的每个CT样本图像进行直方图均衡化处理;
所述处理模块40,还用于将所述每个CT样本图像和每个CT样本图像对应的标签真值图的中心点作为裁剪中心点,按照预设尺寸进行裁剪;
所述处理模块40,还用于对裁剪后的每个CT样本图像和每个CT样本图像对应的标签真值图进行数据增强处理。
其中,所述深度学习模块20,还用于利用所述初始施源器重建模型从所述CT样本图像进行特征提取,得到特征数据;
所述深度学习模块20,还用于将所述特征数据输入激活函数,输出所述CT样本图像的预测真值图。
其中,所述计算模块30,还用于根据每个CT样本图像的预测真值图和每个CT样本图像对应的标签真值图确定该CT样本图像的子损失值;
所述计算模块30,还用于根据所有CT样本图像的子损失值、预设值确定所述训练数据集的损失值。
其中,所述深度学习模块20,还用于利用所述损失值对所述初始施源器重建模型的参数进行优化;
所述深度学习模块20,还用于判断所述初始施源器重建模型是否收敛;
所述计算模块30,还用于若否,则利用优化后的初始施源器重建模型对所述训练数据集进行重建,并重新计算损失值;
所述深度学习模块20,还用于利用重新计算的损失值对所述优化后的初始施源器重建模型的参数进行优化;
所述深度学习模块20,还用于直到所述初始施源器重建模型收敛,得到所述施源器重建模型。
在一个示例中,本申请实施例还提供了一种移动终端,该移动终端包括至少一个存储器,以及与所述至少一个存储器通信连接的处理器;其中,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被设置为用于执行上述图1至图5实施例中任一项所述的施源器自动重建方法。
另外,本申请实施例还提供了一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行上述图1至图5实施例中任一项所述的施源器自动重建方法流程。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或隐含地包括至少一个该特征。在本申请实施例的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
应当理解,本文中使用的术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”或“响应于检测”。类似地,取决于语境,短语“如果确定”或“如果检测(陈述的条件或事件)”可以被解释成为“当确定时”或“响应于确定”或“当检测(陈述的条件或事件)时”或“响应于检测(陈述的条件或事件)”。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如,多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机装置(可以是个人计算机,服务器,或者网络装置等)或处理器(Processor)执行本申请各个实施例所述方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请保护范围应以所述权利要求的保护范围为准。

Claims (10)

1.一种施源器自动重建方法,其特征在于,包括:
获取训练数据集,所述训练数据集中包含多组CT样本图像组,每组CT样本图像组中的施源器的类型不同,所述每组CT样本图像组中包含多个CT样本图像和每个CT样本图像对应的标签真值图;
将所述训练数据集输入初始施源器重建模型中,输出每个CT样本图像的预测真值图;
根据所有CT样本图像的预测真值图和每个CT样本图像对应的标签真值图确定损失值;
利用所述损失值对所述初始施源器重建模型的参数进行优化,得到施源器重建模型;
将采集的CT图像输入所述施源器重建模型,输出所述CT图像的施源器重建CT图像。
2.根据权利要求1所述施源器自动重建方法,其特征在于,所述获取训练数据集之后,还包括:
对所述训练数据集中的每个CT样本图像进行直方图均衡化处理;
将所述每个CT样本图像和每个CT样本图像对应的标签真值图的中心点作为裁剪中心点,按照预设尺寸进行裁剪;
对裁剪后的每个CT样本图像和每个CT样本图像对应的标签真值图进行数据增强处理。
3.根据权利要求1所述施源器自动重建方法,其特征在于,所述将所述训练数据集输入初始施源器重建模型中,输出每个CT样本图像的预测真值图,包括:
利用所述初始施源器重建模型从所述CT样本图像进行特征提取,得到特征数据;
将所述特征数据输入激活函数,输出所述CT样本图像的预测真值图。
4.根据权利要求1所述施源器自动重建方法,其特征在于,所述根据所有CT样本图像的预测真值图和每个CT样本图像对应的标签真值图确定损失值,包括:
根据每个CT样本图像的预测真值图和每个CT样本图像对应的标签真值图确定该CT样本图像的子损失值;
根据所有CT样本图像的子损失值、预设值确定所述训练数据集的损失值。
5.根据权利要求1所述施源器自动重建方法,其特征在于,所述利用所述损失值对所述初始施源器重建模型的参数进行优化,得到施源器重建模型,包括:
利用所述损失值对所述初始施源器重建模型的参数进行优化;
判断所述初始施源器重建模型是否收敛;
若否,则利用优化后的初始施源器重建模型对所述训练数据集进行重建,并重新计算损失值;
利用重新计算的损失值对所述优化后的初始施源器重建模型的参数进行优化;
直到所述初始施源器重建模型收敛,得到所述施源器重建模型。
6.一种施源器自动重建装置,其特征在于,所述装置包括:
采集模块,用于获取训练数据集,所述训练数据集中包含多组CT样本图像,每组CT样本图像中的施源器的类型不同,所述每组CT样本图像中包含多个CT样本图像和每个CT样本图像对应的标签真值图;
深度学习模块,用于将所述训练数据集输入初始施源器重建模型中,输出每个CT样本图像的预测真值图;
计算模块,用于根据所有CT样本图像的预测真值图和每个CT样本图像对应的标签真值图确定损失值;
所述深度学习模块,还用于利用所述损失值对所述初始施源器重建模型的参数进行优化,得到施源器重建模型;
所述深度学习模块,还用于将采集的CT图像输入所述施源器重建模型,输出所述CT图像的施源器重建CT图像。
7.根据权利要求6所述施源器自动重建装置,其特征在于,还包括:
处理模块,用于对所述训练数据集中的每个CT样本图像进行直方图均衡化处理;
所述处理模块,还用于将所述每个CT样本图像和每个CT样本图像对应的标签真值图的中心点作为裁剪中心点,按照预设尺寸进行裁剪;
所述处理模块,还用于对裁剪后的每个CT样本图像和每个CT样本图像对应的标签真值图进行数据增强处理。
8.根据权利要求6所述施源器自动重建装置,其特征在于,包括:
所述深度学习模块,还用于利用所述初始施源器重建模型从所述CT样本图像进行特征提取,得到特征数据;
所述深度学习模块,还用于将所述特征数据输入激活函数,输出所述CT样本图像的预测真值图。
9.根据权利要求6所述施源器自动重建装置,其特征在于,包括:
所述计算模块,还用于根据每个CT样本图像的预测真值图和每个CT样本图像对应的标签真值图确定该CT样本图像的子损失值;
所述计算模块,还用于根据所有CT样本图像的子损失值、预设值确定所述训练数据集的损失值。
10.根据权利要求6所述施源器自动重建装置,其特征在于,包括:
所述深度学习模块,还用于利用所述损失值对所述初始施源器重建模型的参数进行优化;
所述深度学习模块,还用于判断所述初始施源器重建模型是否收敛;
所述计算模块,还用于若否,则利用优化后的初始施源器重建模型对所述训练数据集进行重建,并重新计算损失值;
所述深度学习模块,还用于利用重新计算的损失值对所述优化后的初始施源器重建模型的参数进行优化;
所述深度学习模块,还用于直到所述初始施源器重建模型收敛,得到所述施源器重建模型。
CN202211087439.3A 2022-09-07 2022-09-07 一种施源器自动重建方法和装置 Pending CN115359143A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211087439.3A CN115359143A (zh) 2022-09-07 2022-09-07 一种施源器自动重建方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211087439.3A CN115359143A (zh) 2022-09-07 2022-09-07 一种施源器自动重建方法和装置

Publications (1)

Publication Number Publication Date
CN115359143A true CN115359143A (zh) 2022-11-18

Family

ID=84006496

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211087439.3A Pending CN115359143A (zh) 2022-09-07 2022-09-07 一种施源器自动重建方法和装置

Country Status (1)

Country Link
CN (1) CN115359143A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116152437A (zh) * 2023-02-13 2023-05-23 北京医智影科技有限公司 施源器重建方法、装置、电子设备和计算机可读存储介质
CN116258735A (zh) * 2023-05-16 2023-06-13 四川省肿瘤医院 一种宫颈癌组织间插植针重建系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116152437A (zh) * 2023-02-13 2023-05-23 北京医智影科技有限公司 施源器重建方法、装置、电子设备和计算机可读存储介质
CN116152437B (zh) * 2023-02-13 2024-02-02 中国医学科学院北京协和医院 施源器重建方法、装置、电子设备和计算机可读存储介质
CN116258735A (zh) * 2023-05-16 2023-06-13 四川省肿瘤医院 一种宫颈癌组织间插植针重建系统

Similar Documents

Publication Publication Date Title
WO2022063200A1 (zh) 用于非小细胞肺癌预后生存预测的方法、介质及电子设备
CN115359143A (zh) 一种施源器自动重建方法和装置
CN109636808B (zh) 一种基于全卷积神经网络的肺叶分割方法
CN108171692B (zh) 一种肺部影像检索方法及装置
CN111553892B (zh) 基于深度学习的肺结节分割计算方法、装置及系统
US11748902B2 (en) Method, device and system for generating a centerline for an object in an image
EP3806035A1 (en) Reducing false positive detections of malignant lesions using multi-parametric magnetic resonance imaging
CN110570350A (zh) 一种二维卵泡检测方法、装置和超声设备及可读存储介质
CN111028246A (zh) 一种医学图像分割方法、装置、存储介质及电子设备
WO2018107371A1 (zh) 图像搜索系统及方法
JP7346553B2 (ja) 深層学習を使用する3dデータセット内のオブジェクトの成長率の決定
WO2022247573A1 (zh) 模型训练方法、图像处理方法、装置、设备及存储介质
CN115035020A (zh) 对医学图像进行对象分析的方法、装置和存储介质
CN113256670A (zh) 图像处理方法及装置、网络模型的训练方法及装置
CN113706473A (zh) 超声图像中病灶区域的长短轴确定方法和超声设备
EP2902969B1 (en) Image processing device, image processing method, and image processing program
CN116883341A (zh) 一种基于深度学习的肝脏肿瘤ct图像自动分割方法
CN114693671A (zh) 基于深度学习的肺结节半自动分割方法、装置、设备及介质
CN113240680A (zh) 一种基于深度学习技术的直肠癌系膜自动分割方法
Junior et al. Evaluating margin sharpness analysis on similar pulmonary nodule retrieval
EP3994466A1 (en) Determining region(s) for tissue dissection in pathology slides
CN115294401B (zh) 一种基于ct图像的分类方法、装置、设备及存储介质
CN108198213B (zh) 一种标记管状结构的方法及装置、管状结构的处理终端
CN113408595B (zh) 病理图像处理的方法、装置、电子设备及可读存储介质
CN115482261A (zh) 血管配准方法、装置、电子设备及存储介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination