CN115343892B - A Codable Multifunctional All-Dielectric Topological Waveguide State Switch - Google Patents
A Codable Multifunctional All-Dielectric Topological Waveguide State Switch Download PDFInfo
- Publication number
- CN115343892B CN115343892B CN202210563829.7A CN202210563829A CN115343892B CN 115343892 B CN115343892 B CN 115343892B CN 202210563829 A CN202210563829 A CN 202210563829A CN 115343892 B CN115343892 B CN 115343892B
- Authority
- CN
- China
- Prior art keywords
- waveguide transmission
- waveguide
- topological
- polarization source
- polarization
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000005540 biological transmission Effects 0.000 claims abstract description 149
- 230000010287 polarization Effects 0.000 claims abstract description 101
- 230000006870 function Effects 0.000 claims abstract description 14
- 239000004038 photonic crystal Substances 0.000 claims description 33
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 11
- 229910052710 silicon Inorganic materials 0.000 claims description 11
- 239000010703 silicon Substances 0.000 claims description 11
- 238000000034 method Methods 0.000 claims description 5
- 206010003591 Ataxia Diseases 0.000 abstract description 2
- 206010010947 Coordination abnormal Diseases 0.000 abstract description 2
- 208000016290 incoordination Diseases 0.000 abstract description 2
- 230000003287 optical effect Effects 0.000 description 15
- 238000010586 diagram Methods 0.000 description 10
- 239000006185 dispersion Substances 0.000 description 6
- 230000005684 electric field Effects 0.000 description 6
- 238000004891 communication Methods 0.000 description 5
- 238000013461 design Methods 0.000 description 4
- 239000003989 dielectric material Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000015654 memory Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/29—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
- G02F1/31—Digital deflection, i.e. optical switching
- G02F1/313—Digital deflection, i.e. optical switching in an optical waveguide structure
- G02F1/3137—Digital deflection, i.e. optical switching in an optical waveguide structure with intersecting or branching waveguides, e.g. X-switches and Y-junctions
- G02F1/3138—Digital deflection, i.e. optical switching in an optical waveguide structure with intersecting or branching waveguides, e.g. X-switches and Y-junctions the optical waveguides being made of semiconducting materials
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Integrated Circuits (AREA)
Abstract
Description
技术领域technical field
本发明涉及拓扑光子学、量子通信及集成光子光路领域,具体是一种可编码多功能全电介质拓扑螺旋单向边界态开关。The invention relates to the fields of topological photonics, quantum communication and integrated photonic optical path, in particular to a coded multifunctional all-dielectric topological spiral unidirectional boundary state switch.
背景技术Background technique
基于全电介质拓扑波导光子器件在拓扑光子学,量子通信及集成光子光路领域具有不可估量的应用前景。目前,随着6G时代的到来,对光电通信系统的要求越来越高,尤其是全光网络通信。集成光子光路不断朝着向大容量、高效率、微型化的方向发展。因此,低成本、高效率、多功能的微型光器件被不断研究和开发。Photonic devices based on all-dielectric topological waveguides have immeasurable application prospects in the fields of topological photonics, quantum communication and integrated photonic optical circuits. At present, with the advent of the 6G era, the requirements for optical communication systems are getting higher and higher, especially for all-optical network communication. The integrated photonic optical circuit is constantly developing towards the direction of large capacity, high efficiency and miniaturization. Therefore, low-cost, high-efficiency, and multi-functional micro-optical devices are continuously researched and developed.
2008年,美国MIT的Zheng Wang小组设计一种基于旋磁材料构建的单向边界波导传输模式(Reflection-Free One-Way Edge Modes in a Gyromagnetic PhotonicCrystal),并于2009年在实验室首次观察到抗背向散射的单向边界传输波导模式(Observation of Unidirectional Backscattering-Immune TopologicalElectromagnetic States)。此后,基于磁光光子晶体构建的波导光器件被不断地研发,比如光隔离器、光耦合器、波导分束器、光存储器等。然而,不足的是,磁光效应在光波段的效应较弱,且系统需外部强磁场的调控。In 2008, the Zheng Wang group of MIT in the United States designed a unidirectional boundary waveguide transmission mode (Reflection-Free One-Way Edge Modes in a Gyromagnetic Photonic Crystal) based on gyromagnetic materials, and observed the anti- Observation of Unidirectional Backscattering-Immune Topological Electromagnetic States. Since then, waveguide optical devices based on magneto-optical photonic crystals have been continuously developed, such as optical isolators, optical couplers, waveguide beam splitters, and optical memories. However, the disadvantage is that the magneto-optical effect is weak in the optical band, and the system needs to be regulated by an external strong magnetic field.
2016年,日本筑波大学的胡晓教授基于全电介质材料构建了一种拓扑光子晶体结构模型(Scheme for Achieving a Topological Photonic Crystal by UsingDielectric Material),实现了单向螺旋边界态的传播模式。随后,他们于2018年在实验室观察到受拓扑赝自旋保护的单向螺旋边界态(Visualization of a UnidirectionalElectromagnetic Waveguide Using Topological Photonic Crystals Made ofDielectric Materials)。这种受拓扑保护的赝自旋态具有鲁棒性、缺陷免疫,抗干扰等优越的传播特性,因而被广泛地应用于全电介质波导光子器件的研发和制备。In 2016, Professor Hu Xiao from the University of Tsukuba in Japan constructed a topological photonic crystal structure model (Scheme for Achieving a Topological Photonic Crystal by Using Dielectric Material) based on all-dielectric materials, which realized the propagation mode of the unidirectional helical boundary state. Subsequently, they observed a unidirectional helical boundary state protected by topological pseudospins in the laboratory in 2018 (Visualization of a Unidirectional Electromagnetic Waveguide Using Topological Photonic Crystals Made of Dielectric Materials). This topologically protected pseudo-spin state has excellent propagation characteristics such as robustness, defect immunity, and anti-interference, so it is widely used in the development and fabrication of all-dielectric waveguide photonic devices.
2018年,江苏大学理学院Xia小组构建一种可编码的拓扑绝缘体 (ProgrammableCoding Acoustic Topological Insulator),通过外部编码来控制波导传输以实现多功能的波导传输效果。东南大学崔铁军院士是我国编码超材料的著名专家,于2021年在实验上观察到可编码的三维拓扑表面态(Programmable Three-Dimensional AdvancedMaterials Based on Nanostructures as Building Blocks for Flexible Sensors)。In 2018, the Xia group of Jiangsu University School of Science constructed a programmable topological insulator (Programmable Coding Acoustic Topological Insulator), which controls waveguide transmission through external coding to achieve multifunctional waveguide transmission effects. Academician Cui Tiejun of Southeast University is a well-known expert in coding metamaterials in my country. In 2021, he experimentally observed programmable three-dimensional topological surface states (Programmable Three-Dimensional Advanced Materials Based on Nanostructures as Building Blocks for Flexible Sensors).
目前,对光子晶体结构编码以实现多功能、高效率、微型化的波导光子器件的研究方法已打破传统的单一功能的光子晶体波导光器件的设计方法。At present, the research method of encoding photonic crystal structure to realize multifunctional, high efficiency and miniaturized waveguide photonic devices has broken the traditional design method of photonic crystal waveguide photonic devices with single function.
发明内容Contents of the invention
针对传统光波导器件功能的单一化与不协调的技术问题,本发明提出一种基于全电介质构建的可编码多功能拓扑螺旋单向边界态开关,通过对手性偏振源位置及偏振方向的简单编码,实现多功能的波导传输。Aiming at the technical problems of simplification and incoordination of the functions of traditional optical waveguide devices, the present invention proposes a coded multifunctional topological helix unidirectional boundary state switch based on all-dielectric construction, through simple coding of chiral polarization source position and polarization direction , realizing multifunctional waveguide transmission.
为了达到上述目的,本发明的技术方案是这样实现的:一种可编码多功能全电介质拓扑波导态开关,其特征在于:包括非平庸拓扑区域和平庸拓扑区域;非平庸拓扑区域与平庸拓扑区域类十字交错排列形成波导传输界面I与波导传输界面II;波导传输界面I上设置偏振源I,波导传输界面II上设置偏振源III和偏振源IV,波导传输界面I和波导传输界面II之间夹角平分线上设置偏振源III和偏振源IV,波导传输界面I与波导传输界面II相交中心处设置偏振源V。In order to achieve the above object, the technical solution of the present invention is achieved as follows: a coded multifunctional all-dielectric topological waveguide state switch is characterized in that: it includes non-mediocre topological regions and mediocre topological regions; non-common topological regions and mediocre topological regions Waveguide transmission interface I and waveguide transmission interface II are formed by cross-like staggered arrangement; polarization source I is set on waveguide transmission interface I, polarization source III and polarization source IV are set on waveguide transmission interface II, between waveguide transmission interface I and waveguide transmission interface II The polarization source III and the polarization source IV are arranged on the bisector of the included angle, and the polarization source V is arranged at the intersection center of the waveguide transmission interface I and the waveguide transmission interface II.
所述波导传输界面I端点分别设有波导传输端口A、波导传输端口B,波导传输界面II端点分别设有波导传输端口C、波导传输端口D;所述非平庸拓扑区域是由类石墨烯晶格平庸光子晶体单元组成,所述非平庸拓扑区域是由类石墨烯晶格平庸光子晶体单元组成。The terminal points of the waveguide transmission interface I are respectively provided with waveguide transmission port A and waveguide transmission port B, and the terminal points of the waveguide transmission interface II are respectively provided with waveguide transmission port C and waveguide transmission port D; lattice mediocre photonic crystal units, and the non-mediocre topological region is composed of graphene-like lattice mediocre photonic crystal units.
所述拓扑类石墨烯非平庸光子晶格单元与拓扑平庸光子晶格单元均由圆柱状硅棒构成;所述圆柱状硅棒半径为0.11a、高度为a,折射率为 a为类石墨烯晶格常数1000nm;温下空气折射率为1,参数 Both the topological graphene-like non-trivial photonic lattice unit and the topological mediocre photonic lattice unit are composed of cylindrical silicon rods; the cylindrical silicon rods have a radius of 0.11a, a height of a, and a refractive index of a is the graphene-like lattice constant of 1000nm; the refractive index of air at temperature is 1, and the parameter
所述拓扑非平庸光子晶格单元是由圆柱状硅棒组成,且满足限制条件:t1>1/3a;拓扑平庸光子晶格单元是由圆柱状硅棒组成且满足限制条件:t1<1/3a,其中t1表示相邻晶格单元间最邻近的介质柱的距离。The topologically non-trivial photonic lattice unit is composed of cylindrical silicon rods and meets the constraint condition: t 1 >1/3a; the topologically mediocre photonic lattice unit is composed of cylindrical silicon rods and meets the constraint condition: t 1 < 1/3a, where t 1 represents the distance of the nearest dielectric column between adjacent lattice units.
以可编码多功能全电介质拓扑波导态开关左下角为原点,波导传输界面Ⅰ的起点坐标为(0,9.75L),终点坐标为(18.5a,9.75L);波导传输界面II的起点坐标为(7.5a,0),终点坐标为(13.5a,18L),波导传输界面I16与波导传输界面II17 之间的夹角为60°。Taking the lower left corner of the codable multifunctional all-dielectric topology waveguide switch as the origin, the starting coordinates of the waveguide transmission interface I are (0, 9.75L), and the end coordinates are (18.5a, 9.75L); the starting coordinates of the waveguide transmission interface II are (7.5a, 0), the end point coordinates are (13.5a, 18L), and the angle between the waveguide transmission interface I16 and the waveguide transmission interface II17 is 60°.
所述偏振源I、偏振源II、偏振源III、偏振源IV和偏振源V是具有圆偏振的手性源,手性源由排列成正方形的4根线偏振的天线组成。The polarization source I, polarization source II, polarization source III, polarization source IV and polarization source V are chiral sources with circular polarization, and the chiral sources are composed of four linearly polarized antennas arranged in a square.
以可编码多功能全电介质拓扑波导态开关结构示意图左下角为原点,偏振源I的坐标为(2.5a,9.75L),偏振源II的坐标为(8.5a,3L),偏振源III的坐标为(10.6 a,10.05L),偏振源IV的坐标为(10.4a,9.45L),界面交汇处偏振源V的坐标为(10.5 a,9.75L),波导传输端口A的坐标为(0,9.75L),波导传输端口B的坐标为(18.5 a,9.75L),波导传输端口C的坐标为(7.5a,0),波导传输端口D的坐标为(13.5a, 18L)。Taking the lower left corner of the schematic diagram of the coded multifunctional all-dielectric topological waveguide state switch as the origin, the coordinates of the polarization source I are (2.5a, 9.75L), the coordinates of the polarization source II are (8.5a, 3L), and the coordinates of the polarization source III is (10.6 a, 10.05L), the coordinates of the polarization source IV are (10.4a, 9.45L), the coordinates of the polarization source V at the intersection of the interface are (10.5 a, 9.75L), and the coordinates of the waveguide transmission port A are (0, 9.75L), the coordinates of waveguide transmission port B are (18.5a,9.75L), the coordinates of waveguide transmission port C are (7.5a,0), and the coordinates of waveguide transmission port D are (13.5a, 18L).
实现波导传输的方法为:所述偏振源I、偏振源II、偏振源III、偏振源IV和界面交汇处偏振源V的开设置为1,关设置为0,左旋设置为0,右旋设置为1,波导传输端口A、波导传输端口B、波导传输端口C和波导传输端口D的开设置为1,关设置为0,通过单片机数字微型电路控制每个位置光源的开与关,左旋与右旋,实现利用外部电路对光源位置和偏振方向编码,并获得波导传输端口A、波导传输端口B、波导传输端口C和波导传输端口D开关情况,实现不同功能的波导光子器件。The method of realizing waveguide transmission is: the opening of the polarization source I, the polarization source II, the polarization source III, the polarization source IV and the polarization source V at the intersection of the interface is set to 1, the off is set to 0, the left-handed setting is 0, and the right-handed setting is 1, the opening of waveguide transmission port A, waveguide transmission port B, waveguide transmission port C and waveguide transmission port D is set to 1, the off is set to 0, and the opening and closing of the light source at each position is controlled by the digital microcircuit of the single-chip microcomputer. Right-hand rotation realizes encoding the position and polarization direction of the light source by using an external circuit, and obtains the switching status of waveguide transmission port A, waveguide transmission port B, waveguide transmission port C and waveguide transmission port D, and realizes waveguide photonic devices with different functions.
本发明设计了一种类十字波导界面传输系统,找出该系统的波导传输光源特殊位置点。然后通过单片机数字微型电路编码控制光源的信息,如其中某一个点光源的开关与偏振方向,最后获得4个端口的开关情况。通过改变光源的位置及光源的偏振方向,使本发明可以实现光波导跨界面传输、波导分束和多通道传输的功能。本发明可实现了集成光路中光子器件的多功能转换,丰富了波导态开关的功能,拓宽了量子光通信的应用前景。The invention designs a kind of cross waveguide interface transmission system, and finds out the special position point of the waveguide transmission light source of the system. Then encode and control the information of the light source through the digital microcircuit of the single-chip computer, such as the switch and polarization direction of a certain point light source, and finally obtain the switch status of the four ports. By changing the position of the light source and the polarization direction of the light source, the present invention can realize the functions of optical waveguide cross-interface transmission, waveguide beam splitting and multi-channel transmission. The invention can realize the multifunctional conversion of the photonic device in the integrated optical path, enriches the function of the waveguide state switch, and broadens the application prospect of the quantum optical communication.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention or the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only These are some embodiments of the present invention. Those skilled in the art can also obtain other drawings based on these drawings without creative work.
图1为本发明实施案例提供一种二维全电介质(硅)拓扑光子晶体可编码多功能单向螺旋边界态波导开关的整体结构。FIG. 1 provides an overall structure of a two-dimensional all-dielectric (silicon) topological photonic crystal encodeable multifunctional unidirectional helical boundary state waveguide switch for an implementation case of the present invention.
图2为本发明实施案例中全电介质拓扑光子晶体三维结构及对应的拓扑光子晶体第一布里渊区能带分布。Fig. 2 shows the three-dimensional structure of the all-dielectric topological photonic crystal and the corresponding energy band distribution in the first Brillouin zone of the topological photonic crystal in the implementation case of the present invention.
图2(a)本发明三维类石墨烯拓扑光子晶体的结构示意图。Fig. 2(a) Schematic diagram of the structure of the three-dimensional graphene-like topological photonic crystal of the present invention.
图2bI为本发明当δt=-0.1时,第一布里渊区拓扑光子晶体色散能带图。Fig. 2bI is the dispersion energy band diagram of the first Brillouin zone topological photonic crystal in the present invention when δt=-0.1.
图2bII为本发明δt=0时,第一布里渊区拓扑光子晶体色散能带图。Fig. 2bII is the dispersion energy band diagram of the topological photonic crystal in the first Brillouin zone when δt=0 in the present invention.
图2bIII为本发明δt=0.1时,第一布里渊区拓扑光子晶体色散能带图。Fig. 2bIII is the dispersion band diagram of the topological photonic crystal in the first Brillouin zone when δt=0.1 in the present invention.
图3为本发明实施案例中单向螺旋边界态波导传输能带图。Fig. 3 is a transmission energy band diagram of a unidirectional helical boundary state waveguide in an embodiment of the present invention.
图4为本发明实施案例中偏振源I1和偏振源II2,频率f=0.4788c/a时,TM 模式光波传输电场分布图,其中c为真空中光速。Fig. 4 is the electric field distribution diagram of TM mode light wave transmission when the polarization source I1 and the polarization source II2 in the embodiment of the present invention have frequency f=0.4788c/a, where c is the speed of light in vacuum.
图5为本发明实施案例中偏振源III3和偏振源IV4,频率f=0.4788c/a时, TM模式光波传输电场分布图及对应的波印廷矢量。Fig. 5 is the electric field distribution diagram of the TM mode light wave transmission and the corresponding Poynting vector when the polarization source III3 and the polarization source IV4 in the embodiment of the present invention have a frequency f=0.4788c/a.
图6(a)为本发明实施案例中偏振源V5,频率f=0.4788c/a时,TM模式光波传输电场分布图及对应的波印廷矢量和波导在波导传输界面I与波导传输界面 II的传输归一化电场强度。Fig. 6(a) is the polarization source V5 in the embodiment of the present invention, when the frequency f=0.4788c/a, the TM mode light wave transmission electric field distribution diagram and the corresponding Poynting vector and the waveguide at the waveguide transmission interface I and waveguide transmission interface II The transmission normalized electric field strength.
图6(b)为本发明波导在波导传输界面I与波导传输界面II的传输归一化电场强度。Fig. 6(b) shows the transmission normalized electric field intensity of the waveguide of the present invention at the waveguide transmission interface I and the waveguide transmission interface II.
表1为本发明实施案例中偏振源I和偏振源II,频率f=0.4788c/a时,所有端口A、B、C、D的波导开关情况。Table 1 shows the waveguide switches of all ports A, B, C, and D when the frequency f=0.4788c/a for polarization source I and polarization source II in the embodiment of the present invention.
表2为本发明实施案例中偏振源III和偏振源IV,频率f=0.4788c/a时,所有端口A、B、C、D的波导开关情况。Table 2 shows the waveguide switches of all ports A, B, C, and D when the frequency f=0.4788c/a of polarization source III and polarization source IV in the embodiment of the present invention.
表3为本发明实施案例中偏振源V,频率f=0.4788c/a时,所有端口A、B、 C、D的波导开关情况。Table 3 shows the waveguide switches of all ports A, B, C, and D when the polarization source V in the embodiment of the present invention has a frequency f=0.4788c/a.
图中相应附图标记所对应的组成部分的名称为:1为偏振源I,2为偏振源 II,3为偏振源III,4为偏振源IV,5为界面相交中心处偏振源V,6为波导传输端口A,7为波导传输端口B,8为波导传输端口C,9为波导传输端口D,10 为超胞结构,11为拓扑非平庸光子晶格单元,12为拓扑平庸光子晶格单元,13 为非平庸拓扑区域,14为平庸拓扑区域,15为圆柱状硅棒,16为波导传输界面 I,17为波导传输界面II,18为界面夹角平分线。The names of the components corresponding to the corresponding reference numerals in the figure are: 1 is the polarization source I, 2 is the polarization source II, 3 is the polarization source III, 4 is the polarization source IV, 5 is the polarization source V at the interface intersection center, 6 is the waveguide transmission port A, 7 is the waveguide transmission port B, 8 is the waveguide transmission port C, 9 is the waveguide transmission port D, 10 is the supercell structure, 11 is the topological non-trivial photonic lattice unit, 12 is the topological non-trivial
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following will clearly and completely describe the technical solutions in the embodiments of the present invention with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some, not all, embodiments of the present invention. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.
如图1所示,一种可编码多功能全电介质拓扑波导态开关,包括所述圆柱状硅棒15,构成具有类石墨烯结构的拓扑非平庸光子晶体晶格单元11和拓扑平庸光子晶体晶格单元12,组成的拓扑非平庸光子晶格单元11和拓扑平庸光子晶格单元12分别构建拓扑非平庸拓扑区域13(Non-Trivial Zone,NTZ)和平庸拓扑区域14(Trivial Zone,TZ)。平庸区域和非平庸区域交错排列形成类十字波导传输界面I16和波导传输界面II17,波导拓扑开关共有四个拓扑域。在波导传输界面I16和波导传输界面II17上设置手性偏振源I1与偏振源II2,波导传输界面 I16和波导传输界面II17的夹角平分线上(60°)设置手性偏振源III3和偏振源 IV4,在波导传输界面I16和波导传输界面II17的交汇中心设置界面相交中心处偏振源Ⅴ 5。在波导传输端口A 6、波导传输端口B 7、波导传输端口C 8和波导传输端口D 9表征波导传输状态。As shown in Fig. 1, a kind of codeable multifunctional all-dielectric topological waveguide state switch comprises the
具体的,非平庸拓扑区域13与平庸拓扑区域14均由全电介质圆柱状硅棒群构建的类石墨烯拓扑非平庸光子晶体单元11与平庸光子晶体单元12所组成,圆柱状硅棒15半径为0.11a、高度为a。所述的拓扑光子晶体晶格单元中,t0表示在每个拓扑晶格单元内最邻近介质柱之间的距离,t1表示相邻晶格单元间最邻近的介质柱的距离。其中,t0=t1=1/3a为关键距离。若t1>1/3a时,称为非平庸拓扑光子晶体;若t1<1/3a时,称为平庸拓扑光子晶体。本发明用δt=(t1-t0)/t0表示在不改变类石墨烯C6v晶格条件下的形变量,δt>0称为非平庸拓扑光子晶体;δt<0称为平庸拓扑光子晶体。其中类石墨烯拓扑非平庸光子晶格单元11,δt=0.1;类石墨烯拓扑平庸光子晶格单元12,其中δt=-0.1。其中类石墨烯晶格常数a为1000nm。手性圆偏振光源是由排列成正方形的4根线偏振天线组成,其相位呈90°递增或递减。其中,LCP/RCP表示逆/顺时针圆偏振。如图1结构图所示的左下角为原点,偏振源I1的坐标为(2.5a,9.75L),偏振源II2的坐标为(8.5a,3L),偏振源III3的坐标为(10.6a,10.05L),偏振源IV4的坐标为(10.4a, 9.45L),界面相交中心处偏振源V5的坐标为(10.5a,9.75L)。波导传输界面I16 的起点坐标为(0,9.75L),终点坐标为(18.5a,9.75L);波导传输界面II17的起点坐标为(7.5a,0),终点坐标为(13.5a,18L),波导传输界面I16与波导传输界面II17之间的夹角为60°。波导传输界面I16端点设有波导传输端口A6、波导传输端口B7,波导传输界面II17端点设有波导传输端口C8、波导传输端口D 9,波导传输端口A6的坐标为(0,9.75L),波导传输端口B7的坐标为(18.5a, 9.75L),波导传输端口C8的坐标为(7.5a,0),波导传输端口D9的坐标为(13.5a, 18L)。Specifically, both the non-mediocre
如图2(a)所示,图中为全电介质拓扑光子晶体三维结构及对应的拓扑光子晶体第一布里渊区能带分布。具体的,本发明用δt=(t1-t0)/t0表示在不改变类石墨烯C6v晶格条件下的形变量。如图2bI所示,当δt=-0.1时,晶格为平庸拓扑光子晶体单元结构,在第一布里渊中计算出倒格矢动量空间的能带分布,二重简并的p能带和d能带在Γ点发生分离,“Dirac cones”消失。如图2bII所示,当δt=0时,晶格为平庸拓扑光子晶体单元结构,在第一布里渊中计算出倒格矢动量空间的能带分布,二重简并的p能带和d能带在Γ点发生简并,形成光子能带的四重简并,“Dirac cones”出现。如图2bIII所示,当δt=0.1时,晶格为非平庸拓扑光子晶体单元结构,在第一布里渊中计算出晶格动量空间的能带分布,二重简并的p能带和d能带在Γ点发生再次分离,“Dirac cones”消失,且能带发生了反转。As shown in Figure 2(a), the figure shows the three-dimensional structure of the all-dielectric topological photonic crystal and the corresponding energy band distribution in the first Brillouin zone of the topological photonic crystal. Specifically, in the present invention, δt=(t 1 -t 0 )/t 0 is used to represent the deformation amount under the condition of not changing the graphene-like C 6v lattice. As shown in Figure 2bI, when δt=-0.1, the lattice is a mediocre topological photonic crystal unit structure, the energy band distribution in the reciprocal vector momentum space is calculated in the first Brillouin, and the double degenerate p energy band and d energy bands are separated at the Γ point, and "Dirac cones" disappear. As shown in Figure 2bII, when δt=0, the lattice is a mediocre topological photonic crystal unit structure, and the energy band distribution in the reciprocal vector momentum space is calculated in the first Brillouin, the doubly degenerate p-band and The d energy band degenerates at the Γ point, forming a quadruple degeneracy of the photon energy band, and "Dirac cones" appear. As shown in Figure 2bIII, when δt=0.1, the lattice is a non-trivial topological photonic crystal unit structure, and the energy band distribution in the lattice momentum space is calculated in the first Brillouin, the doubly degenerate p-band and The d energy bands are separated again at the Γ point, the "Dirac cones" disappear, and the energy bands are reversed.
如图3所示,图中为可编码多功能全电介质拓扑波导态开关的超胞结构10 (a×9L),通过对其计算可得投影在一个晶格周期内波矢空间的能带色散曲线,通过该曲线可以看出在光子晶体带隙中出现上下两条色散曲线,且他们关于 kx=0对称。通过色散曲线可以判断拓扑边界态的群速度是单向的。As shown in Figure 3, the supercell structure 10 (a×9L) of the codable multifunctional all-dielectric topological waveguide state switch is shown in the figure, and the energy band dispersion projected in the wave vector space within a lattice period can be obtained by calculating it From this curve, it can be seen that there are two upper and lower dispersion curves in the photonic crystal band gap, and they are symmetrical about kx=0. It can be judged from the dispersion curve that the group velocity of the topological boundary state is unidirectional.
可编码多功能全电介质拓扑波导态开关通过控制不同位置偏振源的开关和偏振方向(左旋与右旋)实现光波导跨边界传输、波导分束和多通道传输的功能。具体的,如图4所示,图中为当频率f=0.4788c/a时偏振源I1,偏振源II2 单向螺旋边界态波导传输情况,根据波导态开关的对称性可得到中心对称位置坐标波导传输情况所有端口的传输情况,如表1所示。根据各端口的传输情况可以看出本发明设计实现了跨边界传输。Codable multifunctional all-dielectric topological waveguide state switch can realize the functions of optical waveguide cross-boundary transmission, waveguide beam splitting and multi-channel transmission by controlling the switching and polarization directions (left-handed and right-handed) of polarization sources at different positions. Specifically, as shown in Figure 4, when the frequency f=0.4788c/a, the polarization source I1 and polarization source II2 are shown in the unidirectional helical boundary state waveguide transmission situation, according to the symmetry of the waveguide state switch, the center symmetrical position coordinates can be obtained Waveguide transmission conditions The transmission conditions of all ports are shown in Table 1. According to the transmission situation of each port, it can be seen that the present invention realizes the cross-boundary transmission.
表1Table 1
如图5所示,图中为当频率f=0.4788c/a时在偏振源III3,偏振源IV4作用下波导态开关的单向螺旋边界态波导传输情况,根据波导态开关的对称性,可得到波导态开关中心对称位置坐标波导传输情况,所有端口的传输情况,如表2 所示。根据各端口的传输情况可以看出本发明设计实现了波导的V-型分束功能。As shown in Figure 5, the figure shows the unidirectional helical boundary state waveguide transmission situation of the waveguide state switch under the action of the polarization source III3 and the polarization source IV4 when the frequency f=0.4788c/a. According to the symmetry of the waveguide state switch, it can be The waveguide transmission conditions of the symmetrical position coordinates of the center of the waveguide state switch and the transmission conditions of all ports are shown in Table 2. According to the transmission situation of each port, it can be seen that the present invention designs and realizes the V-shaped beam splitting function of the waveguide.
表2Table 2
如图6所示,(a)中为当频率f=0.4788c/a时在界面相交中心处偏振源V5 作用下波导态开关的单向螺旋边界态波导传输情况。如表3所示,无论是对于不同的波导传输边界还是不同的手性源的偏振方向,波导传输端口A6、波导传输端口B7、波导传输端口C8和波导传输端口D9波导传输归一化的电场能量强度不变,根据端口输出情况可以看出本发明设计实现了波导的多通道传输功能。从图6(b)可以看出四个端口波导能量大致相等且不受手性源偏振方向和不同界面的影响,其中峰值仅仅表示实践中光源的位置。As shown in Fig. 6, (a) shows the unidirectional helical boundary state waveguide transmission under the action of the polarization source V5 at the interface intersection center when the frequency f = 0.4788c/a. As shown in Table 3, no matter for different waveguide transmission boundaries or different polarization directions of chiral sources, waveguide transmission port A6, waveguide transmission port B7, waveguide transmission port C8 and waveguide transmission port D9 waveguide transmission normalized electric field The energy intensity remains unchanged, and according to the port output, it can be seen that the design of the present invention realizes the multi-channel transmission function of the waveguide. It can be seen from Fig. 6(b) that the energy of the four-port waveguides is roughly equal and is not affected by the polarization direction of the chiral source and different interfaces, where the peak only indicates the position of the light source in practice.
表3table 3
可编码多功能全电介质拓扑波导态开关中将偏振源的偏振方向左旋设为0,右旋设为1,波导传输端口的开是1,关是0,通过单片机数字微型电路控制光源的左旋与右旋情况,即可实现利用外部电路对光源位置和偏振方向编码,并获得4个端口开关情况,实现不同功能的波导光子器件。如偏振源Ⅰ1所在位置的信息可以编码为,可看成01,1表示开,0表示关;左旋是0,右旋是1;端口关是0,端口开是1,波导传输端口A6、波导传输端口B7、波导传输端口C 8和波导传输端口D9依次排列。那么偏振源I1所在位置的编码控制可表示为101000,110010。每次只允许一个光源工作,其他的光源开关状态都设置“0”。通过单片机对光源进行控制,实现光波跨边界传输、波导的分束功能与波导的多通道传输功能。如图4所示,偏振源I1和偏振源II2可以实现从第一界面到第二界面的传输。如图5所示,偏振源III3和偏振IV4,可以实现V—型分束。如图6所示,偏振源V5,可实现四通道光波导传输。In the coded multifunctional all-dielectric topology waveguide state switch, the left-handed polarization direction of the polarization source is set to 0, the right-handed is set to 1, the opening of the waveguide transmission port is 1, and the closed is 0. The left-handed and right-handed polarization of the light source is controlled by a single-chip digital microcircuit In the case of right-hand rotation, the external circuit can be used to encode the position and polarization direction of the light source, and the four port switches can be obtained to realize waveguide photonic devices with different functions. For example, the information of the location of the polarization source I1 can be coded as 01, 1 means on, 0 means off; The transmission port B7, the waveguide transmission port C8 and the waveguide transmission port D9 are arranged in sequence. Then the coding control of the position of the polarization source I1 can be expressed as 101000, 110010. Only one light source is allowed to work at a time, and the switching status of other light sources is set to "0". The light source is controlled by a single-chip microcomputer to realize the cross-boundary transmission of light waves, the beam splitting function of the waveguide and the multi-channel transmission function of the waveguide. As shown in FIG. 4 , the polarization source I1 and the polarization source II2 can realize the transmission from the first interface to the second interface. As shown in Fig. 5, the polarization source III3 and the polarization IV4 can realize V-type beam splitting. As shown in Figure 6, the polarization source V5 can realize four-channel optical waveguide transmission.
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included in the scope of the present invention. within the scope of protection.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210563829.7A CN115343892B (en) | 2022-05-23 | 2022-05-23 | A Codable Multifunctional All-Dielectric Topological Waveguide State Switch |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210563829.7A CN115343892B (en) | 2022-05-23 | 2022-05-23 | A Codable Multifunctional All-Dielectric Topological Waveguide State Switch |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115343892A CN115343892A (en) | 2022-11-15 |
CN115343892B true CN115343892B (en) | 2023-04-11 |
Family
ID=83948395
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210563829.7A Active CN115343892B (en) | 2022-05-23 | 2022-05-23 | A Codable Multifunctional All-Dielectric Topological Waveguide State Switch |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115343892B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116318034B (en) * | 2023-03-22 | 2023-10-27 | 北京深谋科技有限公司 | Surface acoustic wave device with topology transport function and regulation and control method and application thereof |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6536938B2 (en) * | 2015-02-25 | 2019-07-03 | 国立研究開発法人物質・材料研究機構 | Topological photonic crystal |
CN110007398B (en) * | 2019-04-30 | 2020-11-03 | 江苏大学 | Optical waveguide for realizing photonic spin-guiding mechanism of topological boundary state in photonic crystals |
JP7318864B2 (en) * | 2019-08-22 | 2023-08-01 | 国立大学法人東京工業大学 | topological optical circuit |
CN112799259B (en) * | 2019-11-13 | 2022-03-25 | 北京大学 | An information conversion device and method between exciton valley polarization and photon topological state |
CN113552670B (en) * | 2020-04-26 | 2022-06-21 | 电子科技大学 | Mach-Zehnder interferometer protected by topology |
CN113900161B (en) * | 2021-09-09 | 2023-02-17 | 江苏大学 | Topological Photonic Crystal Structure and Optical Waveguide Based on Isosceles Triangular Dielectric Cylinder |
-
2022
- 2022-05-23 CN CN202210563829.7A patent/CN115343892B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN115343892A (en) | 2022-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9971227B2 (en) | TM optical switch based on slab photonic crystals with high degree of polarization and large extinction ratio | |
CN104614809B (en) | A kind of light polarization circulator and a kind of light polarization spinning solution | |
CN103472532B (en) | Photonic crystal all-optical tunable filter | |
CN115343892B (en) | A Codable Multifunctional All-Dielectric Topological Waveguide State Switch | |
US20170277015A1 (en) | Tm optical switch with high extinction ratio based on slab photonic crystals | |
CN113900161B (en) | Topological Photonic Crystal Structure and Optical Waveguide Based on Isosceles Triangular Dielectric Cylinder | |
CN217181269U (en) | A 2×2 Optical Waveguide Switch Based on Phase Change Materials | |
US9885939B2 (en) | TE optical switch based on slab photonic crystals with high degree of polarization and large extinction ratio | |
US9904010B2 (en) | Polarization independent optical switch with high extinction ratio based on slab photonic crystals | |
US10095082B2 (en) | TE optical switch with high extinction ratio based on slab photonic crystals | |
Liu et al. | Broadband electromagnetic wave tunneling with transmuted material singularity | |
Jin et al. | Manipulation of coupling between waveguide and ring resonator in topological photonic crystals | |
CN114660719A (en) | Photonic crystal structure with complex unit cell and optical waveguide | |
CN104536234B (en) | High-contrast photonic crystal OR, NOT, XOR logic gates | |
Zhang et al. | Robust topological valley-locked waveguide transport in photonic heterostructures | |
CN114966982B (en) | Topological optical communication resonant device capable of realizing waveguide-cavity coupling | |
CN104503186B (en) | High contrast photon crystal and logic gate | |
CN104483805B (en) | Photonic crystal memory type all-optical OR AND logic gate | |
CN114994808B (en) | Energy valley photonic crystal structure and photonic crystal waveguide structure based on liquid crystal materials | |
CN116088245A (en) | Based on phase change material Sb 2 Se 3 Is a non-volatile reconfigurable compact all-optical logic gate | |
Fang et al. | Passive topological waveguide controlled by the boundary of the patterned area of external magnetic field with the hybrid quantum Hall and valley Hall effects | |
CN103576237A (en) | Auto-collimation zero phase shift transmission method based on photonic crystals | |
CN114839719B (en) | A unidirectional large-area T-shaped waveguide beam splitter based on topological gyromagnetic photonic crystals | |
CN104360440B (en) | A kind of X-shaped cross-polarized optical bridge based on complete band-gap type photonic crystal waveguide | |
CN114815052B (en) | Photonic crystal optical router with crossed waveguide structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |