CN115345194A - 基于混合树形算法的信号处理方法及系统 - Google Patents
基于混合树形算法的信号处理方法及系统 Download PDFInfo
- Publication number
- CN115345194A CN115345194A CN202210854489.3A CN202210854489A CN115345194A CN 115345194 A CN115345194 A CN 115345194A CN 202210854489 A CN202210854489 A CN 202210854489A CN 115345194 A CN115345194 A CN 115345194A
- Authority
- CN
- China
- Prior art keywords
- signal
- members
- cluster
- artificial intelligence
- linkage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本申请提供的基于混合树形算法的信号处理方法及系统,根据获得的互动行为信息簇中的第一信号成员和第二信号成员,实现智能对第一信号成员和第二信号成员之间是否存在目标联动情况的解析,根据解析结果,能够确定不同种类的第一信号成员和不同第二信号成员之间的目标联动情况。目标联动情况能够表示第一信号成员是否具备第二信号成员,进而,通过确定的目标联动情况,从而能够精确地确定各个第一信号成员携带有第二信号成员,对第二信号成员进行优化处理,得到信号优化处理结果,整个信息处理的过程通过人工智能完成,这样一来,能够降低人工时间,提高信号处理的效率。
Description
技术领域
本申请涉及信号处理技术领域,具体而言,涉及基于混合树形算法的信号处理方法及系统。
背景技术
信号处理(signal processing)是对各种类型的电信号,按各种预期的目的及要求进行加工过程的统称。对模拟信号的处理称为模拟信号处理,对数字信号的处理称为数字信号处理。
现目前,对信号进行处理时,可能存在大量的干扰,这样一来,可能存在信号不能准确的进行识别。因此,亟需一种技术方案以改善上述技术问题。
发明内容
为改善相关技术中存在的技术问题,本申请提供了基于混合树形算法的信号处理方法及系统。
第一方面,提供一种基于混合树形算法的信号处理方法,所述方法至少包括:获得互动行为信息簇;所述互动行为信息簇包括不少于一种种类的第一信号成员和不少于一种第二信号成员;确定不同种类的第一信号成员和不同第二信号成员之间的目标联动情况;通过确定的所述目标联动情况,生成各种所述第一信号成员携带有不少于一种第二信号成员;对不少于一种所述第二信号成员进行优化处理,得到信号优化处理结果。
在一种独立实施的实施例中,所述确定不同种类的第一信号成员和不同第二信号成员之间的目标联动情况,包括:将所述互动行为信息簇加载至事先已配置完成的人工智能线程中,通过所述事先已配置完成的人工智能线程对所述互动行为信息簇进行处理,生成不同种类的第一信号成员和不同第二信号成员之间的目标联动情况。
在一种独立实施的实施例中,所述互动行为信息簇中还包括不少于一种种类的第一信号成员和不少于一种第二信号成员之间的已获得的联动情况,所述确定不同种类的第一信号成员和不同第二信号成员之间的目标联动情况,包括:基于不少于一种种类的第一信号成员、不少于一种第二信号成员以及所述已获得的联动情况,生成不同种类的第一信号成员和不同第二信号成员之间的目标联动情况。
在一种独立实施的实施例中,所述互动行为信息簇包括第一信号成员对应的第一识别单元、第二信号成员对应的第二识别单元以及第一识别单元和第二识别单元之间的匹配关系;其中,所述匹配关系表示该匹配关系的最终结果对应的第一识别单元和第二识别单元携带有已获得的联动情况。
在一种独立实施的实施例中,所述方法还包括配置人工智能线程的步骤:获得范例交互信息簇;所述范例交互信息簇包括若干个种类的第一信号成员和若干个第二信号成员;将所述范例交互信息簇加载至待配置的人工智能线程中,生成所述范例交互信息簇中的各个第一信号成员和各个第二信号成员之间的第一评估联动情况;结合所述范例交互信息簇对应的第一标准联动情况和所述第一评估联动情况,对所述待配置的人工智能线程进行配置,得到配置好的人工智能线程。
在一种独立实施的实施例中,所述范例交互信息簇还包括若干个种类的第一信号成员中的其中一部分第一信号成员和若干个第二信号成员中的其中一部分第二信号成员之间的参考联动情况。
在一种独立实施的实施例中,在得到配置好的人工智能线程之后,所述方法还包括:获得信号更新行为簇;所述信号更新行为簇包括若干个种类的第一信号成员和若干个第二信号成员;将所述信号更新行为簇加载至到所述配置好的人工智能线程中,生成所述信号更新行为簇中的各个第一信号成员和各个第二信号成员之间的第二评估联动情况;结合所述第二评估联动情况和所述信号更新行为簇对应的第二标准联动情况,生成所述配置好的人工智能线程的计算准确性;在所述计算准确性超过事先设置目标值的前提下,将所述配置好的人工智能线程确定为最终的人工智能线程。
在一种独立实施的实施例中,所述信号更新行为簇包括局部范例交互信息簇和局部信号更新行为簇,所述第二评估联动情况包括校验局部联动情况和评估局部联动情况,所述结合所述第二评估联动情况和所述信号更新行为簇对应的第二标准联动情况,生成所述配置好的人工智能线程的计算准确性,包括:结合所述校验局部联动情况和所述信号更新行为簇对应的第二标准联动情况,生成所述配置好的人工智能线程的第一计算局部准确性;结合所述评估局部联动情况和所述信号更新行为簇对应的第二标准联动情况,生成所述配置好的人工智能线程的第二计算局部准确性;结合所述第一计算局部准确性和所述第二计算局部准确性,生成所述配置好的人工智能线程的计算准确性。
在一种独立实施的实施例中,在配置所述人工智能线程之前,还包括:依照事先设置倾向百分比配置所述局部范例交互信息簇、所述局部信号更新行为簇以及所述范例交互信息簇中的信息数量。
第二方面,提供一种基于混合树形算法的信号处理系统,包括互相之间通信的处理器和存储器,所述处理器用于从所述存储器中读取计算机程序并执行,以实现上述的方法。
本申请实施例所提供的基于混合树形算法的信号处理方法及系统,根据获得的互动行为信息簇中的第一信号成员和第二信号成员,实现智能对第一信号成员和第二信号成员之间是否存在目标联动情况的解析,根据解析结果,能够确定不同种类的第一信号成员和不同第二信号成员之间的目标联动情况。目标联动情况能够表示第一信号成员是否具备第二信号成员,进而,通过确定的目标联动情况,从而能够精确地确定各个第一信号成员携带有第二信号成员,对第二信号成员进行优化处理,得到信号优化处理结果,整个信息处理的过程通过人工智能完成,这样一来,能够降低人工时间,提高信号处理的效率。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本申请实施例所提供的一种基于混合树形算法的信号处理方法的流程图。
图2为本申请实施例所提供的一种基于混合树形算法的信号处理装置的框图。
图3为本申请实施例所提供的一种基于混合树形算法的信号处理系统的架构图。
具体实施方式
为了更好的理解上述技术方案,下面通过附图以及具体实施例对本申请技术方案做详细的说明,应当理解本申请实施例以及实施例中的具体特征是对本申请技术方案的详细的说明,而不是对本申请技术方案的限定,在不冲突的情况下,本申请实施例以及实施例中的技术特征可以相互组合。
请参阅图1,示出了一种基于混合树形算法的信号处理方法,该方法可以包括以下步骤100-步骤300所描述的技术方案。
步骤100,获得互动行为信息簇;所述互动行为信息簇包括不少于一种种类的第一信号成员和不少于一种第二信号成员。
步骤200,确定不同种类的第一信号成员和不同第二信号成员之间的目标联动情况;通过确定的所述目标联动情况,生成各种所述第一信号成员携带有不少于一种第二信号成员。
步骤300,对不少于一种所述第二信号成员进行优化处理,得到信号优化处理结果。
可以理解,在执行上述步骤100-步骤300所描述的技术方案时,根据获得的互动行为信息簇中的第一信号成员和第二信号成员,实现智能对第一信号成员和第二信号成员之间是否存在目标联动情况的解析,根据解析结果,能够确定不同种类的第一信号成员和不同第二信号成员之间的目标联动情况。目标联动情况能够表示第一信号成员是否具备第二信号成员,进而,通过确定的目标联动情况,从而能够精确地确定各个第一信号成员携带有第二信号成员,对第二信号成员进行优化处理,得到信号优化处理结果,整个信息处理的过程通过人工智能完成,这样一来,能够降低人工时间,提高信号处理的效率。
在一种可能实施的实施例中,所述确定不同种类的第一信号成员和不同第二信号成员之间的目标联动情况,包括:将所述互动行为信息簇加载至事先已配置完成的人工智能线程中,通过所述事先已配置完成的人工智能线程对所述互动行为信息簇进行处理,生成不同种类的第一信号成员和不同第二信号成员之间的目标联动情况。
在一种可能实施的实施例中,所述互动行为信息簇中还包括不少于一种种类的第一信号成员和不少于一种第二信号成员之间的已获得的联动情况,所述确定不同种类的第一信号成员和不同第二信号成员之间的目标联动情况,包括:基于不少于一种种类的第一信号成员、不少于一种第二信号成员以及所述已获得的联动情况,生成不同种类的第一信号成员和不同第二信号成员之间的目标联动情况。
在一种可能实施的实施例中,所述互动行为信息簇包括第一信号成员对应的第一识别单元、第二信号成员对应的第二识别单元以及第一识别单元和第二识别单元之间的匹配关系;其中,所述匹配关系表示该匹配关系的最终结果对应的第一识别单元和第二识别单元携带有已获得的联动情况。
在一种可能实施的实施例中,所述方法还包括配置人工智能线程的步骤:获得范例交互信息簇;所述范例交互信息簇包括若干个种类的第一信号成员和若干个第二信号成员;将所述范例交互信息簇加载至待配置的人工智能线程中,生成所述范例交互信息簇中的各个第一信号成员和各个第二信号成员之间的第一评估联动情况;结合所述范例交互信息簇对应的第一标准联动情况和所述第一评估联动情况,对所述待配置的人工智能线程进行配置,得到配置好的人工智能线程。
在一种可能实施的实施例中,所述范例交互信息簇还包括若干个种类的第一信号成员中的其中一部分第一信号成员和若干个第二信号成员中的其中一部分第二信号成员之间的参考联动情况。
在一种可能实施的实施例中,在得到配置好的人工智能线程之后,所述方法还包括:获得信号更新行为簇;所述信号更新行为簇包括若干个种类的第一信号成员和若干个第二信号成员;将所述信号更新行为簇加载至到所述配置好的人工智能线程中,生成所述信号更新行为簇中的各个第一信号成员和各个第二信号成员之间的第二评估联动情况;结合所述第二评估联动情况和所述信号更新行为簇对应的第二标准联动情况,生成所述配置好的人工智能线程的计算准确性;在所述计算准确性超过事先设置目标值的前提下,将所述配置好的人工智能线程确定为最终的人工智能线程。
在一种可能实施的实施例中,所述信号更新行为簇包括局部范例交互信息簇和局部信号更新行为簇,所述第二评估联动情况包括校验局部联动情况和评估局部联动情况,所述结合所述第二评估联动情况和所述信号更新行为簇对应的第二标准联动情况,生成所述配置好的人工智能线程的计算准确性,包括:结合所述校验局部联动情况和所述信号更新行为簇对应的第二标准联动情况,生成所述配置好的人工智能线程的第一计算局部准确性;结合所述评估局部联动情况和所述信号更新行为簇对应的第二标准联动情况,生成所述配置好的人工智能线程的第二计算局部准确性;结合所述第一计算局部准确性和所述第二计算局部准确性,生成所述配置好的人工智能线程的计算准确性。
在一种可能实施的实施例中,在配置所述人工智能线程之前,还包括:依照事先设置倾向百分比配置所述局部范例交互信息簇、所述局部信号更新行为簇以及所述范例交互信息簇中的信息数量。
在上述基础上,请结合参阅图2,提供了一种基于混合树形算法的信号处理装置200,应用于基于混合树形算法的信号处理系统,所述装置包括:
信息获取模块210,用于获得互动行为信息簇;所述互动行为信息簇包括不少于一种种类的第一信号成员和不少于一种第二信号成员;
成员生成模块220,用于确定不同种类的第一信号成员和不同第二信号成员之间的目标联动情况;通过确定的所述目标联动情况,生成各种所述第一信号成员携带有不少于一种第二信号成员;
结果优化模块230,用于对不少于一种所述第二信号成员进行优化处理,得到信号优化处理结果。
在上述基础上,请结合参阅图3,示出了一种基于混合树形算法的信号处理系统300,包括互相之间通信的处理器310和存储器320,所述处理器310用于从所述存储器320中读取计算机程序并执行,以实现上述的方法。
在上述基础上,还提供了一种计算机可读存储介质,其上存储的计算机程序在运行时实现上述的方法。
综上,基于上述方案,根据获得的互动行为信息簇中的第一信号成员和第二信号成员,实现智能对第一信号成员和第二信号成员之间是否存在目标联动情况的解析,根据解析结果,能够确定不同种类的第一信号成员和不同第二信号成员之间的目标联动情况。目标联动情况能够表示第一信号成员是否具备第二信号成员,进而,通过确定的目标联动情况,从而能够精确地确定各个第一信号成员携带有第二信号成员,对第二信号成员进行优化处理,得到信号优化处理结果,整个信息处理的过程通过人工智能完成,这样一来,能够降低人工时间,提高信号处理的效率。
应当理解,上述所示的系统及其模块可以利用各种方式来实现。例如,在一些实施例中,系统及其模块可以通过硬件、软件或者软件和硬件的结合来实现。其中,硬件部分可以利用专用逻辑来实现;软件部分则可以存储在存储器中,由适当的指令执行系统,例如微处理器或者专用设计硬件来执行。本领域技术人员可以理解上述的方法和系统可以使用计算机可执行指令和/或包含在处理器控制代码中来实现,例如在诸如磁盘、CD或DVD-ROM的载体介质、诸如只读存储器(固件)的可编程的存储器或者诸如光学或电子信号载体的数据载体上提供了这样的代码。本申请的系统及其模块不仅可以有诸如超大规模集成电路或门阵列、诸如逻辑芯片、晶体管等的半导体、或者诸如现场可编程门阵列、可编程逻辑设备等的可编程硬件设备的硬件电路实现,也可以用例如由各种类型的处理器所执行的软件实现,还可以由上述硬件电路和软件的结合(例如,固件)来实现。
需要说明的是,不同实施例可能产生的有益效果不同,在不同的实施例里,可能产生的有益效果可以是以上任意一种或几种的组合,也可以是其他任何可能获得的有益效果。
上文已对基本概念做了描述,显然,对于本领域技术人员来说,上述详细披露仅仅作为示例,而并不构成对本申请的限定。虽然此处并没有明确说明,本领域技术人员可能会对本申请进行各种修改、改进和修正。该类修改、改进和修正在本申请中被建议,所以该类修改、改进、修正仍属于本申请示范实施例的精神和范围。
同时,本申请使用了特定词语来描述本申请的实施例。如“一个实施例”、“一实施例”、和/或“一些实施例”意指与本申请至少一个实施例相关的某一特征、结构或特点。因此,应强调并注意的是,本说明书中在不同位置两次或多次提及的“一实施例”或“一个实施例”或“一个替代性实施例”并不一定是指同一实施例。此外,本申请的一个或多个实施例中的某些特征、结构或特点可以进行适当的组合。
此外,本领域技术人员可以理解,本申请的各方面可以通过若干具有可专利性的种类或情况进行说明和描述,包括任何新的和有用的工序、机器、产品或物质的组合,或对他们的任何新的和有用的改进。相应地,本申请的各个方面可以完全由硬件执行、可以完全由软件(包括固件、常驻软件、微码等)执行、也可以由硬件和软件组合执行。以上硬件或软件均可被称为“数据块”、“模块”、“引擎”、“单元”、“组件”或“系统”。此外,本申请的各方面可能表现为位于一个或多个计算机可读介质中的计算机产品,该产品包括计算机可读程序编码。
计算机存储介质可能包含一个内含有计算机程序编码的传播数据信号,例如在基带上或作为载波的一部分。该传播信号可能有多种表现形式,包括电磁形式、光形式等,或合适的组合形式。计算机存储介质可以是除计算机可读存储介质之外的任何计算机可读介质,该介质可以通过连接至一个指令执行系统、装置或设备以实现通讯、传播或传输供使用的程序。位于计算机存储介质上的程序编码可以通过任何合适的介质进行传播,包括无线电、电缆、光纤电缆、RF、或类似介质,或任何上述介质的组合。
本申请各部分操作所需的计算机程序编码可以用任意一种或多种程序语言编写,包括面向对象编程语言如Java、Scala、Smalltalk、Eiffel、JADE、Emerald、C++、C#、VB.NET、Python等,常规程序化编程语言如C语言、Visual Basic、Fortran 2003、Perl、COBOL 2002、PHP、ABAP,动态编程语言如Python、Ruby和Groovy,或其他编程语言等。该程序编码可以完全在用户计算机上运行、或作为独立的软件包在用户计算机上运行、或部分在用户计算机上运行部分在远程计算机运行、或完全在远程计算机或服务器上运行。在后种情况下,远程计算机可以通过任何网络形式与用户计算机连接,比如局域网(LAN)或广域网(WAN),或连接至外部计算机(例如通过因特网),或在云计算环境中,或作为服务使用如软件即服务(SaaS)。
此外,除非权利要求中明确说明,本申请所述处理元素和序列的顺序、数字字母的使用、或其他名称的使用,并非用于限定本申请流程和方法的顺序。尽管上述披露中通过各种示例讨论了一些目前认为有用的发明实施例,但应当理解的是,该类细节仅起到说明的目的,附加的权利要求并不仅限于披露的实施例,相反,权利要求旨在覆盖所有符合本申请实施例实质和范围的修正和等价组合。例如,虽然以上所描述的系统组件可以通过硬件设备实现,但是也可以只通过软件的解决方案得以实现,如在现有的服务器或移动设备上安装所描述的系统。
同理,应当注意的是,为了简化本申请披露的表述,从而帮助对一个或多个发明实施例的理解,前文对本申请实施例的描述中,有时会将多种特征归并至一个实施例、附图或对其的描述中。但是,这种披露方法并不意味着本申请对象所需要的特征比权利要求中提及的特征多。实际上,实施例的特征要少于上述披露的单个实施例的全部特征。
一些实施例中使用了描述成分、属性数量的数字,应当理解的是,此类用于实施例描述的数字,在一些示例中使用了修饰词“大约”、“近似”或“大体上”来修饰。除非另外说明,“大约”、“近似”或“大体上”表明所述数字允许有适应性的变化。相应地,在一些实施例中,说明书和权利要求中使用的数值参数均为近似值,该近似值根据个别实施例所需特点可以发生改变。在一些实施例中,数值参数应考虑规定的有效数位并采用一般位数保留的方法。尽管本申请一些实施例中用于确认其范围广度的数值域和参数为近似值,在具体实施例中,此类数值的设定在可行范围内尽可能精确。
针对本申请引用的每个专利、专利申请、专利申请公开物和其他材料,如文章、书籍、说明书、出版物、文档等,特此将其全部内容并入本申请作为参考。与本申请内容不一致或产生冲突的申请历史文件除外,对本申请权利要求最广范围有限制的文件(当前或之后附加于本申请中的)也除外。需要说明的是,如果本申请附属材料中的描述、定义、和/或术语的使用与本申请所述内容有不一致或冲突的地方,以本申请的描述、定义和/或术语的使用为准。
最后,应当理解的是,本申请中所述实施例仅用以说明本申请实施例的原则。其他的变形也可能属于本申请的范围。因此,作为示例而非限制,本申请实施例的替代配置可视为与本申请的教导一致。相应地,本申请的实施例不仅限于本申请明确介绍和描述的实施例。
以上仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。
Claims (10)
1.一种基于混合树形算法的信号处理方法,其特征在于,所述方法至少包括:
获得互动行为信息簇;所述互动行为信息簇包括不少于一种种类的第一信号成员和不少于一种第二信号成员;
确定不同种类的第一信号成员和不同第二信号成员之间的目标联动情况;通过确定的所述目标联动情况,生成各种所述第一信号成员携带有不少于一种第二信号成员;
对不少于一种所述第二信号成员进行优化处理,得到信号优化处理结果。
2.根据权利要求1所述的方法,其特征在于,所述确定不同种类的第一信号成员和不同第二信号成员之间的目标联动情况,包括:将所述互动行为信息簇加载至事先已配置完成的人工智能线程中,通过所述事先已配置完成的人工智能线程对所述互动行为信息簇进行处理,生成不同种类的第一信号成员和不同第二信号成员之间的目标联动情况。
3.根据权利要求1或2所述的方法,其特征在于,所述互动行为信息簇中还包括不少于一种种类的第一信号成员和不少于一种第二信号成员之间的已获得的联动情况,所述确定不同种类的第一信号成员和不同第二信号成员之间的目标联动情况,包括:基于不少于一种种类的第一信号成员、不少于一种第二信号成员以及所述已获得的联动情况,生成不同种类的第一信号成员和不同第二信号成员之间的目标联动情况。
4.根据权利要求3所述的方法,其特征在于,所述互动行为信息簇包括第一信号成员对应的第一识别单元、第二信号成员对应的第二识别单元以及第一识别单元和第二识别单元之间的匹配关系;其中,所述匹配关系表示该匹配关系的最终结果对应的第一识别单元和第二识别单元携带有已获得的联动情况。
5.根据权利要求2所述的方法,其特征在于,所述方法还包括配置人工智能线程的步骤:
获得范例交互信息簇;所述范例交互信息簇包括若干个种类的第一信号成员和若干个第二信号成员;
将所述范例交互信息簇加载至待配置的人工智能线程中,生成所述范例交互信息簇中的各个第一信号成员和各个第二信号成员之间的第一评估联动情况;
结合所述范例交互信息簇对应的第一标准联动情况和所述第一评估联动情况,对所述待配置的人工智能线程进行配置,得到配置好的人工智能线程。
6.根据权利要求5所述的方法,其特征在于,所述范例交互信息簇还包括若干个种类的第一信号成员中的其中一部分第一信号成员和若干个第二信号成员中的其中一部分第二信号成员之间的参考联动情况。
7.根据权利要求6所述的方法,其特征在于,在得到配置好的人工智能线程之后,所述方法还包括:
获得信号更新行为簇;所述信号更新行为簇包括若干个种类的第一信号成员和若干个第二信号成员;
将所述信号更新行为簇加载至到所述配置好的人工智能线程中,生成所述信号更新行为簇中的各个第一信号成员和各个第二信号成员之间的第二评估联动情况;
结合所述第二评估联动情况和所述信号更新行为簇对应的第二标准联动情况,生成所述配置好的人工智能线程的计算准确性;在所述计算准确性超过事先设置目标值的前提下,将所述配置好的人工智能线程确定为最终的人工智能线程。
8.根据权利要求7所述的方法,其特征在于,所述信号更新行为簇包括局部范例交互信息簇和局部信号更新行为簇,所述第二评估联动情况包括校验局部联动情况和评估局部联动情况,所述结合所述第二评估联动情况和所述信号更新行为簇对应的第二标准联动情况,生成所述配置好的人工智能线程的计算准确性,包括:结合所述校验局部联动情况和所述信号更新行为簇对应的第二标准联动情况,生成所述配置好的人工智能线程的第一计算局部准确性;结合所述评估局部联动情况和所述信号更新行为簇对应的第二标准联动情况,生成所述配置好的人工智能线程的第二计算局部准确性;结合所述第一计算局部准确性和所述第二计算局部准确性,生成所述配置好的人工智能线程的计算准确性。
9.根据权利要求8所述的方法,其特征在于,在配置所述人工智能线程之前,还包括:依照事先设置倾向百分比配置所述局部范例交互信息簇、所述局部信号更新行为簇以及所述范例交互信息簇中的信息数量。
10.一种基于混合树形算法的信号处理系统,其特征在于,包括互相之间通信的处理器和存储器,所述处理器用于从所述存储器中读取计算机程序并执行,以实现权利要求1-9任一项所述的方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210854489.3A CN115345194A (zh) | 2022-07-20 | 2022-07-20 | 基于混合树形算法的信号处理方法及系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210854489.3A CN115345194A (zh) | 2022-07-20 | 2022-07-20 | 基于混合树形算法的信号处理方法及系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115345194A true CN115345194A (zh) | 2022-11-15 |
Family
ID=83950577
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210854489.3A Pending CN115345194A (zh) | 2022-07-20 | 2022-07-20 | 基于混合树形算法的信号处理方法及系统 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115345194A (zh) |
-
2022
- 2022-07-20 CN CN202210854489.3A patent/CN115345194A/zh active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113886468A (zh) | 基于互联网的在线互动数据挖掘方法及系统 | |
CN113378554B (zh) | 一种医疗信息智能交互的方法及系统 | |
CN115481197B (zh) | 一种分布式数据处理方法、系统及云平台 | |
CN115373688B (zh) | 一种软件开发线程的优化方法、系统及云平台 | |
CN115345194A (zh) | 基于混合树形算法的信号处理方法及系统 | |
CN113947709A (zh) | 基于人工智能的图像处理方法及系统 | |
CN115512344A (zh) | 一种三维实景图像识别处理方法、系统及云平台 | |
CN113626538B (zh) | 基于大数据的医疗信息智能分类的方法及系统 | |
CN114417076A (zh) | 基于人工智能的生产线智能预警方法及系统 | |
CN113485203A (zh) | 一种智能控制网络资源共享的方法及系统 | |
CN115079882B (zh) | 基于虚拟现实的人机交互处理方法及系统 | |
CN113715794B (zh) | 基于人工智能的汽车智能刹车方法及系统 | |
CN114911850B (zh) | 一种基于虚拟现实的磁悬浮失重控制方法及系统 | |
CN115345226A (zh) | 结合云计算的能耗统计方法及系统 | |
CN113609362A (zh) | 基于5g的数据管理方法及系统 | |
CN115474094A (zh) | 一种广告播放方法、系统及云平台 | |
CN115344069A (zh) | 一种数据中心的液体冷却控制方法及系统 | |
CN115292301A (zh) | 基于人工智能的任务数据异常监测处理方法及系统 | |
CN115564048A (zh) | 一种医疗大数据共享分析方法及系统 | |
CN115455803A (zh) | 一种室内能耗信息分析方法及系统 | |
CN115345143A (zh) | 基于数据中心的能耗检测方法及系统 | |
CN115455070A (zh) | 一种电流信号的数据管控方法及系统 | |
CN114114944A (zh) | 一种智能家居智能匹配方法及系统 | |
CN115454014A (zh) | 基于自适应神经模糊的控制器性能测试方法及系统 | |
CN113610129A (zh) | 一种多源异构信息融合方法及系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |