CN115310550A - Method and system for calculating concentration of atmospheric carbon dioxide dry air column - Google Patents

Method and system for calculating concentration of atmospheric carbon dioxide dry air column Download PDF

Info

Publication number
CN115310550A
CN115310550A CN202210980540.5A CN202210980540A CN115310550A CN 115310550 A CN115310550 A CN 115310550A CN 202210980540 A CN202210980540 A CN 202210980540A CN 115310550 A CN115310550 A CN 115310550A
Authority
CN
China
Prior art keywords
data
xco
environmental
covariate
fusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210980540.5A
Other languages
Chinese (zh)
Other versions
CN115310550B (en
Inventor
陈玉敏
魏阳
常政威
张凌浩
徐厚东
唐伟
刘洪利
沈军
刘雪原
赵瑞祥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Research Institute of State Grid Sichuan Electric Power Co Ltd
Original Assignee
Electric Power Research Institute of State Grid Sichuan Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Research Institute of State Grid Sichuan Electric Power Co Ltd filed Critical Electric Power Research Institute of State Grid Sichuan Electric Power Co Ltd
Priority to CN202210980540.5A priority Critical patent/CN115310550B/en
Publication of CN115310550A publication Critical patent/CN115310550A/en
Application granted granted Critical
Publication of CN115310550B publication Critical patent/CN115310550B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Data Mining & Analysis (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Computational Mathematics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Algebra (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)

Abstract

本发明提出一种大气二氧化碳干空气柱浓度计算方法及系统,涉及大气二氧化碳(CO2)监测技术领域。具体步骤如下,收集研究区域内三个遥感监测的XCO2数据集和环境协变量数据,并进行网格化及时空匹配等预处理;利用环境协变量,对这三个XCO2数据集进行融合,得到XCO2融合数据;将XCO2融合数据作为因变量,环境协变量作为自变量,建立基于XGBoost算法的机器学习模型;将环境协变量数据输入到XGBoost模型中,计算得到XCO2的全面域时空分布重构数据集。本发明融合三个遥感监测的XCO2数据集,并利用机器学习模型重构XCO2的全面域时空分布,为“双碳行动”的碳核算提供支撑。

Figure 202210980540

The invention provides a method and a system for calculating the dry air column concentration of atmospheric carbon dioxide, and relates to the technical field of atmospheric carbon dioxide (CO 2 ) monitoring. The specific steps are as follows: collect XCO 2 datasets and environmental covariate data from three remote sensing monitoring in the study area, and perform preprocessing such as gridding and space-time matching; use environmental covariates to fuse the three XCO 2 datasets , obtain the XCO 2 fusion data; take the XCO 2 fusion data as the dependent variable and the environmental covariates as the independent variables, establish a machine learning model based on the XGBoost algorithm; input the environmental covariate data into the XGBoost model, and calculate the comprehensive domain of XCO 2 The spatiotemporal distribution reconstructs the dataset. The present invention fuses three XCO 2 data sets monitored by remote sensing, and uses a machine learning model to reconstruct the full-domain temporal and spatial distribution of XCO 2 to provide support for the carbon accounting of the "Double Carbon Action".

Figure 202210980540

Description

一种大气二氧化碳干空气柱浓度计算方法及系统A method and system for calculating the concentration of atmospheric carbon dioxide dry air column

技术领域technical field

本发明涉及大气二氧化碳干空气柱浓度(XCO2)监测技术领域,具体而言,涉及一种大气二氧化碳干空气柱浓度计算方法及系统。The invention relates to the technical field of monitoring atmospheric carbon dioxide dry air column concentration (XCO 2 ), in particular to a calculation method and system for atmospheric carbon dioxide dry air column concentration.

背景技术Background technique

利用搭载在卫星或空间站上的传感器进行遥感监测,是获取XCO2时空分布的重要手段,主要包括卫星轨道碳观测2号(OCO-2),温室气体观测卫星(GOSAT),以及搭载在国际空间站上的传感器轨道碳观测3号(OCO-3)。OCO-2和OCO-3的传感器几乎完全一样,都搭载了三个高分辨率的光谱仪,分别测量位于0.76、1.61、2.06微米附近的反射太阳光光谱。GOSAT除了搭载对位于0.76,1.61和2.06微米的反射太阳光谱进行测量的光谱仪,还对5.56-14.3微米波段的反射太阳光光谱进行测量。The use of sensors mounted on satellites or space stations for remote sensing monitoring is an important means of obtaining the temporal and spatial distribution of XCO 2 , mainly including Orbital Carbon Observation 2 (OCO-2), the Greenhouse Gas Observation Satellite (GOSAT), and satellites mounted on the International Space Station Sensors on Orbiting Carbon Observatory 3 (OCO-3). The sensors of OCO-2 and OCO-3 are almost identical. Both are equipped with three high-resolution spectrometers, which measure the reflected sunlight spectra near 0.76, 1.61, and 2.06 microns respectively. GOSAT is equipped with a spectrometer that measures the reflected solar spectrum at 0.76, 1.61 and 2.06 microns, and also measures the reflected solar spectrum in the 5.56-14.3 micron band.

卫星监测的XCO2在空间上相对稀疏,而使用模型模拟的方法可以对缺失部分进行填补。当前重构全面域XCO2的方法有Carbon Tracker模型模拟,利用地面、飞艇以及卫星等监测的CO2浓度,对自下而上估算的大气CO2浓度就行矫正。然而,由于计算机算力的限制,模拟所得的XCO2数据分辨率低,在全球尺度上通常只有3°×2°。同时,该方法依赖于碳排放清单,然而排放清单数据的统计、收集和修正需要较长时间,故导致当前XCO2模型模拟的时空分布计算存在一定的滞后。XCO 2 monitored by satellites is relatively sparse in space, and the method of using model simulation can fill in the missing part. The current method of reconstructing XCO 2 in the whole area is the Carbon Tracker model simulation, which uses the CO 2 concentration monitored by the ground, airships, and satellites to correct the bottom-up estimated atmospheric CO 2 concentration. However, due to the limitation of computer computing power, the resolution of the simulated XCO 2 data is low, usually only 3°×2° on the global scale. At the same time, this method relies on the carbon emission inventory. However, the statistics, collection and correction of the emission inventory data take a long time, so there is a certain lag in the calculation of the temporal and spatial distribution of the current XCO2 model simulation.

近年来,已有研究使用统计方法结合卫星监测XCO2数据重构XCO2时空分布,但是由于XCO2的卫星监测数据在空间上的分布相对稀疏,使用克里金插值法得到的XCO2的准确性相对较低。根据以往研究,机器学习重构的大气污染物时空分布,相比于克里金插值,往往具有更高的准确性。利用大气污染物与气象、海拔、土地利用类型等环境协变量之间的关联性,通过机器学习建模,重构大气污染物的全面域时空分布。同时,机器学习方法常被用于同源数据的融合应用,能很好地弥补单一数据源的局限性。In recent years, studies have used statistical methods combined with satellite monitoring XCO 2 data to reconstruct the spatial and temporal distribution of XCO 2 . However, due to the relatively sparse distribution of XCO 2 satellite monitoring data in space, the accurate Relatively low. According to previous studies, the temporal and spatial distribution of atmospheric pollutants reconstructed by machine learning is often more accurate than kriging interpolation. Using the correlation between air pollutants and environmental covariates such as meteorology, altitude, and land use type, the comprehensive spatial and temporal distribution of air pollutants is reconstructed through machine learning modeling. At the same time, machine learning methods are often used for fusion applications of homogeneous data, which can well make up for the limitations of a single data source.

本发明将机器学习方法应用于多个遥感监测XCO2数据集的融合,并重构XCO2的全面域时空分布,克服XCO2监测存在大量缺失数据的问题。The invention applies the machine learning method to the fusion of multiple remote sensing monitoring XCO 2 data sets, and reconstructs the overall domain spatio-temporal distribution of XCO 2 to overcome the problem of a large number of missing data in XCO 2 monitoring.

发明内容Contents of the invention

本发明的目的在于提供一种大气二氧化碳干空气柱浓度计算方法及系统,用以克服现有技术中XCO2监测存在大量缺失数据的问题。The purpose of the present invention is to provide a method and system for calculating atmospheric carbon dioxide dry air column concentration to overcome the problem of a large number of missing data in XCO2 monitoring in the prior art.

第一方面,本申请实施例提供一种大气二氧化碳干空气柱浓度计算方法,包括以下步骤:In a first aspect, an embodiment of the present application provides a method for calculating the concentration of an atmospheric carbon dioxide dry air column, comprising the following steps:

收集研究区域内三个遥感监测的XCO2数据集和环境协变量数据,并对上述数据集进行预处理;Collect XCO2 data sets and environmental covariate data from three remote sensing monitoring in the study area, and preprocess the above data sets;

对三个遥感监测的XCO2数据集进行融合,得到XCO2融合数据;Fusion of three XCO 2 data sets monitored by remote sensing to obtain XCO 2 fusion data;

利用XCO2融合数据和环境协变量数据,训练得到XGBoost模型;Use XCO 2 fusion data and environmental covariate data to train the XGBoost model;

将环境协变量数据输入到XGBoost模型中,计算得到XCO2的全面域时空分布重构数据集。The environmental covariate data was input into the XGBoost model, and the comprehensive spatial-temporal distribution reconstruction dataset of XCO 2 was calculated.

上述实现过程中,通过收集研究区域内三个遥感监测的XCO2数据集和环境协变量数据,并进行网格化和时空匹配等预处理;对三个遥感监测的XCO2数据集进行融合,得到XCO2融合数据;使用XCO2融合数据和环境协变量数据,训练得到XGBoost模型;将环境协变量数据输入到XGBoost模型中,计算得到XCO2的全面域时空分布重构数据集。本发明对三个遥感监测的XCO2数据进行融合,同时利用XCO2与气象、海拔、土地利用类型、道路密度、植被归一化指数等环境协变量之间的关联性,通过机器学习建模,计算得到XCO2的全面域时空分布重构数据集,克服XCO2监测存在大量缺失数据的问题。In the above implementation process, by collecting the XCO 2 data sets and environmental covariate data of the three remote sensing monitoring in the study area, and performing preprocessing such as gridding and spatio-temporal matching ; Obtain the XCO 2 fusion data; use the XCO 2 fusion data and environmental covariate data to train the XGBoost model; input the environmental covariate data into the XGBoost model, and calculate the comprehensive spatial and temporal distribution reconstruction data set of XCO 2 . The invention fuses the XCO 2 data of three remote sensing monitoring, and utilizes the correlation between XCO 2 and environmental covariates such as meteorology, altitude, land use type, road density, vegetation normalized index, etc., and models through machine learning , to calculate the comprehensive spatial-temporal distribution reconstruction data set of XCO 2 to overcome the problem of a large number of missing data in XCO 2 monitoring.

基于第一方面,在本发明的一些实施例中,对三个遥感监测的XCO2数据集进行数据融合,得到XCO2融合数据的步骤如下:Based on the first aspect, in some embodiments of the present invention, data fusion is performed on three XCO2 data sets monitored by remote sensing, and the steps of obtaining XCO2 fusion data are as follows:

输入:enter:

OCO-2的XCO2监测数据A={a1,...,aj,...,aJ};OCO-2 XCO 2 monitoring data A={a 1 ,...,a j ,...,a J };

OCO-3的XCO2监测数据B={b1,...,bj,...,bJ};OCO-3 XCO 2 monitoring data B={b 1 ,...,b j ,...,b J };

GOSAT的XCO2监测数据C={c1,…,cj,…,cJ};GOSAT XCO 2 monitoring data C={c 1 ,…,c j ,…,c J };

环境协变量数据集D={d1,...,dj,...,dJ};Environmental covariate data set D = {d 1 ,...,d j ,...,d J };

注:其中dj表示所有环境协变量在j处的取值集合,而不是第j个环境协变量。dj和aj、bj以及cj在时空上是互相对应的,即是三个传感器在同一天、同一个网格的观测值。由于OCO-2、OCO-3和GOSAT数据存在不同程度的缺失,所以aj、bj以及cj都有可能存在缺失值,但是不会同时缺失。Note: where d j represents the value set of all environmental covariates at j, not the jth environmental covariate. d j and a j , b j and c j correspond to each other in time and space, that is, the observation values of the three sensors on the same day and the same grid. Since OCO-2, OCO-3 and GOSAT data are missing to varying degrees, there may be missing values in a j , b j and c j , but not at the same time.

输出:融合数据集E={e1,...,ej,...,eJ};Output: fusion data set E={e 1 ,...,e j ,...,e J };

方法:method:

①融合A和B为O:① Merge A and B into O:

其中O={o1,...,oj,...,oJ},oj=f1(aj,bj),其中aj,bj至少有一个为非空;Where O={o 1 ,...,o j ,...,o J }, o j =f 1 (a j , b j ), where at least one of a j and b j is non-empty;

f1是融合函数:f1 is the fusion function :

Figure BDA0003800256040000041
Figure BDA0003800256040000041

②对GOSAT数据集C进行线性转化:② Linear transformation of GOSAT dataset C:

S={j|Oj非空且Cj非空};S={j|O j is not empty and C j is not empty};

M={cs|s∈S},N={os|s∈S};M={c s |s∈S}, N={o s |s∈S};

建立线性模型f3:N←M;Establish a linear model f 3 : N←M;

基于f3转化cjTransform c j based on f 3 :

j从1到J:j from 1 to J:

当cj非空且

Figure BDA0003800256040000042
when c j is not empty and
Figure BDA0003800256040000042

c′j=f3(cj);c′ j = f 3 (c j );

转化后的数据集为C′={c′1,...,c′j,...,c′J};The transformed data set is C′={c′ 1 ,...,c′ j ,...,c′ J };

③取数据集O和数据集C′的并集,得到最终的XCO2融合数据集E。③ Take the union of data set O and data set C′ to get the final XCO 2 fusion data set E.

基于第一方面,在本发明的一些实施例中使用XCO2融合数据和环境协变量数据建立XGBoost模型的步骤如下:Based on the first aspect, in some embodiments of the present invention, the steps of using XCO fusion data and environmental covariate data to establish an XGBoost model are as follows:

将XCO2融合数据作为因变量,环境协变量作为自变量,训练得到XGBoost模型。Taking the XCO 2 fusion data as the dependent variable and the environmental covariate as the independent variable, the XGBoost model was trained.

基于第一方面,在本发明的一些实施例中,对研究区域的环境协变量数据进行预处理,包括以下步骤:Based on the first aspect, in some embodiments of the present invention, preprocessing the environmental covariate data of the research area includes the following steps:

对研究区域进行空间划分,得到1km分辨率的空间网格;Spatial division of the research area to obtain a spatial grid with a resolution of 1 km;

对环境协变量数据采用空间重采样等方法,赋值到预定义的网格中;Use spatial resampling and other methods to assign environmental covariate data to a predefined grid;

第二方面,本申请实施例提供一种大气二氧化碳干空气柱浓度计算系统,包括:In a second aspect, an embodiment of the present application provides a system for calculating the concentration of an atmospheric carbon dioxide dry air column, including:

数据获取模块,用于收集研究区域内三个遥感监测的XCO2数据集和环境协变量数据;Data acquisition module for collecting XCO2 datasets and environmental covariate data from three remote sensing monitoring in the study area;

数据预处理模块,对研究区域内三个遥感监测的XCO2数据集和环境协变量数据进行网格化及时空匹配等预处理,得到预处理过的数据集;The data preprocessing module performs preprocessing such as gridding and space-time matching on the XCO 2 data sets and environmental covariate data of the three remote sensing monitoring in the study area, and obtains the preprocessed data sets;

数据融合模块,用于对三个遥感监测的XCO2数据集进行数据融合,得到XCO2融合数据集;The data fusion module is used for data fusion of the XCO 2 data sets of three remote sensing monitoring to obtain the XCO 2 fusion data set;

XGBoost模型建立模块,用于基于XCO2融合数据和环境协变量数据训练得到XGBoost模型;The XGBoost model building module is used to obtain the XGBoost model based on XCO 2 fusion data and environmental covariate data training;

浓度计算模块,用于将环境协变量数据输入到XGBoost模型中,计算得到XCO2的全面域时空分布重构数据集。The concentration calculation module is used to input the environmental covariate data into the XGBoost model, and calculate the comprehensive spatial and temporal distribution reconstruction data set of XCO 2 .

上述实现过程中,通过收集研究区域内三个遥感监测的XCO2数据集和环境协变量数据,并进行网格化和时空匹配等预处理;对三个遥感监测的XCO2数据集进行融合,得到XCO2融合数据;使用XCO2融合数据和环境协变量数据,训练得到XGBoost模型;将环境协变量数据输入到XGBoost模型中,计算得到XCO2的全面域时空分布重构数据集。本发明对三个遥感监测的XCO2数据进行融合,同时利用XCO2与气象、海拔、土地利用类型,道路密度、植被归一化指数等环境协变量之间的关联性,通过机器学习建模,计算得到XCO2的全面域时空分布重构数据集,克服XCO2监测存在大量缺失数据的问题。In the above implementation process, by collecting the XCO 2 data sets and environmental covariate data of the three remote sensing monitoring in the study area, and performing preprocessing such as gridding and spatio-temporal matching ; Obtain the XCO 2 fusion data; use the XCO 2 fusion data and environmental covariate data to train the XGBoost model; input the environmental covariate data into the XGBoost model, and calculate the comprehensive spatial and temporal distribution reconstruction data set of XCO 2 . The present invention fuses the XCO 2 data of three remote sensing monitoring, and utilizes the correlation between XCO 2 and environmental covariates such as meteorology, altitude, land use type, road density, vegetation normalized index, etc., and models through machine learning , to calculate the comprehensive spatial-temporal distribution reconstruction data set of XCO 2 to overcome the problem of a large number of missing data in XCO 2 monitoring.

本发明实施例至少具有如下优点或有益效果:Embodiments of the present invention have at least the following advantages or beneficial effects:

本发明实施例提供一种大气二氧化碳干空气柱浓度计算方法及系统,通过收集研究区域内三个遥感监测的XCO2数据集和环境协变量数据,并进行网格化和时空匹配等预处理;对三个遥感监测的XCO2数据集进行数据融合,得到XCO2融合数据;使用XCO2融合数据和环境协变量数据,训练得到XGBoost模型;将环境协变量数集输入到XGBoost模型中,计算得到XCO2的全面域时空分布重构数据集。本发明对三个遥感监测的XCO2数据集进行融合,同时利用XCO2与气象、海拔、土地利用类型、道路密度、植被归一化指数等环境协变量之间的关联性,通过机器学习建模,计算得到XCO2的全面域时空分布重构数据集,克服XCO2监测存在大量缺失数据的问题。The embodiment of the present invention provides a method and system for calculating the concentration of atmospheric carbon dioxide dry air column, by collecting three remote sensing monitoring XCO2 data sets and environmental covariate data in the research area, and performing preprocessing such as gridding and time-space matching; Data fusion of three XCO 2 data sets monitored by remote sensing is carried out to obtain XCO 2 fusion data; XGBoost model is obtained by training using XCO 2 fusion data and environmental covariate data; input environmental covariate data set into XGBoost model, and calculate A comprehensive domain spatiotemporal distribution reconstruction dataset for XCO 2 . The present invention fuses three XCO 2 data sets monitored by remote sensing, and utilizes the correlation between XCO 2 and environmental covariates such as meteorology, altitude, land use type, road density, vegetation normalization index, etc. Based on the model, the reconstruction data set of the comprehensive spatial and temporal distribution of XCO 2 can be calculated to overcome the problem of a large number of missing data in XCO 2 monitoring.

附图说明Description of drawings

为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。In order to illustrate the technical solutions of the embodiments of the present invention more clearly, the accompanying drawings used in the embodiments will be briefly introduced below. It should be understood that the following drawings only show some embodiments of the present invention, and thus It should be regarded as a limitation on the scope, and those skilled in the art can also obtain other related drawings based on these drawings without creative work.

图1为本发明实施例提供的一种大气二氧化碳干空气柱浓度计算方法流程图;Fig. 1 is a flow chart of a calculation method for atmospheric carbon dioxide dry air column concentration provided by an embodiment of the present invention;

图2为本发明实施例提供的数据融合过程的示意图;FIG. 2 is a schematic diagram of a data fusion process provided by an embodiment of the present invention;

图3为本发明实施例提供的各个遥感数据以及融合数据空间和时间构成分布的示意图;Fig. 3 is a schematic diagram of the spatial and temporal distribution of remote sensing data and fusion data provided by the embodiment of the present invention;

图4为本发明实施例提供的一种大气二氧化碳干空气柱浓度计算系统结构框图。Fig. 4 is a structural block diagram of an atmospheric carbon dioxide dry air column concentration calculation system provided by an embodiment of the present invention.

图标:110-数据获取模块;120-数据预处理模块;130-数据融合模块;140-XGBoost模型建立模块;150-浓度计算模块。Icons: 110-data acquisition module; 120-data preprocessing module; 130-data fusion module; 140-XGBoost model building module; 150-concentration calculation module.

具体实施方式Detailed ways

为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本申请实施例的组件可以以各种不同的配置来布置和设计。In order to make the purposes, technical solutions and advantages of the embodiments of the present application clearer, the technical solutions in the embodiments of the present application will be clearly and completely described below in conjunction with the drawings in the embodiments of the present application. Obviously, the described embodiments It is a part of the embodiments of this application, not all of them. The components of the embodiments of the application generally described and illustrated in the figures herein may be arranged and designed in a variety of different configurations.

因此,以下对在附图中提供的本申请的实施例的详细描述并非旨在限制要求保护的本申请的范围,而是仅仅表示本申请的选定实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。Accordingly, the following detailed description of the embodiments of the application provided in the accompanying drawings is not intended to limit the scope of the claimed application, but merely represents selected embodiments of the application. Based on the embodiments in this application, all other embodiments obtained by persons of ordinary skill in the art without creative efforts fall within the protection scope of this application.

实施例Example

下面结合附图,对本申请的一些实施方式作详细说明。在不冲突的情况下,下述的各个实施例及实施例中的各个特征可以相互组合。Some implementations of the present application will be described in detail below in conjunction with the accompanying drawings. In the case of no conflict, each of the following embodiments and each feature in the embodiments can be combined with each other.

请参看图1-图2,图1为本发明实施例提供的一种大气二氧化碳干空气柱浓度计算方法流程图,图2为本发明实施例提供的数据融合过程的示意图。该大气二氧化碳干空气柱浓度计算方法,包括以下步骤:Please refer to Figures 1-2, Figure 1 is a flowchart of a method for calculating the concentration of atmospheric carbon dioxide dry air column provided by an embodiment of the present invention, and Figure 2 is a schematic diagram of a data fusion process provided by an embodiment of the present invention. The method for calculating the atmospheric carbon dioxide dry air column concentration comprises the following steps:

步骤S110:收集研究区域内遥感监测XCO2数据和环境协变量数据。上述XCO2数据包括三个遥感监测的XCO2数据集,包括来自卫星轨道碳观测2号(OCO-2)的XCO2数据,来自温室气体观测卫星(GOSAT)的XCO2数据,以及来自搭载在国际空间站上的传感器轨道碳观测3号(OCO-3)的XCO2数据。上述数据集包括气象、人口密度、行星边界层高度、土地利用类型、归一化植被指数、海拔、道路信息等。其中,气象数据来自欧洲中期天气预报中心,土地利用类型数据来自欧洲航天局气候变化研究所,海拔数据来自航天飞机雷达地形任务,人口密度数据来自网格化的世界人口。Step S110: Collect remote sensing monitoring XCO 2 data and environmental covariate data in the study area. The above-mentioned XCO 2 data include three XCO 2 datasets monitored by remote sensing, including the XCO 2 data from the Orbiting Carbon Observatory-2 (OCO-2), the XCO 2 data from the Greenhouse Gas Observatory Satellite (GOSAT), and the XCO 2 data from the XCO 2 data from the sensor Orbiting Carbon Observatory 3 (OCO-3) on the International Space Station. The above datasets include meteorology, population density, planetary boundary layer height, land use type, normalized difference vegetation index, elevation, road information, etc. Among them, the meteorological data comes from the European Center for Medium-Range Weather Forecast, the land use type data comes from the Climate Change Institute of the European Space Agency, the altitude data comes from the Space Shuttle Radar Topography Mission, and the population density data come from the gridded world population.

对研究区域的环境协变量数据进行预处理。上述进行预处理是通过网格化和时空匹配等方法将环境协变量数据处理至预定义的1km网格中,用于机器学习模型的训练和计算,该数据集通常包括数十至上百个变量。具体包括以下步骤:Preprocess the environmental covariate data for the study area. The above preprocessing is to process the environmental covariate data into a predefined 1km grid by means of gridding and space-time matching for training and calculation of machine learning models. This data set usually includes dozens to hundreds of variables . Specifically include the following steps:

首先,对研究区域进行空间划分,得到1km分辨率的空间网格。First, the study area is spatially divided to obtain a spatial grid with a resolution of 1 km.

然后,对环境协变量数据采用网格化和时空匹配等方法赋值至预定义的1km网格中,得到预处理过的环境协变量数据集。Then, the environmental covariate data were assigned to the predefined 1km grid using methods such as gridding and space-time matching to obtain the preprocessed environmental covariate data set.

步骤S120:对三个遥感监测的XCO2数据集进行数据融合,得到XCO2融合数据,步骤如下:Step S120: Perform data fusion on the three XCO 2 data sets monitored by remote sensing to obtain XCO 2 fusion data, the steps are as follows:

输入:enter:

OCO-2的XCO2监测数据A={a1,...,aj,...,aJ};OCO-2 XCO 2 monitoring data A={a 1 ,...,a j ,...,a J };

OCO-3的XCO2监测数据B={b1,...,bj,...,bJ};OCO-3 XCO 2 monitoring data B={b 1 ,...,b j ,...,b J };

GOSAT的XCO2监测数据C={c1,…,cj,…,cJ};GOSAT XCO 2 monitoring data C = {c 1 ,…,c j ,…,c J };

环境协变量数据集D={d1,...,dj,...,dJ};Environmental covariate data set D = {d 1 ,...,d j ,...,d J };

注:其中dj表示所有环境协变量在j处的取值集合,而不是第j个环境协变量。dj和aj、bj以及cj在时空上是互相对应的,即是三个传感器在同一天、同一个网格的观测值。由于OCO-2、OCO-3和GOSAT数据存在不同程度的缺失,所以aj、bj以及cj都有可能存在缺失值,但是不会同时缺失。Note: where d j represents the value set of all environmental covariates at j, not the jth environmental covariate. d j and a j , b j and c j correspond to each other in time and space, that is, the observation values of the three sensors on the same day and the same grid. Since OCO-2, OCO-3 and GOSAT data are missing to varying degrees, there may be missing values in a j , b j and c j , but not at the same time.

输出:融合数据集E={e1,...,ej,...,eJ};Output: fusion data set E={e 1 ,...,e j ,...,e J };

方法:method:

①融合A和B为O:① Merge A and B into O:

其中O={o1,...,oj,...,oJ},oj=f1(aj,bj),其中aj,bj至少有一个为非空;Where O={o 1 ,...,o j ,...,o J }, o j =f 1 (a j , b j ), where at least one of a j and b j is non-empty;

f1是融合函数:f1 is the fusion function :

Figure BDA0003800256040000091
Figure BDA0003800256040000091

②对GOSAT数据集C进行线性转化:② Linear transformation of GOSAT dataset C:

S={j|Oj非空且Cj非空};S={j|O j is not empty and C j is not empty};

M={cs|s∈S},N={os|s∈S};M={c s |s∈S}, N={o s |s∈S};

建立线性模型f3:N←M;Establish a linear model f 3 : N←M;

基于f3转化cjTransform c j based on f 3 :

j从1到J:j from 1 to J:

当cj非空且

Figure BDA0003800256040000092
when c j is not empty and
Figure BDA0003800256040000092

c′j=f3(cj);c′ j = f 3 (c j );

转化后的数据集为C′={c′1,...,c′j,...,c′J};The transformed data set is C'={c' 1 ,...,c' j ,...,c' J };

③取数据集O和数据集C′的并集,得到最终的XCO2融合数据集E。③ Take the union of data set O and data set C′ to get the final XCO 2 fusion data set E.

步骤S130:使用XCO2融合数据作为因变量,环境协变量作为自变量,训练得到基于XGBoost算法的机器学习模型;Step S130: using the XCO 2 fusion data as the dependent variable and the environmental covariate as the independent variable, training a machine learning model based on the XGBoost algorithm;

步骤S140:将环境协变量数据输入到XGBoost模型中,计算得到XCO2的全面域时空分布重构数据集。Step S140: input the environmental covariate data into the XGBoost model, and calculate and obtain the reconstructed data set of XCO 2 's comprehensive domain spatio-temporal distribution.

上述实现过程中,通过收集研究区域内三个遥感监测的XCO2数据集和环境协变量数据,并进行网格化和时空匹配等预处理;对三个遥感监测的XCO2数据集进行融合,得到XCO2融合数据;使用XCO2融合数据和环境协变量数据,训练得到XGBoost模型;将环境协变量数据输入到XGBoost模型中,计算得到XCO2的全面域时空分布重构数据集。本发明对三个遥感监测的XCO2数据集进行融合,同时利用XCO2与气象、海拔、土地利用类型、道路密度、植被归一化指数等环境协变量之间的关联性,通过机器学习建模,计算得到XCO2的全面域时空分布重构数据集。In the above implementation process, by collecting the XCO 2 data sets and environmental covariate data of the three remote sensing monitoring in the study area, and performing preprocessing such as gridding and spatio-temporal matching ; Obtain the XCO 2 fusion data; use the XCO 2 fusion data and environmental covariate data to train the XGBoost model; input the environmental covariate data into the XGBoost model, and calculate the comprehensive spatial and temporal distribution reconstruction data set of XCO 2 . The present invention fuses three XCO 2 data sets monitored by remote sensing, and utilizes the correlation between XCO 2 and environmental covariates such as meteorology, altitude, land use type, road density, vegetation normalization index, etc. Model, calculated to obtain the XCO 2 comprehensive domain spatio-temporal distribution reconstruction data set.

请参看图3,图3为本发明实施例提供的数据融合过程的示意图,横轴表示空间,纵轴表示时间。在示意图中,C=G+S表示GOSAT监测的XCO2数据集,在整个时间区间P均有数据;O=T+S表示OCO(OCO-2和OCO-3)监测的XCO2数据集,仅在时间区间P1存在数据。在P1时间区间,GOSAT监测的XCO2和OCO监测的XCO2均有数据点分布。由于卫星和空间站的轨道以及不利气象条件等原因,日尺度的卫星数据在空间上存在缺失,OCO监测的XCO2仅覆盖O这一时空区间,而GOSAT监测的XCO2在P时间段仅覆盖C这一时空区间,两者在空间上重合的部分即S时空区间。将S时空区间内的GOSAT监测值和OCO监测值进行线性拟合,以GOSAT监测值为自变量,以OCO监测值为因变量,建立线性模型。利用该线性模型,将G部分的GOSAT监测值转化为OCO监测值,从而使OCO监测值近似覆盖G空间区间,其时间区间覆盖整个P时段,实现多个XCO2监测数据的融合。Please refer to FIG. 3 . FIG. 3 is a schematic diagram of a data fusion process provided by an embodiment of the present invention, the horizontal axis represents space, and the vertical axis represents time. In the schematic diagram, C=G+S represents the XCO 2 data set monitored by GOSAT, which has data in the entire time interval P; O=T+S represents the XCO 2 data set monitored by OCO (OCO-2 and OCO-3), Data exists only in time interval P1 . In the P 1 time interval, both the XCO 2 monitored by GOSAT and the XCO 2 monitored by OCO have data point distribution. Due to the orbits of satellites and space stations and unfavorable meteorological conditions, the daily-scale satellite data are missing in space. The XCO 2 monitored by OCO only covers the time-space interval of O, while the XCO 2 monitored by GOSAT only covers C in the time period P. In this space-time interval, the part where the two overlap in space is the S space-time interval. The GOSAT monitoring value and the OCO monitoring value in the S space-time interval were linearly fitted, and the GOSAT monitoring value was used as the independent variable, and the OCO monitoring value was used as the dependent variable to establish a linear model. Using this linear model, the GOSAT monitoring value of the G part is converted into the OCO monitoring value, so that the OCO monitoring value approximately covers the G space interval, and its time interval covers the entire P period, realizing the fusion of multiple XCO 2 monitoring data.

基于同样的发明构思,本发明还提出一种大气二氧化碳干空气柱浓度计算系统,请参看图4,图4为本发明实施例提供的一种大气二氧化碳干空气柱浓度计算系统结构框图。该大气二氧化碳干空气柱浓度计算系统包括:Based on the same inventive concept, the present invention also proposes a calculation system for atmospheric carbon dioxide dry air column concentration, please refer to FIG. 4 , which is a structural block diagram of an atmospheric carbon dioxide dry air column concentration calculation system provided by an embodiment of the present invention. The atmospheric carbon dioxide dry air column concentration calculation system includes:

数据获取模块110,用于收集研究区域内三个遥感监测的XCO2数据集和环境协变量数据;The data acquisition module 110 is used to collect XCO 2 data sets and environmental covariate data of three remote sensing monitoring in the research area;

数据预处理模块120,用于对研究区域内的XCO2数据和环境协变量数据进行预处理,得到预处理过的XCO2数据集和环境协变量数据集;The data preprocessing module 120 is used to preprocess the XCO2 data and environmental covariate data in the research area to obtain preprocessed XCO2 data sets and environmental covariate data sets;

XGBoost模型建立模块140,用于基于XCO2融合数据和环境协变量数据建立XGBoost模型;XGBoost model building module 140, for building an XGBoost model based on XCO 2 fusion data and environmental covariate data;

浓度计算模块150,用于将环境协变量数据输入到XGBoost模型中,计算得到XCO2的全面域时空分布重构数据集。The concentration calculation module 150 is used for inputting the environmental covariate data into the XGBoost model, and calculating the reconstructed data set of the comprehensive spatial-temporal distribution of XCO 2 .

上述实现过程中,通过收集研究区域内三个遥感监测的XCO2数据集和环境协变量数据,并进行网格化和时空匹配等预处理;对三个遥感监测的XCO2数据集进行融合,得到XCO2融合数据;使用XCO2融合数据和环境协变量数据,训练得到XGBoost模型;将环境协变量数据输入到XGBoost模型中,计算得到XCO2的全面域时空分布重构数据集。本发明对三个遥感监测的XCO2数据进行融合,同时利用XCO2与气象、海拔、土地利用类型、道路密度、植被归一化指数等环境协变量之间的关联性,通过机器学习建模,计算得到XCO2的全面域时空分布重构数据集。In the above implementation process, by collecting the XCO 2 data sets and environmental covariate data of the three remote sensing monitoring in the study area, and performing preprocessing such as gridding and spatio-temporal matching ; Obtain the XCO 2 fusion data; use the XCO 2 fusion data and environmental covariate data to train the XGBoost model; input the environmental covariate data into the XGBoost model, and calculate the comprehensive spatial and temporal distribution reconstruction data set of XCO 2 . The invention fuses the XCO 2 data of three remote sensing monitoring, and utilizes the correlation between XCO 2 and environmental covariates such as meteorology, altitude, land use type, road density, vegetation normalized index, etc., and models through machine learning , to obtain the comprehensive spatial-temporal distribution reconstruction data set of XCO 2 .

以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。The above descriptions are only preferred embodiments of the present application, and are not intended to limit the present application. For those skilled in the art, there may be various modifications and changes in the present application. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of this application shall be included within the protection scope of this application.

对于本领域技术人员而言,显然本申请不限于上述示范性实施例的细节,而且在不背离本申请的精神或基本特征的情况下,能够以其它的具体形式实现本申请。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本申请的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本申请内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。It will be apparent to those skilled in the art that the present application is not limited to the details of the exemplary embodiments described above, but that the present application can be implemented in other specific forms without departing from the spirit or essential characteristics of the present application. Therefore, the embodiments should be regarded as exemplary and not restrictive in all points of view, and the scope of the application is defined by the appended claims rather than the foregoing description, and it is intended that the scope of the present application be defined by the appended claims rather than by the foregoing description. All changes within the meaning and range of equivalents of the elements are embraced in this application. Any reference sign in a claim should not be construed as limiting the claim concerned.

Claims (5)

1.一种大气二氧化碳干空气柱浓度(XCO2)时空分布重构方法,其特征在于,包括以下步骤:1. A method for reconstructing spatial-temporal distribution of atmospheric carbon dioxide dry air column concentration (XCO 2 ), is characterized in that it comprises the following steps: 收集研究区域内三个遥感监测的XCO2数据集(包括OCO-2、OCO-3、GOSAT)和区域内的环境协变量数据,并对上述数据集进行预处理;Collect three remote sensing monitoring XCO 2 datasets (including OCO-2, OCO-3, GOSAT) in the study area and environmental covariate data in the area, and preprocess the above datasets; 对三个遥感监测的XCO2数据集进行融合,得到XCO2融合数据集;Fusion of the three XCO 2 data sets monitored by remote sensing to obtain the XCO 2 fusion data set; 使用XCO2融合数据作为因变量,环境协变量作为自变量,训练得到基于XGBoost算法的机器学习模型;Using the XCO 2 fusion data as the dependent variable and the environmental covariate as the independent variable, the machine learning model based on the XGBoost algorithm is trained; 将环境协变量数据输入到XGBoost模型中,计算得到XCO2的全面域时空分布重构数据集。The environmental covariate data was input into the XGBoost model, and the comprehensive spatial-temporal distribution reconstruction dataset of XCO 2 was calculated. 2.根据权利要求1所述的大气二氧化碳干空气柱浓度计算方法,其特征在于,所述对三个遥感监测的XCO2数据集进行融合的步骤如下:2. Atmospheric carbon dioxide dry air column concentration calculation method according to claim 1, is characterized in that, the described XCO of three remote sensing monitoring Data sets are fused The steps are as follows: 输入:enter: OCO-2的XCO2监测数据A={a1,...,aj,...,aJ};OCO-2 XCO 2 monitoring data A={a 1 ,...,a j ,...,a J }; OCO-3的XCO2监测数据B={b1,...,bj,...,bJ};OCO-3 XCO 2 monitoring data B={b 1 ,...,b j ,...,b J }; GOSAT的XCO2监测数据C={c1,...,cj,...,cJ};GOSAT XCO 2 monitoring data C = {c 1 ,...,c j ,...,c J }; 环境协变量数据集D={d1,...,dj,...,dJ};Environmental covariate data set D = {d 1 ,...,d j ,...,d J }; 注:其中dj表示所有环境协变量在j处的取值集合,而不是第j个环境协变量。dj和aj、bj以及cj在时空上是互相对应的,即是三个传感器在同一天、同一个网格的观测值。由于OCO-2、OCO-3和GOSAT数据存在不同程度的缺失,所以aj、bj以及cj都有可能存在缺失值,但是不会同时缺失。Note: where d j represents the value set of all environmental covariates at j, not the jth environmental covariate. d j and a j , b j and c j correspond to each other in time and space, that is, the observation values of the three sensors on the same day and the same grid. Since OCO-2, OCO-3 and GOSAT data are missing to varying degrees, there may be missing values in a j , b j and c j , but not at the same time. 输出:融合数据集E={e1,...,ej,...,eJ};Output: fusion data set E={e 1 ,...,e j ,...,e J }; 方法:method: ①融合A和B为O:① Merge A and B into O: 其中O={o1,...,oj,...,oJ},oj=f1(aj,bj),其中aj,bj至少有一个为非空;Where O={o 1 ,...,o j ,...,o J }, o j =f 1 (a j , b j ), where at least one of a j and b j is non-empty; f1是融合函数:f1 is the fusion function :
Figure FDA0003800256030000021
Figure FDA0003800256030000021
②对GOSAT数据集C进行线性转化:② Linear transformation of GOSAT dataset C: S={j|Oj非空且Cj非空};S={j|O j is not empty and C j is not empty}; M={cs|s∈S},N={os|s∈S};M={c s |s∈S}, N={o s |s∈S}; 建立线性模型f3:N←M;Establish a linear model f 3 : N←M; 基于f3转化cjTransform c j based on f 3 : j从1到J:j from 1 to J: 当cj非空且
Figure FDA0003800256030000022
when c j is not empty and
Figure FDA0003800256030000022
c′j=f3(cj)c′ j =f 3 (c j ) 转化后的数据集为C′={c′1,...,c′j,...,c′J}The transformed data set is C′={c′ 1 ,...,c′ j ,...,c′ J } ③取数据集O和数据集C′的并集,得到最终的XCO2融合数据集E。③ Take the union of data set O and data set C′ to get the final XCO 2 fusion data set E.
3.根据权利要求2所述的大气二氧化碳干空气柱浓度计算方法,其特征在于,所述使用XCO2融合数据和环境协变量建立XGBoost模型的步骤如下:3. atmospheric carbon dioxide dry air column concentration calculation method according to claim 2, is characterized in that, described use XCO Fusion data and environmental covariate set up the step of XGBoost model as follows: 将XCO2融合数据作为因变量,环境协变量作为自变量,训练得到XGBoost模型。Taking the XCO 2 fusion data as the dependent variable and the environmental covariate as the independent variable, the XGBoost model was trained. 4.根据权利要求1所述的大气二氧化碳干空气柱浓度计算方法,其特征包括对研究区域内环境协变量数据进行预处理,包括以下步骤:4. atmospheric carbon dioxide dry air column concentration calculation method according to claim 1, is characterized in that comprising carrying out preprocessing to environmental covariate data in research area, comprises the following steps: 对研究区域进行空间划分,得到1km分辨率的空间网格;Spatial division of the research area to obtain a spatial grid with a resolution of 1 km; 对环境协变量数据采用空间重采样等方法,赋值到预定义的网格中。The environmental covariate data are assigned to a predefined grid using methods such as spatial resampling. 5.一种大气二氧化碳干空气柱浓度计算系统,其特征包括:5. A system for calculating the concentration of an atmospheric carbon dioxide dry air column, characterized in that it comprises: 数据获取模块,用于收集研究区域内三个遥感监测的XCO2数据集和环境协变量数据;Data acquisition module for collecting XCO2 datasets and environmental covariate data from three remote sensing monitoring in the study area; 数据预处理模块,对研究区域内三个遥感监测的XCO2数据集和环境协变量数据进行网格化及时空匹配等预处理,得到预处理过的数据集;The data preprocessing module performs preprocessing such as gridding and space-time matching on the XCO 2 data sets and environmental covariate data of the three remote sensing monitoring in the study area, and obtains the preprocessed data sets; 数据融合模块,用于对三个遥感监测的XCO2数据集进行数据融合,得到XCO2融合数据集;The data fusion module is used for data fusion of three XCO 2 data sets monitored by remote sensing to obtain the XCO 2 fusion data set; XGBoost模型建立模块,用于基于XCO2融合数据和环境协变量数据训练得到XGBoost模型;The XGBoost model building module is used to obtain the XGBoost model based on XCO 2 fusion data and environmental covariate data training; 浓度计算模块,用于将环境协变量数据输入到XGBoost模型中,计算得到XCO2的全面域时空分布重构数据集。The concentration calculation module is used to input the environmental covariate data into the XGBoost model, and calculate the comprehensive spatial and temporal distribution reconstruction data set of XCO2.
CN202210980540.5A 2022-08-16 2022-08-16 A method and system for calculating the concentration of atmospheric carbon dioxide dry air column Active CN115310550B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210980540.5A CN115310550B (en) 2022-08-16 2022-08-16 A method and system for calculating the concentration of atmospheric carbon dioxide dry air column

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210980540.5A CN115310550B (en) 2022-08-16 2022-08-16 A method and system for calculating the concentration of atmospheric carbon dioxide dry air column

Publications (2)

Publication Number Publication Date
CN115310550A true CN115310550A (en) 2022-11-08
CN115310550B CN115310550B (en) 2023-07-14

Family

ID=83862862

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210980540.5A Active CN115310550B (en) 2022-08-16 2022-08-16 A method and system for calculating the concentration of atmospheric carbon dioxide dry air column

Country Status (1)

Country Link
CN (1) CN115310550B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116882261A (en) * 2023-05-30 2023-10-13 中国矿业大学 Refined inversion method of atmospheric XCO2 concentration integrating land surface environmental variables
CN117556953A (en) * 2023-11-21 2024-02-13 中国气象局沈阳大气环境研究所 Automatic processing and predicting system based on satellite remote sensing inversion data
CN117574155A (en) * 2023-11-29 2024-02-20 海南省气象科学研究所 Prediction method for near-ground atmospheric carbon dioxide concentration in sea area based on satellite remote sensing
CN119202720A (en) * 2024-09-09 2024-12-27 国网四川省电力公司电力科学研究院 A high-resolution reconstruction method for the spatiotemporal distribution of XCO2 and related products

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2827200A1 (en) * 2001-07-12 2003-01-17 Usinor Metal strip continuous coating procedure uses molten polymer applied and spread evenly to moving strip
US20130179078A1 (en) * 2009-11-26 2013-07-11 Tanguy Griffon Method for measuring weekly and annual emissions of a greenhouse gas over a given surface area
AU2015201877A1 (en) * 2006-05-31 2015-05-14 TRX Systems, Inc, Method and system for locating and monitoring first responders
US20180156766A1 (en) * 2016-12-06 2018-06-07 Ning Zeng Networked Environmental Monitoring System and Method
CN111893237A (en) * 2020-07-08 2020-11-06 北京科技大学 A real-time prediction method for the carbon content and temperature of the molten pool in the converter steelmaking process
CN112884079A (en) * 2021-03-30 2021-06-01 河南大学 Method for estimating near-surface nitrogen dioxide concentration based on Stacking integrated model
CN113297528A (en) * 2021-06-10 2021-08-24 四川大学 NO based on multi-source big data2High-resolution space-time distribution calculation method
CN113297527A (en) * 2021-06-09 2021-08-24 四川大学 PM based on multisource city big data2.5Overall domain space-time calculation inference method
CN113435511A (en) * 2021-06-28 2021-09-24 中国科学院地理科学与资源研究所 XCO based on HASM2Data fusion method and system
CN114861882A (en) * 2022-05-07 2022-08-05 国网四川省电力公司电力科学研究院 CO (carbon monoxide) 2 Space-time distribution reconstruction method and system

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2827200A1 (en) * 2001-07-12 2003-01-17 Usinor Metal strip continuous coating procedure uses molten polymer applied and spread evenly to moving strip
AU2015201877A1 (en) * 2006-05-31 2015-05-14 TRX Systems, Inc, Method and system for locating and monitoring first responders
US20130179078A1 (en) * 2009-11-26 2013-07-11 Tanguy Griffon Method for measuring weekly and annual emissions of a greenhouse gas over a given surface area
US20180156766A1 (en) * 2016-12-06 2018-06-07 Ning Zeng Networked Environmental Monitoring System and Method
CN111893237A (en) * 2020-07-08 2020-11-06 北京科技大学 A real-time prediction method for the carbon content and temperature of the molten pool in the converter steelmaking process
CN112884079A (en) * 2021-03-30 2021-06-01 河南大学 Method for estimating near-surface nitrogen dioxide concentration based on Stacking integrated model
CN113297527A (en) * 2021-06-09 2021-08-24 四川大学 PM based on multisource city big data2.5Overall domain space-time calculation inference method
CN113297528A (en) * 2021-06-10 2021-08-24 四川大学 NO based on multi-source big data2High-resolution space-time distribution calculation method
CN113435511A (en) * 2021-06-28 2021-09-24 中国科学院地理科学与资源研究所 XCO based on HASM2Data fusion method and system
CN114861882A (en) * 2022-05-07 2022-08-05 国网四川省电力公司电力科学研究院 CO (carbon monoxide) 2 Space-time distribution reconstruction method and system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HEATHER D. COUTURE 等: "Towards Tracking the Emissions of Every Power Plant on the Planet", 《NEURIPS》, pages 1 - 9 *
莫露 等: "中国XCO2时空分布与影响因素分析", 《中国环境科学》, vol. 41, no. 6, pages 2562 - 2570 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116882261A (en) * 2023-05-30 2023-10-13 中国矿业大学 Refined inversion method of atmospheric XCO2 concentration integrating land surface environmental variables
CN116882261B (en) * 2023-05-30 2024-08-09 中国矿业大学 Atmospheric XCO integrating land surface environment variables2Concentration refinement inversion method
CN117556953A (en) * 2023-11-21 2024-02-13 中国气象局沈阳大气环境研究所 Automatic processing and predicting system based on satellite remote sensing inversion data
CN117556953B (en) * 2023-11-21 2024-08-06 中国气象局沈阳大气环境研究所 Automatic processing and predicting system based on satellite remote sensing inversion data
CN117574155A (en) * 2023-11-29 2024-02-20 海南省气象科学研究所 Prediction method for near-ground atmospheric carbon dioxide concentration in sea area based on satellite remote sensing
CN119202720A (en) * 2024-09-09 2024-12-27 国网四川省电力公司电力科学研究院 A high-resolution reconstruction method for the spatiotemporal distribution of XCO2 and related products

Also Published As

Publication number Publication date
CN115310550B (en) 2023-07-14

Similar Documents

Publication Publication Date Title
CN115310550B (en) A method and system for calculating the concentration of atmospheric carbon dioxide dry air column
CN113297527B (en) A comprehensive spatiotemporal calculation and inference method for PM2.5 based on multi-source urban big data
CN113297528A (en) NO based on multi-source big data2High-resolution space-time distribution calculation method
CN108491667B (en) PM2.5 remote sensing monitoring inversion method based on Himapari-8 AOD
Jin et al. Global validation and hybrid calibration of CAMS and MERRA-2 PM2. 5 reanalysis products based on OpenAQ platform
CN111652404B (en) An all-weather surface temperature retrieval method and system
Li et al. Assessment of precipitation from the CRA40 dataset and new generation reanalysis datasets in the global domain
CN111210483B (en) Simulated satellite cloud picture generation method based on generation of countermeasure network and numerical mode product
Yang et al. Ultrahigh-resolution PM2. 5 estimation from top-of-atmosphere reflectance with machine learning: Theories, methods, and applications
Li et al. Synergistic data fusion of multimodal AOD and air quality data for near real-time full coverage air pollution assessment
CN115357847B (en) Solar scale satellite-ground precipitation fusion method based on error decomposition
CN115081557A (en) Night aerosol optical thickness estimation method and system based on ground monitoring data
CN115204618A (en) CCMVS Regional Carbon Source-Sink Assimilation Inversion Evaluation System
Fu et al. Influences of atmospheric reanalysis on the accuracy of clear-sky irradiance estimates: Comparing MERRA-2 and CAMS
Qin et al. Reconstruction of 60-year (1961–2020) surface air temperature on the Tibetan Plateau by fusing MODIS and ERA5 temperatures
CN118395098A (en) Satellite remote sensing AOD data reconstruction method considering space deficiency and downscaling
Li et al. Adjustment from temperature annual dynamics for reconstructing land surface temperature based on downscaled microwave observations
CN116660935A (en) Ocean surface temperature prediction method and device, electronic equipment and storage medium
CN114943303A (en) A Time-series AOD Reconstruction Method Based on Multi-sensor Remote Sensing
CN118520314B (en) Satellite temperature profile product correction method and device
Zhou et al. A station-data-based model residual machine learning method for fine-grained meteorological grid prediction
CN117219183A (en) High coverage near ground NO in cloudy rain areas 2 Concentration estimation method and system
CN114357885A (en) A Prediction Method of Photosynthetically Active Radiation Scattering Ratio Fusion of Multi-source Data
Tang et al. Constructing a long-term global dataset of direct and diffuse radiation (10 km, 3 h, 1983–2018) separating from the satellite-based estimates of global radiation
Li et al. SolarCube: An Integrative Benchmark Dataset Harnessing Satellite and In-situ Observations for Large-scale Solar Energy Forecasting

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant