CN115326023B - Land measurement preprocessing method based on unmanned aerial vehicle image - Google Patents

Land measurement preprocessing method based on unmanned aerial vehicle image Download PDF

Info

Publication number
CN115326023B
CN115326023B CN202211256234.3A CN202211256234A CN115326023B CN 115326023 B CN115326023 B CN 115326023B CN 202211256234 A CN202211256234 A CN 202211256234A CN 115326023 B CN115326023 B CN 115326023B
Authority
CN
China
Prior art keywords
land
unmanned aerial
aerial vehicle
area
data processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211256234.3A
Other languages
Chinese (zh)
Other versions
CN115326023A (en
Inventor
黄芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanchang Surveying And Mapping Research Institute Co ltd
Original Assignee
Changchun Yingtian Network Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changchun Yingtian Network Co ltd filed Critical Changchun Yingtian Network Co ltd
Priority to CN202211256234.3A priority Critical patent/CN115326023B/en
Publication of CN115326023A publication Critical patent/CN115326023A/en
Application granted granted Critical
Publication of CN115326023B publication Critical patent/CN115326023B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C11/00Photogrammetry or videogrammetry, e.g. stereogrammetry; Photographic surveying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/28Measuring arrangements characterised by the use of optical techniques for measuring areas
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • G06T7/62Analysis of geometric attributes of area, perimeter, diameter or volume
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/32Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from a charging set comprising a non-electric prime mover rotating at constant speed
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10032Satellite or aerial image; Remote sensing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30181Earth observation
    • G06T2207/30188Vegetation; Agriculture

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Geometry (AREA)
  • Multimedia (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Image Processing (AREA)
  • Forklifts And Lifting Vehicles (AREA)

Abstract

The invention belongs to the technical field of land measurement preprocessing, and particularly relates to a land measurement preprocessing method based on an unmanned aerial vehicle image, wherein a land map shot by an unmanned aerial vehicle full-energy high-definition camera is uploaded to an unmanned aerial vehicle image data processing platform for identification, and the area calculation corresponding to the land is determined according to the identification result; in the aerial photography process of the unmanned aerial vehicle, the solar thermal panel of the unmanned aerial vehicle converts solar energy into electric energy and stores the electric energy into the storage battery of the unmanned aerial vehicle, and the storage battery of the unmanned aerial vehicle is used for supplying the unmanned aerial vehicle with normal operation; on the one hand, the land is measured by the unmanned aerial vehicle, the tool is more informationized, the land measuring efficiency is more efficient, and manual measurement is not relied on; the land condition in reality can be solved, too much land measuring time is usually saved, the measuring effect is satisfied, the battery quantity is supplied circularly, the frequent charging of taking off and landing at each time is reduced, and the land measuring efficiency is improved.

Description

Land measurement preprocessing method based on unmanned aerial vehicle image
Technical Field
The invention belongs to the technical field of land measurement preprocessing, and particularly relates to a land measurement preprocessing method based on unmanned aerial vehicle images.
Background
The land measurement problem is a problem frequently encountered among fields, and in the face of actual pain points which are large in land area, irregular in land area, steep in land and difficult to calculate in land area, the problem that in cultivation, due to untimely and incomplete acquisition of the land area, control of the land on the aspects of fertilizer utilization and the like is influenced; although the land measuring scale is introduced, the using effect is far from the standard
The ideal effect is also the defects of low efficiency, high labor cost and the like; therefore, in the face of real-world needs, a better land surveying method must be introduced.
On one hand, land measurement is simple and crude in tool, low in land measurement efficiency and more dependent on manual measurement; the land condition in reality cannot be solved, and no better informatization technology is used; not only is too much land measuring time wasted, but also the measuring effect cannot be satisfied; on the other hand, the land measurement is based on the short plate of the unmanned aerial vehicle, the battery capacity is insufficient, the charging is frequent in each take-off and landing, and the land measurement efficiency is reduced.
Disclosure of Invention
The invention is based on the technical problem, and the land measurement preprocessing method based on the unmanned aerial vehicle image is used for the land measurement preprocessing method; not only face different topography, the different land areas of measurement that involve can also measure time long, reduces unmanned aerial vehicle's descending frequency.
The invention is realized by the following steps:
the invention provides a land measurement preprocessing method based on unmanned aerial vehicle images, which applies an unmanned aerial vehicle universal high-definition camera, an unmanned aerial vehicle picture data processing platform, an unmanned aerial vehicle solar heat plate, an unmanned aerial vehicle storage battery, a remote control terminal and a land measurement data display screen; characterized in that the method comprises the steps of:
the method comprises the following steps that 1, an unmanned aerial vehicle flies to a desired height through a remote control terminal, and a land picture shot by an all-round high-definition camera of the unmanned aerial vehicle is transmitted to an unmanned aerial vehicle picture data processing platform;
and 2, step: the method comprises the following steps that a soil map picture shot by an all-round high-definition camera of the unmanned aerial vehicle is uploaded to an unmanned aerial vehicle picture data processing platform for recognition, and area calculation corresponding to land is determined according to a recognition result, wherein the operation method for determining the land area comprises the following steps:
step 2.1: the soil map picture shot by the unmanned aerial vehicle all-round high-definition camera is uploaded to an unmanned aerial vehicle picture data processing platform;
step 2.2: the unmanned aerial vehicle picture data processing platform identifies a land picture shot by an all-round high-definition camera of the unmanned aerial vehicle;
step 2.3: determining the area calculation corresponding to the land according to the recognition result;
and 3, step 3: identifying and judging the area calculation corresponding to the land, if the area calculation is of a land regular area type, extracting a corresponding processing method from the unmanned aerial vehicle picture data processing platform, further adjusting according to the processing method, and executing the step 4; if the type is the irregular area of the land, extracting a corresponding processing method from the unmanned aerial vehicle picture data processing platform, further adjusting according to the processing method, and executing the step 5; if the type is a 3D area type of the land, extracting a corresponding processing method from the unmanned aerial vehicle picture data processing platform, further adjusting according to the processing method, and executing the step 6;
and 4, step 4: calculating the area corresponding to the land as a land regular area type; recognizing 2D plane land through an unmanned aerial vehicle picture data processing platform, calculating the actual area of the land by using a conventional calculation formula in combination with a photographing scale of a picture shot by an unmanned aerial vehicle, and displaying the actual area on a land measurement data display screen;
and 5: calculating the area corresponding to the land into an irregular land area type; recognizing the 2D plane land through an unmanned aerial vehicle picture data processing platform, calculating the actual area of the land by using a definite integral or double integral formula in combination with a photographing scale for photographing pictures by an unmanned aerial vehicle, and displaying the actual area on a land measurement data display screen;
and 6: calculating the area corresponding to the land into a 3D area type of the land; identifying the 3D plane land through an unmanned aerial vehicle picture data processing platform, and dividing the identified 3D plane land into 2D plane lands by combining a photographing scale of a picture shot by an unmanned aerial vehicle; calculating the actual area of the land by using a conventional calculation formula, a definite integral and a double integral, and displaying the actual area on a land measurement data display screen;
and 7: unmanned aerial vehicle is at the in-process of taking photo by plane, and unmanned aerial vehicle solar thermal energy board is through absorbing solar energy transformation for the electric energy and saving the unmanned aerial vehicle battery, and unmanned aerial vehicle battery is in order to supply with unmanned aerial vehicle normal operating.
According to an implementation mode of the aspect of the invention, in the step 1, the unmanned aerial vehicle flies to an expected height through the remote control terminal, and the specific operation method of the land picture shot by the all-round high-definition camera of the unmanned aerial vehicle comprises the following steps:
the flying heights of the unmanned aerial vehicles are different, and the proportion and the resolution of the shot pictures are different; if the flying height of the unmanned aerial vehicle is H, the photographing scale is M, and the main distance of the aerial photography instrument is F;
according to the calculation formula: m = H/F
The unit of the flight height of the unmanned aerial vehicle is meter, and the unit of the photographing scale is centimeter.
According to an implementation mode of the aspect of the invention, the method for identifying, analyzing and operating the land picture shot by the all-round high-definition camera of the unmanned aerial vehicle by the unmanned aerial vehicle picture data processing platform in the step 2.2 comprises the following steps:
finding a position point of a target object on a live-action map, manually flying the unmanned aerial vehicle to the upper space of the target object and clicking to start shooting, recombining land photos shot by a full-energy high-definition camera of the unmanned aerial vehicle in a picture data processing platform of the unmanned aerial vehicle, and combining new pictures to judge whether the full area of the land can be completely shot or not; if the photo shows that the whole area of the land is covered, the land is in a 2D plane; if the photo does not show the full area of the covered land, the land is shown to be in a 3D plane, the unmanned aerial vehicle starts to automatically photograph around the target object, the surrounding path and the angle of the holder are displayed on a land measurement data display screen, and a prompt pops up after photographing is finished; and converting the picture file into a video file, moving the video file into a three-dimensional modeling tool, and generating a three-dimensional model.
According to one possible implementation manner of the aspect of the invention, the operation method for determining the regular area type of the land in the step 4 comprises the following steps:
the land regular area condition comprises the following steps: square, rectangular, trapezoidal, and the like; marking phi on the condition of regular area of land β Wherein β =0,1,2,. Cndot.n; n is a positive integer and represents the maximum value of the value of beta in the condition of regular area of the land; mapping to draw a two-dimensional coordinate axis according to the regular area condition of the land, wherein X is a transverse axis and Y is a longitudinal axis; converting the actual area of the land into the actual area of the land by combining a photographic scale according to a calculation formula corresponding to the area of the land; and displaying the land measurement data on a land measurement data display screen.
According to one possible mode of the aspect of the invention, the specific operation method of the irregular area type of the land in the step 5 comprises the following steps:
mapping to draw a two-dimensional coordinate axis according to the regular area condition of the land, wherein X is a transverse axis, and Y is a longitudinal axis; according to a calculation formula corresponding to the land area;
assuming that the land irregularity is defined by 2 curves consisting of y = f (x), y = g (x) (g (x) < = f (x)),
x = a, x = b;
according to the calculation formula:
S=
Figure DEST_PATH_IMAGE002AAAA
s is the sum of irregular areas of the land; the land irregular area type is mapped into a two-dimensional coordinate axis, and the 2D plane land area is calculated by using methods such as a conventional calculation method of integral determination, double integral and graph division; method for solving irregular area types of land is marked L j Wherein j =0,1,2,. Cndot,; and n is a positive integer and represents the maximum value of the values which j can take in the land irregular area type solving method.
According to one possible implementation manner of the aspect of the invention, the specific operation method of the land 3D area type in the step 6 comprises the following steps:
the land 3D area type is divided into 2D plane land, the actual area of the land is calculated by using a conventional calculation formula, a definite integral and a double integral, and the actual area is displayed on a land measurement data display screen.
According to an implementation manner of the aspect of the present invention, the specific operation method of the storage battery of the unmanned aerial vehicle for the unmanned aerial vehicle in step 8 includes:
in the aerial photography process of the unmanned aerial vehicle, the solar thermal panel of the unmanned aerial vehicle converts solar energy into electric energy by absorbing the electric energy and stores the electric energy into the storage battery of the unmanned aerial vehicle; the unmanned aerial vehicle battery consists of a plurality of unmanned aerial vehicle storage batteries, and each unmanned aerial vehicle storage battery corresponds to at least one solar heat plate; when a certain storage battery is not electrified, the storage battery of the next unmanned aerial vehicle starts to supply power, and the storage batteries are used in a analogized manner in turn; when the electric quantity of the storage battery is lower than a preset electric quantity lower limit on an unmanned aerial vehicle picture data processing platform, judging that no electric quantity exists; if only remain last battery electric quantity and satisfy the during operation on unmanned aerial vehicle, battery electric quantity is measured at the soil and is shown the screen display demonstration and remind personnel with light scintillation.
A cloud system is characterized in that a land picture shot by an all-round high-definition camera of an unmanned aerial vehicle is identified, analyzed and processed according to an unmanned aerial vehicle picture data processing platform, and the area calculation corresponding to the land is rapidly determined; and (4) preprocessing the land measurement through cloud computing and analysis.
Based on any one of the aspects, the invention has the beneficial effects that:
1. the method includes the steps that a soil map picture shot by an all-round high-definition camera of the unmanned aerial vehicle is uploaded to an unmanned aerial vehicle picture data processing platform to be recognized, and area calculation corresponding to the soil is determined according to recognition results; on the one hand, the tool is more informationized and the land measuring efficiency is more efficient based on the land measuring by the unmanned aerial vehicle, and the manual measuring is not relied on; the land condition in reality can be solved, excessive land measuring time is usually saved, and the measuring effect can be satisfied.
2. In the aerial photography process of the unmanned aerial vehicle, the solar thermal panel of the unmanned aerial vehicle converts solar energy into electric energy and stores the electric energy into the storage battery of the unmanned aerial vehicle, the storage battery of the unmanned aerial vehicle is used for normal operation of the unmanned aerial vehicle, and on the other hand, battery supply circulation is adopted based on land measurement of the unmanned aerial vehicle, so that frequent charging during each taking-off and landing is reduced, and the land measurement efficiency is improved.
Drawings
The invention is further illustrated by means of the attached drawings, but the embodiments in the drawings do not constitute any limitation to the invention, and for a person skilled in the art, without inventive effort, further drawings may be derived from the following figures.
FIG. 1 is a flow chart of the method implementation steps of the present invention.
Detailed Description
While the foregoing is directed to embodiments of the present invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.
With reference to fig. 1, a land measurement preprocessing method based on an unmanned aerial vehicle image applies an unmanned aerial vehicle all-round high definition camera, an unmanned aerial vehicle picture data processing platform, an unmanned aerial vehicle solar thermal panel, an unmanned aerial vehicle storage battery, a remote control terminal and a land measurement data display screen; characterized in that the method comprises the following steps:
the method comprises the following steps that 1, an unmanned aerial vehicle flies to a desired height through a remote control terminal, and a land picture shot by an all-round high-definition camera of the unmanned aerial vehicle is transmitted to an unmanned aerial vehicle picture data processing platform;
in a specific embodiment of the present invention, in step 1, the unmanned aerial vehicle flies to an expected height through the remote control terminal, and a specific operation method for a land picture shot by an all-round high-definition camera of the unmanned aerial vehicle includes:
the flying heights of the unmanned aerial vehicles are different, and the proportion and the resolution of the shot pictures are different; if the flying height of the unmanned aerial vehicle is H, the photographing scale is M, and the main distance of the aerial camera is F;
according to the calculation formula: m = H/F
The unit of the flight height of the unmanned aerial vehicle is meter, and the unit of the photographing scale is centimeter.
Step 2: the method comprises the following steps that a soil map picture shot by an unmanned aerial vehicle all-round high-definition camera is uploaded to an unmanned aerial vehicle picture data processing platform for recognition, and the area calculation corresponding to the land is determined according to the recognition result, wherein the operation method for determining the land area is as follows:
step 2.1: the soil map shot by the all-round high-definition camera of the unmanned aerial vehicle is uploaded to an unmanned aerial vehicle picture data processing platform;
step 2.2: the unmanned aerial vehicle picture data processing platform identifies a land picture shot by an all-round high-definition camera of the unmanned aerial vehicle;
in a specific embodiment of the present invention, the method for the unmanned aerial vehicle picture data processing platform to perform recognition analysis on the land picture shot by the unmanned aerial vehicle omnipotent high-definition camera in step 2.2 includes:
finding a position point of a target object on a live-action map, manually flying the unmanned aerial vehicle to the upper space of the target object and clicking to start shooting, recombining land photos shot by a full-energy high-definition camera of the unmanned aerial vehicle in a picture data processing platform of the unmanned aerial vehicle, and combining new pictures to judge whether the full area of the land can be completely shot or not; if the photo shows that the whole area of the land is covered, the land is in a 2D plane; if the photo does not show the full area of the covered land, the land is shown to be in a 3D plane, the unmanned aerial vehicle starts to automatically photograph around the target object, the surrounding path and the angle of the holder are displayed on a land measurement data display screen, and a prompt pops up after photographing is finished; and converting the picture file into a video file, moving the video file into a three-dimensional modeling tool, and generating a three-dimensional model.
Step 2.3: determining area calculation corresponding to the land according to the recognition result;
and 3, step 3: identifying and judging the area calculation corresponding to the land, if the area calculation is of a land regular area type, extracting a corresponding processing method from the unmanned aerial vehicle picture data processing platform, further adjusting according to the processing method, and executing the step 4; if the type is the irregular area type of the land, extracting a corresponding processing method from the unmanned aerial vehicle picture data processing platform, further adjusting according to the processing method, and executing the step 5; if the area type is a land 3D area type, extracting a corresponding processing method from the unmanned aerial vehicle picture data processing platform, further adjusting according to the processing method, and executing the step 6;
and 4, step 4: calculating the area corresponding to the land as a land regular area type; recognizing 2D plane land through an unmanned aerial vehicle picture data processing platform, calculating the actual area of the land by using a conventional calculation formula in combination with a photographing scale of a picture shot by an unmanned aerial vehicle, and displaying the actual area on a land measurement data display screen;
in a specific embodiment of the present invention, the operation method for determining the regular area type of land in step 4 includes:
the land regular area condition comprises the following steps: square, rectangular, trapezoidal, and the like; marking phi on the condition of regular area of land β Wherein β =0,1,2,. Cndot.n; n is a positive integer and represents the maximum value of the value of beta in the condition of regular area of the land; mapping to draw a two-dimensional coordinate axis according to the regular area condition of the land, wherein X is a transverse axis and Y is a longitudinal axis; converting the actual area of the land into the actual area of the land by combining a photographic scale according to a calculation formula corresponding to the area of the land; and displaying on a land measurement data display screen.
And 5: calculating the area corresponding to the land into an irregular land area type; recognizing the 2D plane land through an unmanned aerial vehicle picture data processing platform, calculating the actual area of the land by using a definite integral or double integral formula by combining a photographing scale of a picture shot by an unmanned aerial vehicle, and displaying the actual area on a land measurement data display screen;
in a specific embodiment of the present invention, the specific operation method of the irregular area type of land in the step 5 comprises:
mapping to draw a two-dimensional coordinate axis according to the regular area condition of the land, wherein X is a transverse axis, and Y is a longitudinal axis; according to a calculation formula corresponding to the land area;
assuming that the land irregularity is represented by 2 curves consisting of y = f (x), y = g (x) (g (x) < = f (x)),
x = a, x = b;
according to the calculation formula:
S=
Figure DEST_PATH_IMAGE002_5A
s is the sum of irregular areas of the land; the land irregular area type is mapped into a two-dimensional coordinate axis, and the 2D plane land area is calculated by using a conventional calculation mode of integrating, doubly integrating and dividing graphics and the like; method for solving irregular area types of land is marked L j Wherein j =0,1,2,. Cndot,; and n is a positive integer and represents the maximum value of the possible values of j in the land irregular area type solution.
Step 6: calculating the area corresponding to the land into a 3D area type of the land; identifying the 3D plane land through an unmanned aerial vehicle picture data processing platform, and dividing the identified 3D plane land into 2D plane land by combining a photographing scale of pictures shot by an unmanned aerial vehicle; calculating the actual area of the land by using a conventional calculation formula, a definite integral and a double integral, and displaying the actual area on a land measurement data display screen;
in a specific embodiment of the present invention, the specific operation method for the 3D area type of land in step 6 comprises:
the land 3D area type is divided into 2D plane land, the actual area of the land is calculated by using a conventional calculation formula, a definite integral and a double integral, and the actual area is displayed on a land measurement data display screen.
And 7: unmanned aerial vehicle is at the in-process of taking photo by plane, and unmanned aerial vehicle solar thermal energy board is through absorbing solar energy transformation for the electric energy and saving the unmanned aerial vehicle battery, and unmanned aerial vehicle battery is in order to supply with unmanned aerial vehicle normal operating.
In a specific embodiment of the present invention, the specific operation method for the storage battery of the unmanned aerial vehicle for the unmanned aerial vehicle in step 7 includes:
in the aerial photography process of the unmanned aerial vehicle, the solar thermal panel of the unmanned aerial vehicle absorbs solar energy to be converted into electric energy and stores the electric energy into the storage battery of the unmanned aerial vehicle; the unmanned aerial vehicle battery consists of a plurality of unmanned aerial vehicle storage batteries, and each unmanned aerial vehicle storage battery corresponds to at least one solar heat plate; when a certain storage battery is not powered, the storage battery of the unmanned aerial vehicle starts to supply power next to the next storage battery of the unmanned aerial vehicle, and the storage batteries are used in a analogized mode; the number of the storage battery is p1, p2, p3, p4. Pn, when the electric quantity of the storage battery is lower than the preset electric quantity lower limit on the unmanned aerial vehicle picture data processing platform, judging that no electric quantity exists; if only remain last battery power and satisfy the during operation on unmanned aerial vehicle, battery power is measured at the soil and is shown the screen display and remind personnel with light scintillation at the data show.
A cloud system is characterized in that a land picture shot by an all-round high-definition camera of an unmanned aerial vehicle is identified, analyzed and processed according to an unmanned aerial vehicle picture data processing platform, and the area calculation corresponding to the land is rapidly determined; and (4) preprocessing the land measurement through cloud computing and analysis.
The method includes the steps that a soil map picture shot by an unmanned aerial vehicle all-round high-definition camera is uploaded to an unmanned aerial vehicle picture data processing platform for recognition, and area calculation corresponding to the land is determined according to recognition results;
in the aerial photography process of the unmanned aerial vehicle, the solar thermal panel of the unmanned aerial vehicle absorbs solar energy to be converted into electric energy and stores the electric energy into the storage battery of the unmanned aerial vehicle, and the storage battery of the unmanned aerial vehicle is used for supplying the unmanned aerial vehicle with normal operation; on the one hand, the tool is more informationized and the land measuring efficiency is more efficient based on the land measuring by the unmanned aerial vehicle, and the manual measuring is not relied on; the land condition in reality can be solved, excessive land measuring time is usually saved, and the measuring effect is satisfied; on the other hand, the battery quantity is supplied circularly, the frequent charging of each take-off and landing is reduced, and the land measuring efficiency is improved.
The foregoing is merely illustrative and explanatory of the present invention and various modifications, additions or substitutions may be made to the specific embodiments described by those skilled in the art without departing from the scope of the invention as defined in the accompanying claims.

Claims (9)

1. A land measurement preprocessing method based on unmanned aerial vehicle images applies an unmanned aerial vehicle all-round high-definition camera, an unmanned aerial vehicle picture data processing platform, an unmanned aerial vehicle solar thermal panel, an unmanned aerial vehicle storage battery, a remote control terminal and a land measurement data display screen; characterized in that the method comprises the following steps:
the method comprises the following steps that 1, an unmanned aerial vehicle flies to a desired height through a remote control terminal, and a land picture shot by an all-round high-definition camera of the unmanned aerial vehicle is transmitted to an unmanned aerial vehicle picture data processing platform;
and 2, step: the method comprises the following steps that a soil map picture shot by an unmanned aerial vehicle all-round high-definition camera is uploaded to an unmanned aerial vehicle picture data processing platform for recognition, and the area calculation corresponding to the land is determined according to the recognition result, wherein the operation method for determining the land area is as follows:
step 2.1: the soil map shot by the all-round high-definition camera of the unmanned aerial vehicle is uploaded to an unmanned aerial vehicle picture data processing platform;
step 2.2: the unmanned aerial vehicle picture data processing platform identifies a land picture shot by an unmanned aerial vehicle all-round high-definition camera;
step 2.3: determining the area calculation corresponding to the land according to the recognition result;
and 3, step 3: identifying and judging the area calculation corresponding to the land, if the area calculation is of a land regular area type, extracting a corresponding processing method from the unmanned aerial vehicle picture data processing platform, further adjusting according to the processing method, and executing the step 4; if the type is the irregular area type of the land, extracting a corresponding processing method from the unmanned aerial vehicle picture data processing platform, further adjusting according to the processing method, and executing the step 5; if the area type is a land 3D area type, extracting a corresponding processing method from the unmanned aerial vehicle picture data processing platform, further adjusting according to the processing method, and executing the step 6;
and 4, step 4: calculating the area corresponding to the land as a land regular area type; recognizing 2D plane land through an unmanned aerial vehicle picture data processing platform, calculating the actual area of the land by using a conventional calculation formula in combination with a photographing scale of a picture shot by an unmanned aerial vehicle, and displaying the actual area on a land measurement data display screen;
and 5: calculating the area corresponding to the land into an irregular land area type; recognizing the 2D plane land through an unmanned aerial vehicle picture data processing platform, calculating the actual area of the land by using a definite integral or double integral formula by combining a photographing scale of a picture shot by an unmanned aerial vehicle, and displaying the actual area on a land measurement data display screen;
step 6: calculating the area corresponding to the land into a 3D area type of the land; identifying the 3D plane land through an unmanned aerial vehicle picture data processing platform, and dividing the identified 3D plane land into 2D plane land by combining a photographing scale of pictures shot by an unmanned aerial vehicle; calculating the actual area of the land by using a conventional calculation formula, a definite integral and a double integral, and displaying the actual area on a land measurement data display screen;
and 7: unmanned aerial vehicle is at the in-process of taking photo by plane, and unmanned aerial vehicle solar thermal energy board is through absorbing solar energy transformation for the electric energy and saving the unmanned aerial vehicle battery, and unmanned aerial vehicle battery is in order to supply with unmanned aerial vehicle normal operating.
2. The method for pre-processing land measurement based on unmanned aerial vehicle image as claimed in claim 1, wherein: in the step 1, the unmanned aerial vehicle flies to an expected height through the remote control terminal, and the specific operation method of the land picture shot by the unmanned aerial vehicle all-round high-definition camera comprises the following steps:
the unmanned aerial vehicles have different flying heights, and the proportion and the resolution of the shot pictures are different; if the flying height of the unmanned aerial vehicle is H, the photographing scale is M, and the main distance of the aerial camera is F;
according to the calculation formula: m = H/F
The flying height unit of the unmanned aerial vehicle is meter, and the shooting scale unit is centimeter.
3. The method for pre-processing land measurement based on unmanned aerial vehicle image as claimed in claim 1, wherein: the method for identifying and analyzing the land picture shot by the unmanned aerial vehicle all-round high-definition camera by the unmanned aerial vehicle picture data processing platform in the step 2.2 comprises the following steps:
finding a position point of a target object on a live-action map, manually flying the unmanned aerial vehicle to the upper space of the target object and clicking to start shooting, recombining land photos shot by a full-energy high-definition camera of the unmanned aerial vehicle in a picture data processing platform of the unmanned aerial vehicle, and combining new pictures to judge whether the full area of the land can be completely shot or not; if the photo shows that the whole area of the land is covered, the land is in a 2D plane; if the photo does not show the whole area of the covered land, the land is in a 3D plane, the unmanned aerial vehicle starts to automatically photograph around the target object, the surrounding path and the holder angle are displayed on a land measurement data display screen, and a prompt pops up after the photographing is finished; and converting the picture file into a video file, moving the video file into a three-dimensional modeling tool, and generating a three-dimensional model.
4. The method of claim 1, wherein the land measurement preprocessing method based on the unmanned aerial vehicle image comprises the following steps: the operation method for determining the land regular area type in the step 4 comprises the following steps:
the land regular area condition comprises the following steps: square, rectangular, trapezoidal, and the like; marking phi on the condition of regular area of land β Wherein β =0,1,2,. Cndot.n; n is a positive integer and represents the maximum value of the value of beta in the condition of regular area of the land; mapping to draw a two-dimensional coordinate axis according to the regular area condition of the land, wherein X is a transverse axis, and Y is a longitudinal axis; converting the actual area of the land into the actual area of the land by combining a photographic scale according to a calculation formula corresponding to the area of the land; and displaying on a land measurement data display screen.
5. The method of claim 1, wherein the land measurement preprocessing method based on the unmanned aerial vehicle image comprises the following steps: the specific operation method of the irregular area type of the land in the step 5 comprises the following steps:
mapping to draw a two-dimensional coordinate axis according to the regular area condition of the land, wherein X is a transverse axis, and Y is a longitudinal axis; according to a calculation formula corresponding to the land area;
assuming that the land irregularity is represented by 2 curves consisting of y = f (x), y = g (x) (g (x) < = f (x)),
x = a, x = b;
according to the calculation formula:
S=
Figure DEST_PATH_IMAGE002
s is the sum of irregular areas of the land; the land irregular area type is mapped into a two-dimensional coordinate axis, and the 2D plane land area is calculated by using a conventional calculation mode of integrating, doubly integrating and dividing graphics and the like; method for solving irregular area type of land is marked L j Wherein j =0,1,2, ·, n; and n is a positive integer and represents the maximum value of the values which j can take in the land irregular area type solving method.
6. The method of claim 1, wherein the land measurement preprocessing method based on the unmanned aerial vehicle image comprises the following steps: the specific operation method for the land 3D area type in the step 6 comprises the following steps:
the land 3D area type is divided into 2D plane land, the actual area of the land is calculated by using a conventional calculation formula, a definite integral and a double integral, and the actual area is displayed on a land measurement data display screen.
7. The method for pre-processing land measurement based on unmanned aerial vehicle image as claimed in claim 1, wherein: the specific operation method of the unmanned aerial vehicle storage battery for the unmanned aerial vehicle in the step 8 comprises the following steps:
in the aerial photography process of the unmanned aerial vehicle, the solar thermal panel of the unmanned aerial vehicle absorbs solar energy to be converted into electric energy and stores the electric energy into the storage battery of the unmanned aerial vehicle; the unmanned aerial vehicle battery consists of a plurality of unmanned aerial vehicle storage batteries, and each unmanned aerial vehicle storage battery corresponds to at least one solar heat plate; when a certain storage battery is not electrified, the storage battery of the next unmanned aerial vehicle starts to supply power, and the storage batteries are used in a analogized manner in turn; the number of the storage battery is p1, p2, p3, p4. Pn, when the electric quantity of the storage battery is lower than the preset electric quantity lower limit on the unmanned aerial vehicle picture data processing platform, judging that no electric quantity exists; if only remain last battery power and satisfy the during operation on unmanned aerial vehicle, battery power is measured at the soil and is shown the screen display and remind personnel with light scintillation at the data show.
8. A cloud system, characterized in that: identifying, analyzing and processing a land picture shot by an all-round high-definition camera of the unmanned aerial vehicle according to the unmanned aerial vehicle picture data processing platform, and quickly determining area calculation corresponding to land; pre-processing the land measurement through cloud computing and analysis to execute a method for pre-processing the land measurement based on the unmanned aerial vehicle image as claimed in any one of the above claims 1-7.
9. A cloud system, characterized in that: the method for preprocessing the land measurement by means of the cloud computing and analyzing service program under the network comprises the method for preprocessing the land measurement based on the unmanned aerial vehicle image as claimed in any one of the claims 1 to 7.
CN202211256234.3A 2022-10-14 2022-10-14 Land measurement preprocessing method based on unmanned aerial vehicle image Active CN115326023B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211256234.3A CN115326023B (en) 2022-10-14 2022-10-14 Land measurement preprocessing method based on unmanned aerial vehicle image

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211256234.3A CN115326023B (en) 2022-10-14 2022-10-14 Land measurement preprocessing method based on unmanned aerial vehicle image

Publications (2)

Publication Number Publication Date
CN115326023A CN115326023A (en) 2022-11-11
CN115326023B true CN115326023B (en) 2023-01-13

Family

ID=83913537

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211256234.3A Active CN115326023B (en) 2022-10-14 2022-10-14 Land measurement preprocessing method based on unmanned aerial vehicle image

Country Status (1)

Country Link
CN (1) CN115326023B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107504957A (en) * 2017-07-12 2017-12-22 天津大学 The method that three-dimensional terrain model structure is quickly carried out using unmanned plane multi-visual angle filming
CN114659499A (en) * 2022-04-20 2022-06-24 重庆尚优科技有限公司 Smart city 3D map model photography establishment method based on unmanned aerial vehicle technology

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015079412A (en) * 2013-10-18 2015-04-23 三井住友建設株式会社 Method for calculating land area by use and device for calculating land area by use
CN105698742B (en) * 2016-02-29 2018-12-21 北方民族大学 A kind of quick land area measuring device and measurement method based on unmanned plane
CN107844802A (en) * 2017-10-19 2018-03-27 中国电建集团成都勘测设计研究院有限公司 Water and soil conservation value method based on unmanned plane low-altitude remote sensing and object oriented classification
CN109859057A (en) * 2019-01-04 2019-06-07 平安科技(深圳)有限公司 A kind of farm field data processing method, server and storage medium
CN112113542A (en) * 2020-09-14 2020-12-22 浙江省自然资源征收中心 Method for checking and accepting land special data for aerial photography construction of unmanned aerial vehicle
CN112179294A (en) * 2020-09-21 2021-01-05 杭州星网测绘技术有限公司 Land proofreading method, device and system
CN214224021U (en) * 2020-12-15 2021-09-17 山西原点地理信息技术有限公司 Be used for urban and rural area for land planning design area measurement appearance
CN112857267B (en) * 2021-01-09 2022-11-01 湖南省城乡建设勘测院 Land area measurement system based on unmanned aerial vehicle
CN113776495A (en) * 2021-09-18 2021-12-10 辽宁工程技术大学 Real-time collection and processing method for land surveying and mapping operation data
CN113914281B (en) * 2021-11-29 2023-03-28 无锡市勘察设计研究院有限公司 Soft soil geological exploration method
CN114493333A (en) * 2022-02-14 2022-05-13 湖北铭思远工程咨询有限公司 Real-time collection and processing method for land surveying and mapping operation data

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107504957A (en) * 2017-07-12 2017-12-22 天津大学 The method that three-dimensional terrain model structure is quickly carried out using unmanned plane multi-visual angle filming
CN114659499A (en) * 2022-04-20 2022-06-24 重庆尚优科技有限公司 Smart city 3D map model photography establishment method based on unmanned aerial vehicle technology

Also Published As

Publication number Publication date
CN115326023A (en) 2022-11-11

Similar Documents

Publication Publication Date Title
CN107504957B (en) Method for rapidly constructing three-dimensional terrain model by using unmanned aerial vehicle multi-view camera shooting
US20190197311A1 (en) Evaluation Method of Solar Energy Utilization Potential in Urban High-density Areas Based on Low-altitude Photogrammetry
CN111091613A (en) Three-dimensional live-action modeling method based on unmanned aerial vehicle aerial survey
CN109410256B (en) Automatic high-precision point cloud and image registration method based on mutual information
CN100390565C (en) Method for measuring forest by unmanned aerial vehicle aerial photography remote sensing
WO2020192355A1 (en) Method and system for measuring urban mountain viewing visible range
US20160249041A1 (en) Method for 3d scene structure modeling and camera registration from single image
CN109685886A (en) A kind of distribution three-dimensional scenic modeling method based on mixed reality technology
CN104330074A (en) Intelligent surveying and mapping platform and realizing method thereof
CN101226057A (en) Digital close range photogrammetry method
CN109708622A (en) The method that three-dimensional modeling is carried out to building using unmanned plane based on Pixhawk
CN110428501B (en) Panoramic image generation method and device, electronic equipment and readable storage medium
CN110806199A (en) Terrain measurement method and system based on laser demarcation device and unmanned aerial vehicle
CN111189433A (en) Karst peak forest landform parameter measuring method based on unmanned aerial vehicle aerial photography
CN109612445B (en) High-precision terrain establishing method under WebGIS platform based on unmanned aerial vehicle
CN109063638A (en) Method, system and medium based on oblique photograph prediction waste yield
CN113776504B (en) High-precision photographing and quality control method for water engineering unmanned aerial vehicle with complex structure
CN104318566B (en) Can return to the new multi-view images plumb line path matching method of multiple height values
CN110189395B (en) Method for realizing dynamic analysis and quantitative design of landscape elevation based on human visual angle oblique photography
Zhou et al. Application of UAV oblique photography in real scene 3d modeling
CN115326023B (en) Land measurement preprocessing method based on unmanned aerial vehicle image
CN108050995A (en) It is a kind of based on the oblique photograph of DEM without photo control point Hang Shece areas merging method
CN108303070A (en) A kind of method and system of high-precision three-dimensional mapping
CN112504236A (en) Unmanned aerial vehicle aerial photography power distribution network area surveying and mapping method
CN112150630A (en) Method for solving industrial park high-precision modeling by using fixed-wing and multi-rotor unmanned aerial vehicle

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230625

Address after: 330000 no.599 Chunhui Road, Honggutan New District, Nanchang City, Jiangxi Province

Patentee after: Nanchang Surveying and Mapping Research Institute Co.,Ltd.

Address before: Gate 1617, 13/F, Block C, Yindu Building, No. 126 Xinfa Road, Nanguan District, Changchun City, 130000 Jilin Province

Patentee before: Changchun Yingtian Network Co.,Ltd.