CN115304078B - A kind of preparation method of molecular sieve and its application - Google Patents
A kind of preparation method of molecular sieve and its application Download PDFInfo
- Publication number
- CN115304078B CN115304078B CN202210992397.1A CN202210992397A CN115304078B CN 115304078 B CN115304078 B CN 115304078B CN 202210992397 A CN202210992397 A CN 202210992397A CN 115304078 B CN115304078 B CN 115304078B
- Authority
- CN
- China
- Prior art keywords
- source
- molecular sieve
- aluminum
- hours
- doped
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002808 molecular sieve Substances 0.000 title claims abstract description 74
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 title claims abstract description 74
- 238000002360 preparation method Methods 0.000 title claims abstract description 9
- 239000003054 catalyst Substances 0.000 claims abstract description 40
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims abstract description 39
- 238000003756 stirring Methods 0.000 claims abstract description 31
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 29
- 238000000034 method Methods 0.000 claims abstract description 29
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 26
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 22
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 claims abstract description 21
- 238000003786 synthesis reaction Methods 0.000 claims abstract description 21
- 239000000126 substance Substances 0.000 claims abstract description 20
- 229910052796 boron Inorganic materials 0.000 claims abstract description 18
- 229910052733 gallium Inorganic materials 0.000 claims abstract description 18
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims abstract description 15
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims abstract description 15
- 238000005832 oxidative carbonylation reaction Methods 0.000 claims abstract description 15
- 230000032683 aging Effects 0.000 claims abstract description 11
- 238000001035 drying Methods 0.000 claims abstract description 11
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 9
- 239000010703 silicon Substances 0.000 claims abstract description 9
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 9
- 239000011259 mixed solution Substances 0.000 claims abstract description 8
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 36
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 23
- CHPZKNULDCNCBW-UHFFFAOYSA-N gallium nitrate Chemical compound [Ga+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O CHPZKNULDCNCBW-UHFFFAOYSA-N 0.000 claims description 12
- 229910052751 metal Inorganic materials 0.000 claims description 11
- 239000011734 sodium Substances 0.000 claims description 11
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 10
- 238000002425 crystallisation Methods 0.000 claims description 10
- 230000008025 crystallization Effects 0.000 claims description 10
- 239000002184 metal Substances 0.000 claims description 10
- 229910052763 palladium Inorganic materials 0.000 claims description 10
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 claims description 10
- 229910005191 Ga 2 O 3 Inorganic materials 0.000 claims description 8
- 230000002431 foraging effect Effects 0.000 claims description 8
- NVIFVTYDZMXWGX-UHFFFAOYSA-N sodium metaborate Chemical group [Na+].[O-]B=O NVIFVTYDZMXWGX-UHFFFAOYSA-N 0.000 claims description 7
- 239000010949 copper Substances 0.000 claims description 6
- 229940044658 gallium nitrate Drugs 0.000 claims description 6
- 230000003068 static effect Effects 0.000 claims description 6
- BNGXYYYYKUGPPF-UHFFFAOYSA-M (3-methylphenyl)methyl-triphenylphosphanium;chloride Chemical compound [Cl-].CC1=CC=CC(C[P+](C=2C=CC=CC=2)(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 BNGXYYYYKUGPPF-UHFFFAOYSA-M 0.000 claims description 5
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 5
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 claims description 5
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 claims description 5
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 5
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 4
- 239000004115 Sodium Silicate Substances 0.000 claims description 4
- 239000000654 additive Substances 0.000 claims description 4
- 230000000996 additive effect Effects 0.000 claims description 4
- 229910021513 gallium hydroxide Inorganic materials 0.000 claims description 4
- 229910000373 gallium sulfate Inorganic materials 0.000 claims description 4
- DNUARHPNFXVKEI-UHFFFAOYSA-K gallium(iii) hydroxide Chemical compound [OH-].[OH-].[OH-].[Ga+3] DNUARHPNFXVKEI-UHFFFAOYSA-K 0.000 claims description 4
- SBDRYJMIQMDXRH-UHFFFAOYSA-N gallium;sulfuric acid Chemical compound [Ga].OS(O)(=O)=O SBDRYJMIQMDXRH-UHFFFAOYSA-N 0.000 claims description 4
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 claims description 4
- 229910052911 sodium silicate Inorganic materials 0.000 claims description 4
- 239000005995 Aluminium silicate Substances 0.000 claims description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 3
- 235000012211 aluminium silicate Nutrition 0.000 claims description 3
- ANBBXQWFNXMHLD-UHFFFAOYSA-N aluminum;sodium;oxygen(2-) Chemical compound [O-2].[O-2].[Na+].[Al+3] ANBBXQWFNXMHLD-UHFFFAOYSA-N 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 claims description 3
- 229910001388 sodium aluminate Inorganic materials 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 abstract description 25
- 238000001027 hydrothermal synthesis Methods 0.000 abstract description 3
- 238000001308 synthesis method Methods 0.000 abstract description 3
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 abstract description 2
- 229910002091 carbon monoxide Inorganic materials 0.000 abstract description 2
- 238000001914 filtration Methods 0.000 abstract 1
- 125000005842 heteroatom Chemical group 0.000 abstract 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 13
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 12
- 239000008367 deionised water Substances 0.000 description 12
- 229910021641 deionized water Inorganic materials 0.000 description 12
- 239000012071 phase Substances 0.000 description 12
- 239000007788 liquid Substances 0.000 description 11
- 238000012546 transfer Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 8
- 239000007789 gas Substances 0.000 description 8
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 6
- 229910021529 ammonia Inorganic materials 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 229910052708 sodium Inorganic materials 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 239000000499 gel Substances 0.000 description 5
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 239000000460 chlorine Substances 0.000 description 4
- 229910052801 chlorine Inorganic materials 0.000 description 4
- 238000005342 ion exchange Methods 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- 239000000969 carrier Substances 0.000 description 3
- 238000002329 infrared spectrum Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 101100494773 Caenorhabditis elegans ctl-2 gene Proteins 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- 101100112369 Fasciola hepatica Cat-1 gene Proteins 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 101100005271 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) cat-1 gene Proteins 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 239000012018 catalyst precursor Substances 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 238000006555 catalytic reaction Methods 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- -1 methoxy, carbonyl Chemical group 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 150000002940 palladium Chemical class 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- YGYAWVDWMABLBF-UHFFFAOYSA-N Phosgene Chemical compound ClC(Cl)=O YGYAWVDWMABLBF-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000006315 carbonylation Effects 0.000 description 1
- 238000005810 carbonylation reaction Methods 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 150000001879 copper Chemical class 0.000 description 1
- XTVVROIMIGLXTD-UHFFFAOYSA-N copper(II) nitrate Chemical compound [Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O XTVVROIMIGLXTD-UHFFFAOYSA-N 0.000 description 1
- VAYGXNSJCAHWJZ-UHFFFAOYSA-N dimethyl sulfate Chemical compound COS(=O)(=O)OC VAYGXNSJCAHWJZ-UHFFFAOYSA-N 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 231100000053 low toxicity Toxicity 0.000 description 1
- 230000011987 methylation Effects 0.000 description 1
- 238000007069 methylation reaction Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- GPNDARIEYHPYAY-UHFFFAOYSA-N palladium(ii) nitrate Chemical compound [Pd+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O GPNDARIEYHPYAY-UHFFFAOYSA-N 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 229910052665 sodalite Inorganic materials 0.000 description 1
- 239000011973 solid acid Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000010025 steaming Methods 0.000 description 1
- 238000000967 suction filtration Methods 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B39/00—Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
- C01B39/02—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
- C01B39/20—Faujasite type, e.g. type X or Y
- C01B39/24—Type Y
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/86—Borosilicates; Aluminoborosilicates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/87—Gallosilicates; Aluminogallosilicates; Galloborosilicates
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C68/00—Preparation of esters of carbonic or haloformic acids
- C07C68/01—Preparation of esters of carbonic or haloformic acids from carbon monoxide and oxygen
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2229/00—Aspects of molecular sieve catalysts not covered by B01J29/00
- B01J2229/10—After treatment, characterised by the effect to be obtained
- B01J2229/18—After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
- B01J2229/183—After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself in framework positions
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/80—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
- C01P2002/82—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Inorganic Chemistry (AREA)
- Catalysts (AREA)
Abstract
Description
技术领域Technical field
本申请涉及一种分子筛的制备方法及其应用,属于催化技术领域。The present application relates to a preparation method of molecular sieve and its application, belonging to the field of catalysis technology.
背景技术Background technique
碳酸二甲酯(DMC)是一种环境友好型、绿色有机化合物,在化工领域有着广泛的用途和良好的应用前景,由于DMC分子中具有甲氧基、羰基、羰甲基等多种基团,所以其化学性质极为活泼。DMC具有较低的毒性,可以作为羰基化、甲基化试剂从而替代有毒的光气和硫酸二甲酯。DMC还具有较高的氧含量以及迅速的生物降解能力,这使得它成为一种极具有发展前途的油品添加剂。不仅如此,DMC还可以作为锂离子电池的电解液,其也是生产聚碳酸酯的常用单体。由此可见,DMC的市场前景十分广阔。在众多合成方法中,甲醇气相氧化羰基化间接法由于其工艺条件温和、成本低、原子效率高,被广大研究者们认为是最具有发展前途的工艺路线之一。Dimethyl carbonate (DMC) is an environmentally friendly, green organic compound that has a wide range of uses and good application prospects in the chemical industry. Because the DMC molecule has various groups such as methoxy, carbonyl, and carbonyl methyl, , so its chemical properties are extremely active. DMC has low toxicity and can be used as a carbonylation and methylation reagent to replace toxic phosgene and dimethyl sulfate. DMC also has a high oxygen content and rapid biodegradability, which makes it a promising oil additive. Not only that, DMC can also be used as an electrolyte for lithium-ion batteries, and it is also a commonly used monomer in the production of polycarbonate. It can be seen that the market prospect of DMC is very broad. Among the many synthesis methods, the methanol gas phase oxidative carbonylation indirect method is considered by researchers to be one of the most promising process routes due to its mild process conditions, low cost, and high atomic efficiency.
钯基催化剂是甲醇气相氧化羰基化间接法反应中常用的催化剂,根据其是否含氯,可分为有氯体系和无氯体系,含氯体系的催化剂在反应初期虽然具有较高的活性和选择性,但是随着时间的流逝氯离子的流失从而造成反应活性下降,因此需要向体系中补充氯化氢气体来维持反应的稳定性,且氯离子的流失会对反应设备带来腐蚀性,从而增加了生产成本。近些年来,由于无氯体系具有较好的稳定性,并且无氯体系彻底规避了设备腐蚀的问题,从而吸引了广大科研工作者们对于无氯体系催化剂的探索与研究,但是其反应活性远不如有氯体系,因此对于该反应而言,提升无氯体系催化剂的活性和选择性至关重要。Palladium-based catalysts are commonly used catalysts in the indirect reaction of methanol gas-phase oxidative carbonylation. According to whether they contain chlorine, they can be divided into chlorine-containing systems and chlorine-free systems. Although chlorine-containing system catalysts have higher activity and selectivity in the early stages of the reaction, However, as time goes by, the loss of chloride ions causes the reaction activity to decrease. Therefore, hydrogen chloride gas needs to be added to the system to maintain the stability of the reaction, and the loss of chloride ions will cause corrosion to the reaction equipment, thereby increasing the Cost of production. In recent years, because the chlorine-free system has better stability and the chlorine-free system completely avoids the problem of equipment corrosion, it has attracted a large number of scientific researchers to explore and study chlorine-free system catalysts. However, its reactivity is far from the It is not as good as the chlorine system, so for this reaction, it is crucial to improve the activity and selectivity of the chlorine-free system catalyst.
无氯体系催化剂载体主要是以Y分子筛体系为主,Y分子筛是一种具有十二元环三维孔道结构的固体酸材料,由六棱柱笼、方钠石笼和超笼组成,由于其独特的孔道结构及离子交换特性在气体分离和催化领域有着重要的应用,目前,工业上普遍采用水热合成法合成Y型分子筛。在水热合成的过程中,硅铝凝胶在一定的温度、压力以及矿化剂的作用下解聚生成分子筛生长所需的“营养物质”。反应一定时间后,生成分子筛晶体,至于生成何种分子筛与硅铝凝胶的组成及反应条件有关。The chlorine-free system catalyst carrier is mainly based on Y molecular sieve system. Y molecular sieve is a solid acid material with a twelve-membered ring three-dimensional channel structure. It is composed of hexagonal prism cage, sodalite cage and super cage. Due to its unique Pore structure and ion exchange characteristics have important applications in the fields of gas separation and catalysis. Currently, hydrothermal synthesis is commonly used in industry to synthesize Y-type molecular sieves. In the process of hydrothermal synthesis, the silica-alumina gel is depolymerized under a certain temperature, pressure and mineralizer to generate "nutrients" required for the growth of molecular sieves. After a certain reaction time, molecular sieve crystals are generated. The type of molecular sieve generated is related to the composition of the silica-alumina gel and the reaction conditions.
为了提高无氯分子筛体系催化剂的活性与选择性,在过去几十年中,研究者们以分子筛为载体的无氯体系催化剂进行了大量的研究,日本UBE公司于1997年首次将NaY分子筛作为载体应用于甲醇气相氧化羰基化间接法反应中,以NaY为载体的催化剂虽然具有良好的稳定性,但是活性却很低,DMC的时空收率仅为200g/(Lcat-1·h)。天津大学通过液体离子交换的形式对NaY分子筛掺杂钾并以此为载体制备催化剂应用于该反应中,利用钾、钯的协同作用提升催化性能,虽然催化性能有了一定的提升,但是其时空收率依旧偏低,为696g/(Lcat-1·h)。目前Y分子筛的应用多限于商用型分子筛,而自主合成骨架掺杂分子筛的过程冗杂,往往采用模板剂、导向剂法,而模板剂会对环境造成一定的污染,与绿色合成概念相悖;导向剂法合成步骤冗杂,影响合成的因素颇多,且通过骨架掺杂异元素来调控载体酸性应用到甲醇气相氧化羰基化间接法反应中的策略还未有报道。In order to improve the activity and selectivity of chlorine-free molecular sieve system catalysts, in the past few decades, researchers have conducted a lot of research on chlorine-free system catalysts using molecular sieves as carriers. In 1997, Japanese UBE Company first used NaY molecular sieves as carriers. When used in the indirect reaction of methanol gas-phase oxidative carbonylation, the catalyst using NaY as a carrier has good stability, but its activity is very low. The space-time yield of DMC is only 200g/(L cat-1 ·h). Tianjin University doped NaY molecular sieve with potassium in the form of liquid ion exchange and used it as a carrier to prepare a catalyst and applied it in this reaction. The synergistic effect of potassium and palladium was used to improve the catalytic performance. Although the catalytic performance has been improved to a certain extent, its space and time limitations The yield is still low, 696g/(L cat-1 ·h). At present, the application of Y molecular sieves is mostly limited to commercial molecular sieves. However, the process of self-synthesizing skeleton-doped molecular sieves is complicated and often uses template agents and directing agent methods. Template agents can cause certain pollution to the environment and are contrary to the concept of green synthesis; guiding agents The synthesis steps are complicated and there are many factors that affect the synthesis. The strategy of regulating the acidity of the carrier by doping the skeleton with foreign elements and applying it to the indirect reaction of methanol gas-phase oxidative carbonylation has not been reported yet.
综上所述,开发一条原位骨架掺杂异元素、合成方法简单、酸性可调控的Y型分子筛合成路线,并将该Y分子筛当作载体应用到甲醇气相氧化羰基化间接法反应中具有非常重要的意义和价值。In summary, it is very promising to develop a Y-type molecular sieve synthesis route with in-situ skeleton doping with foreign elements, simple synthesis method, and adjustable acidity, and use the Y-type molecular sieve as a carrier in the indirect reaction of methanol gas-phase oxidative carbonylation. important meaning and value.
发明内容Contents of the invention
为了解决现有原位骨架掺杂Y型分子筛合成路线的缺点和不足,本发明提供的合成路线中,采用无模板剂,无导向剂法,一步合成骨架掺杂异元素的Y型分子筛,方法简单,绿色环保且缩短了合成时间,减少了合成路线上的影响因素,提高了合成效率,并将其用作载体应用于甲醇气相氧化羰基化间接反应的催化剂中。In order to solve the shortcomings and shortcomings of the existing in-situ skeleton-doped Y-type molecular sieve synthesis route, the synthesis route provided by the invention adopts a template-free and directing-agent-free method to synthesize a Y-type molecular sieve with a skeleton doped with foreign elements in one step. It is simple, green and environmentally friendly and shortens the synthesis time, reduces the influencing factors on the synthesis route, improves the synthesis efficiency, and is used as a carrier in the catalyst for the indirect reaction of methanol gas phase oxidative carbonylation.
根据本申请的一个方面,提供了一种分子筛的制备方法,包括以下步骤:According to one aspect of the present application, a preparation method of molecular sieve is provided, including the following steps:
a)向含有铝源、掺杂异元素源、碱性物质的混合液中滴加硅源,搅拌,静置陈化,得到凝胶状物质;a) Add the silicon source dropwise to the mixed solution containing the aluminum source, the doped foreign element source, and the alkaline substance, stir, and let it stand for aging to obtain a gel-like substance;
b)将凝胶状物质在密闭容器中晶化,抽滤,烘干,得到NaMY型分子筛;b) Crystallize the gel-like substance in a closed container, filter with suction, and dry to obtain NaMY type molecular sieve;
所述掺杂金属源选自镓源或硼源;The doping metal source is selected from a gallium source or a boron source;
其中,所述NaMY型分子筛,M为掺杂异元素源的异元素。Wherein, in the NaMY type molecular sieve, M is a foreign element doped with a foreign element source.
可选地,所述铝源选自铝酸钠、硝酸铝、硫酸铝中的至少一种。Optionally, the aluminum source is selected from at least one of sodium aluminate, aluminum nitrate, and aluminum sulfate.
可选地,所述硅源选自高岭土、硅溶胶、硅酸钠、正硅酸四乙酯中的至少一种。Optionally, the silicon source is selected from at least one of kaolin, silica sol, sodium silicate, and tetraethyl orthosilicate.
可选地,所述镓源选自硝酸镓、硫酸镓、氢氧化镓中的至少一种。Optionally, the gallium source is selected from at least one of gallium nitrate, gallium sulfate, and gallium hydroxide.
可选地,所述硼源选自偏硼酸钠。Optionally, the boron source is selected from sodium metaborate.
可选地,所述碱性物质选自氢氧化钠、氨水中的至少一种。Optionally, the alkaline substance is selected from at least one of sodium hydroxide and ammonia water.
可选地,所述凝胶状物质中(Al2O3+Ga2O3/B2O3):Na2O:SiO2:H2O的摩尔比为1:(10~14):(8~16):(300~600),其中铝源、掺杂异元素源、碱性物质、硅源的摩尔数分别以其金属元素的氧化物的摩尔数计,所述(Al2O3+Ga2O3/B2O3)表示为Al2O3与Ga2O3的总摩尔数或Al2O3与B2O3的总摩尔数。Optionally, the molar ratio of (Al 2 O 3 +Ga 2 O 3 /B 2 O 3 ): Na 2 O: SiO 2 : H 2 O in the gel-like substance is 1: (10~14): (8~16): (300~600), wherein the number of moles of the aluminum source, the doped foreign element source, the alkaline substance and the silicon source are respectively calculated as the number of moles of the oxide of the metal element, and the (Al 2 O 3 +Ga 2 O 3 /B 2 O 3 ) is expressed as the total number of moles of Al 2 O 3 and Ga 2 O 3 or the total number of moles of Al 2 O 3 and B 2 O 3 .
可选地,所述铝源与掺杂异元素源的摩尔比为1:(0.25~5),以铝元素和掺杂异元素的摩尔量计。Optionally, the molar ratio of the aluminum source to the doped foreign element source is 1: (0.25-5), based on the molar amount of the aluminum element and the doped foreign element.
可选地,所述铝源与掺杂异元素源的摩尔比选自1:0.25、1:0.5、1:1、1:1.5、1:2、1:3、1:5中的任意比值或两比值之间的范围值。Optionally, the molar ratio of the aluminum source to the doped foreign element source is selected from any ratio among 1:0.25, 1:0.5, 1:1, 1:1.5, 1:2, 1:3, and 1:5. Or a range of values between two ratios.
可选地,所述铝源与掺杂异元素源的摩尔比为1:(0.25~3)。Optionally, the molar ratio of the aluminum source to the doped foreign element source is 1: (0.25~3).
可选地,所述搅拌的时间为30~180min。Optionally, the stirring time is 30 to 180 minutes.
可选地,所述搅拌的时间选自30min、60min、90min、120min、180min中的任意值或两值之间的范围值。Optionally, the stirring time is selected from any value among 30 min, 60 min, 90 min, 120 min, 180 min or a range value between the two values.
可选地,所述搅拌的时间为60~120min。Optionally, the stirring time is 60 to 120 minutes.
可选地,所述静置陈化的温度为20~65℃,静置陈化的时间为8~48h。Optionally, the static aging temperature is 20-65°C, and the static aging time is 8-48 hours.
可选地,所述静置陈化的温度选自20℃、30℃、45℃、50℃、65℃中的任意值或两值之间的范围值。Optionally, the static aging temperature is selected from any value among 20°C, 30°C, 45°C, 50°C, 65°C or a range between the two values.
可选地,所述静置陈化的时间选自8h、15h、24h、28h、48h中的任意值或两值之间的范围值。Optionally, the static aging time is selected from any value among 8h, 15h, 24h, 28h, 48h or a range value between the two values.
可选地,静置陈化的时间为12~28h。Optionally, the standing aging time is 12 to 28 hours.
可选地,所述晶化的温度为80~120℃,所述晶化的时间为8~48h。Optionally, the crystallization temperature is 80-120°C, and the crystallization time is 8-48 hours.
可选地,所述晶化的温度选自80℃、90℃、100℃、110℃、120℃中的任意值或两值之间的范围值。Optionally, the crystallization temperature is selected from any value among 80°C, 90°C, 100°C, 110°C, 120°C or a range between the two values.
可选地,所述晶化的时间选自8h、12h、24h、30h、48h中的任意值或两值之间的范围值。Optionally, the crystallization time is selected from any value among 8h, 12h, 24h, 30h, 48h or a range value between the two values.
可选地,所述晶化的时间为12~30h。Optionally, the crystallization time is 12 to 30 hours.
可选地,所述烘干的温度为80~120℃,烘干的时间为6~18h。Optionally, the drying temperature is 80-120°C, and the drying time is 6-18 hours.
可选地,所述烘干的温度选自80℃、90℃、100℃、110℃、120℃中任意值或两值之间的范围值。Optionally, the drying temperature is selected from any value among 80°C, 90°C, 100°C, 110°C, 120°C or a range between the two values.
可选地,所述烘干的时间选自6h、8h、12h、16h、18h中的任意值或两值之间的范围值。Optionally, the drying time is selected from any value among 6h, 8h, 12h, 16h, 18h or a range value between the two values.
根据本申请的又一个方面,提供了一种基于上述制备方法得到的分子筛在气相氧化羰基化间接合成碳酸二甲酯中的应用。According to another aspect of the present application, there is provided an application of the molecular sieve obtained based on the above preparation method in the indirect synthesis of dimethyl carbonate by gas phase oxidative carbonylation.
所述分子筛的具体的应用方式为:作为载体用于气相氧化羰基化间接合成碳酸二甲酯催化剂中;The specific application mode of the molecular sieve is as follows: used as a carrier in the gas phase oxidative carbonylation indirect synthesis of dimethyl carbonate catalyst;
所述催化剂包括分子筛、活性组分和助剂组分,所述活性组分和助剂组分负载于所述分子筛上;The catalyst includes a molecular sieve, an active component and an auxiliary component, and the active component and auxiliary component are loaded on the molecular sieve;
所述活性组分为活性金属元素钯,所述助剂组分为助剂金属元素铜。The active component is active metal element palladium, and the auxiliary component is auxiliary metal element copper.
可选地,所述活性组分占催化剂质量百分含量的0.5~5wt%。Optionally, the active component accounts for 0.5 to 5 wt% of the mass percentage of the catalyst.
可选地,所述活性组分占催化剂质量百分含量的0.5wt%、1wt%、3wt%、4wt%、5wt%中的任意值或两值之间的范围值。Optionally, the active component accounts for any value among 0.5wt%, 1wt%, 3wt%, 4wt%, 5wt% of the catalyst mass percentage or a range between the two values.
可选地,所述活性组分占催化剂质量百分含量的0.5~3%。Optionally, the active component accounts for 0.5 to 3% of the mass percentage of the catalyst.
可选地,所述助剂组分占催化剂质量百分含量的0.5~5wt%。Optionally, the auxiliary component accounts for 0.5 to 5 wt% of the mass percentage of the catalyst.
可选地,所述助剂组分占催化剂质量百分含量的0.5wt%、1wt%、3wt%、4wt%、5wt%中的任意值或两值之间的范围值。Optionally, the auxiliary component accounts for any value among 0.5wt%, 1wt%, 3wt%, 4wt%, 5wt% of the catalyst mass percentage or a range between the two values.
可选地,所述助剂组分占催化剂质量百分含量的0.5~3%。Optionally, the auxiliary component accounts for 0.5 to 3% of the mass percentage of the catalyst.
作为一种具体的实施方法,本申请应用于甲醇气相氧化羰基化间接合成碳酸二甲酯的催化剂的制备过程为:As a specific implementation method, the preparation process of the catalyst applied to the indirect synthesis of dimethyl carbonate by methanol gas-phase oxidative carbonylation is as follows:
A、将铝源、镓源或者硼源溶于去离子水中,再向其中加入碱性物质,待其完全溶解后,在搅拌的条件下向该溶液中缓慢滴加硅源,随后继续搅拌30-180min,优选为60-120min,静置陈化8-48h,优选为12-28h,陈化温度为20-65℃,优选为30-40℃,形成凝胶,将其转移至水热釜中,晶化8-48h,优选为12-30h,晶化温度为80-120℃。A. Dissolve the aluminum source, gallium source or boron source in deionized water, and then add the alkaline substance to it. After it is completely dissolved, slowly add the silicon source to the solution under stirring conditions, and then continue stirring for 30 -180min, preferably 60-120min, let stand for 8-48h, preferably 12-28h, aging temperature is 20-65℃, preferably 30-40℃, form a gel, transfer it to a hydrothermal kettle Among them, the crystallization time is 8-48h, preferably 12-30h, and the crystallization temperature is 80-120°C.
上述凝胶中,Na元素以Na2O的形式来表述,Al元素以Al2O3的形式来表述,Si元素以SiO2的形式来表述,Ga、B元素是以Ga2O3和B2O3的形式来表述,该凝胶中(Al2O3+Ga2O3/B2O3)、Na2O、SiO2、H2O的摩尔比为1:10-14:8-16:300-600,其中镓/硼源与铝源的比例为0.25-5,优选范围为0.25-3。In the above gel, the Na element is expressed in the form of Na 2 O, the Al element is expressed in the form of Al 2 O 3 , the Si element is expressed in the form of SiO 2 , and the Ga and B elements are expressed in the form of Ga 2 O 3 and B Expressed in the form of 2 O 3 , the molar ratio of (Al 2 O 3 +Ga 2 O 3 /B 2 O 3 ), Na 2 O, SiO 2 and H 2 O in the gel is 1:10-14:8 -16:300-600, in which the ratio of gallium/boron source to aluminum source is 0.25-5, and the preferred range is 0.25-3.
其中铝源可以是铝酸钠、硝酸铝、硫酸铝中的一种或多种;硅源可以是高岭土、硅溶胶、硅酸钠、正硅酸四乙酯中的一种或多种;镓源可以是硝酸镓、硫酸镓、氢氧化镓的一种或多种;硼源可以是偏硼酸钠;碱性物质可以是氢氧化钠、氨水的一种或多种。The aluminum source can be one or more of sodium aluminate, aluminum nitrate, and aluminum sulfate; the silicon source can be one or more of kaolin, silica sol, sodium silicate, and tetraethyl orthosilicate; gallium The source can be one or more of gallium nitrate, gallium sulfate, and gallium hydroxide; the boron source can be sodium metaborate; the alkaline substance can be one or more of sodium hydroxide and ammonia.
B、将晶化后的物质进行抽滤、洗涤、烘干,烘干时间为6-15h,优选为8-12h,干燥后即得NaMY-x型分子筛(x为掺杂元素与铝的摩尔比;M为掺杂的其他元素:B、Ga)。B. Carry out suction filtration, washing and drying of the crystallized material. The drying time is 6-15h, preferably 8-12h. After drying, NaMY-x type molecular sieve is obtained (x is the mole of doping element and aluminum Ratio; M is other doped elements: B, Ga).
C、对得到的NaMY-x分子筛进行活性组分负载,采用离子交换蒸氨法制备应用于甲醇气相氧化羰基化反应的催化剂,具体制备方法如下:C. Load the active components on the obtained NaMY-x molecular sieve, and use the ion exchange ammonia steaming method to prepare a catalyst for the gas phase oxidative carbonylation reaction of methanol. The specific preparation method is as follows:
C-1:将NaMY-x分子筛置于氢氧化钠溶液中浸泡12~48h,干燥备用;C-1: Soak the NaMY-x molecular sieve in sodium hydroxide solution for 12 to 48 hours, dry and set aside;
C-2:将含有钯盐和铜盐的混合溶液用氨水和稀盐酸调节pH为8~13;C-2: Adjust the pH of the mixed solution containing palladium salt and copper salt to 8-13 with ammonia water and dilute hydrochloric acid;
C-3:在30℃下,将C-1制得的分子筛加入C-2制得的混合溶液中,200~500r/min转速下磁力搅拌3~5h,使混合溶液中的金属阳离子与载体中的阳离子充分交换;C-3: At 30°C, add the molecular sieve prepared in C-1 to the mixed solution prepared in C-2, stir magnetically at 200-500r/min for 3-5 hours, so that the metal cations in the mixed solution and the carrier The cations in are fully exchanged;
C-4:将C-3中离子交换后的溶液与70~90℃下恒温蒸发其中的氨,直至pH为中性,抽滤、水洗,再于100~110℃下烘干5~7h,得到钯基催化剂。该钯基催化剂,其化学式表示为PdCuNaMY-x(M为掺杂的其他元素:B、Ga,x为掺杂元素与铝的摩尔比),其中Pd为活性金属,Cu为助剂,NaMY-x为载体;其中Pd占催化剂质量百分含量0.5~5wt%,优选为0.5~3%;Cu占催化剂质量百分含量的0.5~5wt%,优选为0.5~3%。以本发明为载体的催化剂不仅仅提升了一氧化碳的转化率,时空收率也显著提高。C-4: Evaporate the ammonia in the ion-exchanged solution in C-3 at a constant temperature of 70 to 90°C until the pH is neutral, filter, wash with water, and then dry at 100 to 110°C for 5 to 7 hours. A palladium-based catalyst is obtained. The chemical formula of this palladium-based catalyst is PdCuNaMY-x (M is other doped elements: B, Ga, x is the molar ratio of doping elements to aluminum), where Pd is an active metal, Cu is an auxiliary, NaMY- x is the carrier; Pd accounts for 0.5 to 5 wt% of the catalyst mass, preferably 0.5 to 3%; Cu accounts for 0.5 to 5 wt% of the catalyst mass, preferably 0.5 to 3%. The catalyst using the present invention as a carrier not only improves the conversion rate of carbon monoxide, but also significantly improves the space-time yield.
本申请能产生的有益效果包括:The beneficial effects this application can produce include:
1)本申请所提供的制备方法,采用无模板剂、无导向剂法,一步法合成骨架掺杂异元素的Y型分子筛,方法简单,绿色环保且缩短了合成时间,减少了合成路线上的影响因素。1) The preparation method provided in this application adopts a template-free and guide-agent-free method to synthesize a Y-type molecular sieve with a skeleton doped with foreign elements in one step. The method is simple, green and environmentally friendly, shortens the synthesis time, and reduces the number of steps on the synthesis route. influencing factors.
2)本申请所提供的Y型分子筛应用于甲醇气相氧化羰基化间接合成碳酸二甲酯的催化剂,因Y型分子筛引入掺杂元素的电负性与铝的差异来调节载体的酸性,使得Pd更容易处于氧化态,促进CO的活化,提升该反应中CO转化率和碳酸二甲酯的收率,不易被反应气还原形成零价钯而失活导致活性下降。2) The Y-type molecular sieve provided in this application is used as a catalyst for the indirect synthesis of dimethyl carbonate by the gas-phase oxidative carbonylation of methanol. Because the Y-type molecular sieve introduces the difference between the electronegativity of the doping element and aluminum to adjust the acidity of the carrier, the Pd It is more likely to be in the oxidation state, promote the activation of CO, improve the CO conversion rate and the yield of dimethyl carbonate in the reaction, and is not easily reduced by the reaction gas to form zero-valent palladium and deactivated, resulting in a decrease in activity.
附图说明Description of the drawings
图1为本申请实施例1~4和对比例1的分子筛的XRD谱图;Figure 1 is the XRD spectrum of the molecular sieves of Examples 1 to 4 and Comparative Example 1 of the present application;
图2为本申请实施例5~8和对比例1的分子筛的XRD谱图;Figure 2 is the XRD spectrum of the molecular sieves of Examples 5 to 8 of the present application and Comparative Example 1;
图3为本申请骨架掺杂镓、硼分子筛以及对比例分子筛的红外谱图。Figure 3 is the infrared spectrum of the framework-doped gallium and boron molecular sieves of the present application and the comparative example molecular sieves.
具体实施方式Detailed ways
下面结合实施例详述本申请,但本申请并不局限于这些实施例。The present application will be described in detail below with reference to examples, but the present application is not limited to these examples.
如无特别说明,本申请的实施例中的原料通过商业途径购买。Unless otherwise stated, the raw materials in the examples of this application were purchased through commercial channels.
本申请的实施例中分析方法如下:The analysis methods in the examples of this application are as follows:
利用Rigaku MiniFlexII型X射线粉末衍射仪获得分子筛的XRD谱图;The XRD spectrum of the molecular sieve was obtained using a Rigaku MiniFlexII X-ray powder diffractometer;
利用Bruker Vertex70 FT-IR获得分子筛的红外谱图。The infrared spectrum of the molecular sieve was obtained using Bruker Vertex70 FT-IR.
本申请的实施例中CO转化率、碳酸二甲酯时空收率计算如下:In the examples of this application, the CO conversion rate and dimethyl carbonate space-time yield are calculated as follows:
本申请的实施例中,CO转化率以及碳酸二甲酯时空收率都基于碳摩尔数进行计算。In the examples of this application, the CO conversion rate and the space-time yield of dimethyl carbonate are calculated based on the number of carbon moles.
实施例1Example 1
称取13.61g氢氧化钠、1.40g偏铝酸钠、2.18g硝酸镓溶解到76.53g去离子水中,待其完全溶解后,边搅拌边逐滴滴加55.54g硅溶胶,待滴加结束后,搅拌2h,在35℃下静置陈化28h,将此时得到的混合凝胶状液体转移至水热釜中,于100℃下加热12h,抽滤、洗涤、120℃下烘干6h,即得分子筛NaGaY-0.5(分子筛中镓铝的理论摩尔比为0.5)。Weigh 13.61g sodium hydroxide, 1.40g sodium metaaluminate, and 2.18g gallium nitrate and dissolve them into 76.53g deionized water. After they are completely dissolved, add 55.54g silica sol drop by drop while stirring. After the dripping is completed, , stir for 2 hours, let stand for aging at 35°C for 28 hours, transfer the mixed gel-like liquid obtained at this time to a hydrothermal kettle, heat at 100°C for 12 hours, filter, wash, and dry at 120°C for 6 hours. That is, the molecular sieve NaGaY-0.5 is obtained (the theoretical molar ratio of gallium to aluminum in the molecular sieve is 0.5).
实施例2Example 2
称取13.78g氢氧化钠、1.05g偏铝酸钠、5.48g硫酸镓溶解到76.50g去离子水中,待其完全溶解后,加入51.89g硅酸钠,待其混合均匀后,搅拌2h,在36℃下静置陈化24h,将此时得到的混合凝胶状液体转移至水热釜中,于100℃下加热12h,抽滤、洗涤、100℃下烘干8h,即得分子筛NaGaY-1.0(分子筛中镓铝的理论摩尔比为1.0)。Weigh 13.78g sodium hydroxide, 1.05g sodium metaaluminate, and 5.48g gallium sulfate and dissolve them in 76.50g deionized water. After they are completely dissolved, add 51.89g sodium silicate. After they are mixed evenly, stir for 2 hours. Aging for 24 hours at 36°C, the mixed gel-like liquid obtained at this time is transferred to a hydrothermal kettle, heated at 100°C for 12 hours, filtered, washed, and dried at 100°C for 8 hours to obtain the molecular sieve NaGaY- 1.0 (the theoretical molar ratio of gallium to aluminum in molecular sieves is 1.0).
实施例3Example 3
称取12.15g氨水、3.51g硫酸铝、3.93g硝酸镓溶解到76.47g去离子水中,待其完全溶解后,边搅拌边逐滴滴加48.85g正硅酸四乙酯,待滴加结束后,搅拌2h,在30℃下静置陈化24h,将此时得到的混合凝胶状液体转移至水热釜中,于100℃下加热12h,抽滤、洗涤、80℃下烘干9h,即得分子筛NaGaY-1.5(分子筛中镓铝的理论摩尔比为1.5)。Weigh 12.15g ammonia, 3.51g aluminum sulfate, and 3.93g gallium nitrate and dissolve them into 76.47g deionized water. After they are completely dissolved, add 48.85g tetraethyl orthosilicate dropwise while stirring. After the dripping is completed, , stir for 2 hours, and let stand for aging at 30°C for 24 hours. Transfer the mixed gel-like liquid obtained at this time to a hydrothermal kettle, heat at 100°C for 12 hours, filter, wash, and dry at 80°C for 9 hours. That is, the molecular sieve NaGaY-1.5 is obtained (the theoretical molar ratio of gallium and aluminum in the molecular sieve is 1.5).
实施例4Example 4
称取13.95g氢氧化钠、1.82g硝酸铝、2.06g氢氧化镓溶解到76.45g去离子水中,待其完全溶解后,边搅拌边逐滴滴加55.54g硅溶胶,待滴加结束后,搅拌2h,在36℃下静置陈化20h,将此时得到的混合凝胶状液体转移至水热釜中,于100℃下加热12h,抽滤、洗涤、120℃下烘干14h,即得分子筛NaGaY-2.0(分子筛中镓铝的理论摩尔比为2.0)。Weigh 13.95g sodium hydroxide, 1.82g aluminum nitrate, and 2.06g gallium hydroxide and dissolve them into 76.45g deionized water. After they are completely dissolved, add 55.54g silica sol drop by drop while stirring. After the dripping is completed, Stir for 2 hours, let stand for aging at 36°C for 20 hours, transfer the mixed gel-like liquid obtained at this time to a hydrothermal kettle, heat at 100°C for 12 hours, filter, wash, and dry at 120°C for 14 hours, that is The molecular sieve NaGaY-2.0 was obtained (the theoretical molar ratio of gallium to aluminum in the molecular sieve is 2.0).
实施例5Example 5
称取11.23g氢氧化钠、1.68g偏铝酸钠、0.56g偏硼酸钠溶解到76.23g去离子水中,待其完全溶解后,边搅拌边逐滴滴加55.54g硅溶胶,待滴加结束后,搅拌2h,在34℃下静置陈化15h,将此时得到的混合凝胶状液体转移至水热釜中,于100℃下加热12h,抽滤、洗涤、120℃下烘干6h,即得分子筛NaBY-0.25(分子筛中硼铝的理论摩尔比为0.25)。Weigh 11.23g sodium hydroxide, 1.68g sodium metaaluminate, and 0.56g sodium metaborate and dissolve them into 76.23g deionized water. After they are completely dissolved, add 55.54g silica sol drop by drop while stirring until the addition is completed. Afterwards, stir for 2 hours, let stand for aging at 34°C for 15 hours, transfer the mixed gel-like liquid obtained at this time to a hydrothermal kettle, heat at 100°C for 12 hours, suction filter, wash, and dry at 120°C for 6 hours. , that is, the molecular sieve NaBY-0.25 is obtained (the theoretical molar ratio of boron and aluminum in the molecular sieve is 0.25).
实施例6Example 6
称取11.23g氢氧化钠、5.84g硫酸铝、0.87g偏硼酸钠溶解到76.77g去离子水中,待其完全溶解后,边搅拌边逐滴滴加48.85g正硅酸四乙酯,待滴加结束后,搅拌2h,在32℃下静置陈化12h,将此时得到的混合凝胶状液体转移至水热釜中,于100℃下加热12h,抽滤、洗涤、100℃下烘干9h,即得分子筛NaBY-0.5(分子筛中硼铝的理论摩尔比为0.5)。Weigh 11.23g sodium hydroxide, 5.84g aluminum sulfate, and 0.87g sodium metaborate and dissolve it into 76.77g deionized water. After it is completely dissolved, add 48.85g tetraethyl orthosilicate drop by drop while stirring. Wait until it drips. After the addition is completed, stir for 2 hours and let stand for 12 hours at 32°C. Transfer the mixed gel-like liquid obtained at this time to a hydrothermal kettle, heat it at 100°C for 12 hours, suction filter, wash, and dry at 100°C. After drying for 9 hours, the molecular sieve NaBY-0.5 is obtained (the theoretical molar ratio of boron and aluminum in the molecular sieve is 0.5).
实施例7Example 7
称取11.23g氢氧化钠、3.12g硝酸铝、1.20g偏硼酸钠溶解到76.68g去离子水中,待其完全溶解后,边搅拌边逐滴滴加55.54g硅溶胶,待滴加结束后,搅拌2h,在30℃下静置陈化24h,将此时得到的混合凝胶状液体转移至水热釜中,于100℃下加热12h,抽滤、洗涤、120℃下烘干6h,即得分子筛NaBY-0.75(分子筛中硼铝的理论摩尔比为0.75)。Weigh 11.23g sodium hydroxide, 3.12g aluminum nitrate, and 1.20g sodium metaborate and dissolve them into 76.68g deionized water. After they are completely dissolved, add 55.54g silica sol drop by drop while stirring. After the dripping is completed, Stir for 2 hours, let stand for 24 hours at 30°C, transfer the mixed gel-like liquid obtained at this time to a hydrothermal kettle, heat at 100°C for 12 hours, filter, wash, and dry at 120°C for 6 hours, that is The molecular sieve NaBY-0.75 was obtained (the theoretical molar ratio of boron and aluminum in the molecular sieve is 0.75).
实施例8Example 8
称取11.23g氢氧化钠、1.04g偏铝酸钠、1.30g偏硼酸钠溶解到76.63g去离子水中,待其完全溶解后,边搅拌边逐滴滴加55.54g硅溶胶,待滴加结束后,搅拌2h,在30℃下静置陈化24h,将此时得到的混合凝胶状液体转移至水热釜中,于100℃下加热12h,抽滤、洗涤、80℃下烘干10h,即得分子筛NaBY-1.0(分子筛中硼铝的理论摩尔比为1.0)。Weigh 11.23g sodium hydroxide, 1.04g sodium metaaluminate, and 1.30g sodium metaborate and dissolve them into 76.63g deionized water. After they are completely dissolved, add 55.54g silica sol drop by drop while stirring until the addition is completed. Afterwards, stir for 2 hours, and let stand for aging at 30°C for 24 hours. Transfer the mixed gel-like liquid obtained at this time to a hydrothermal kettle, heat at 100°C for 12 hours, suction filter, wash, and dry at 80°C for 10 hours. , that is, the molecular sieve NaBY-1.0 is obtained (the theoretical molar ratio of boron and aluminum in the molecular sieve is 1.0).
对比例1Comparative example 1
称取11.60g氨水、2.09g偏铝酸钠溶解到76.52g去离子水中,待其完全溶解后,边搅拌边逐滴滴加55.54g硅溶胶,待滴加结束后,搅拌2h,在30℃下静置陈化24h,将此时得到的混合凝胶状液体转移至水热釜中,于100℃下加热12h,抽滤、洗涤、100℃下烘干7h,即得分子筛NaY。Weigh 11.60g ammonia water and 2.09g sodium metaaluminate and dissolve them into 76.52g deionized water. After they are completely dissolved, add 55.54g silica sol dropwise while stirring. After the dripping is completed, stir for 2 hours and incubate at 30°C. Let it stand for aging for 24 hours. Transfer the mixed gel-like liquid obtained at this time to a hydrothermal kettle, heat it at 100°C for 12 hours, filter, wash, and dry at 100°C for 7 hours to obtain the molecular sieve NaY.
对比例2Comparative example 2
称取13.61g氢氧化钠、2.18g偏铝酸钠、3.98g硝酸镓、55.54g硅溶胶溶解到76.53g去离子水中,搅拌2h,在35℃下静置陈化28h,将此时得到的混合溶胶状液体转移至水热釜中,于100℃下加热12h,抽滤、洗涤,在120℃下烘干6h,得到分子筛NaGaY-0.5。Weigh 13.61g sodium hydroxide, 2.18g sodium metaaluminate, 3.98g gallium nitrate, and 55.54g silica sol and dissolve them in 76.53g deionized water, stir for 2 hours, and let stand for 28 hours at 35°C. The mixed sol-like liquid was transferred to a hydrothermal kettle, heated at 100°C for 12 hours, filtered, washed, and dried at 120°C for 6 hours to obtain molecular sieve NaGaY-0.5.
应用例Application examples
将实施例1至8以及对比例1、2的十种样品为载体,采用离子交换法负载活性金属Pd2+,助剂Cu2+,以此来制备甲醇气相氧化羰基化间接法反应的催化剂,具体操作为将0.0385g硝酸铜溶于10ml去离子水中,待其溶解后,向其中滴加102微升硝酸钯溶液,待混合均匀后,向其中滴加1ml28%浓氨水,继续搅拌0.5h得钯铜氨混合溶液;将载体称取1g置于钯铜氨混合溶液中,室温下搅拌6h,抽滤,于100℃烘箱中过夜干燥,得到催化剂前驱体。The ten samples of Examples 1 to 8 and Comparative Examples 1 and 2 were used as carriers, and the active metal Pd 2+ and the additive Cu 2+ were loaded using the ion exchange method to prepare a catalyst for the indirect reaction of methanol gas phase oxidative carbonylation. , the specific operation is to dissolve 0.0385g copper nitrate in 10ml deionized water, after it is dissolved, add 102 microliters of palladium nitrate solution dropwise, and after mixing evenly, add 1ml of 28% concentrated ammonia solution dropwise, and continue stirring for 0.5h. Obtain a mixed solution of palladium and cupric ammonia; weigh 1g of the carrier into the mixed solution of palladium and cupric ammonia, stir at room temperature for 6 hours, filter with suction, and dry in a 100°C oven overnight to obtain a catalyst precursor.
将上述催化剂前驱体置于200℃马弗炉中煅烧4h,得到相应的催化剂。用ICP测试催化剂中活性钯、助剂铜的含量,结果见表1。The above catalyst precursor was calcined in a muffle furnace at 200°C for 4 hours to obtain the corresponding catalyst. Use ICP to test the content of active palladium and additive copper in the catalyst. The results are shown in Table 1.
将焙烧后的催化剂粉碎过筛,筛分出粒度为20目的催化剂颗粒用于下面的活性表征实验。The roasted catalyst was pulverized and sieved, and catalyst particles with a particle size of 20 mesh were screened out for the following activity characterization experiments.
催化剂活性测试实验:在气-固相固定床反应器中,取上述催化剂颗粒200mg装填入反应管中部,反应温度为120℃,空速为3600h-1,常压下反应;原料组成分别为CO 1.5ml/min;CH3ONO为5.0ml/min;N2为5.5ml/min;反应物在催化剂表面发生反应,生成含碳酸二甲酯的反应物,其评价结果见表1。Catalyst activity test experiment: In a gas-solid phase fixed bed reactor, 200 mg of the above catalyst particles are loaded into the middle of the reaction tube. The reaction temperature is 120°C, the space velocity is 3600h -1 , and the reaction is performed under normal pressure; the raw material compositions are: CO 1.5ml/min; CH 3 ONO is 5.0ml/min; N 2 is 5.5ml/min; the reactants react on the catalyst surface to generate reactants containing dimethyl carbonate. The evaluation results are shown in Table 1.
表1Table 1
由表1可以得知,CO的转化率为57%~70%,碳酸二甲酯的时空收率为1065~1500g·kg-1 cath-1。同时还可以看出,使用掺杂了异金属元素的分子筛有效提高了CO的转化率以及碳酸二甲酯的时空收率。It can be seen from Table 1 that the conversion rate of CO is 57% to 70%, and the space-time yield of dimethyl carbonate is 1065 to 1500g·kg -1 cat h -1 . At the same time, it can also be seen that the use of molecular sieves doped with different metal elements effectively improves the conversion rate of CO and the space-time yield of dimethyl carbonate.
通过图1和图2可知,该图谱中将本发明合成的分子筛与标准卡片的峰进行对比,在引入镓、硼替代骨架铝的位置后并未破坏NaY分子筛的骨架结构,扔保持NaY分子筛的晶型。且通过图1可以发现硅胶的添加顺序对于分子筛的合成有着非常重要的作用。It can be seen from Figures 1 and 2 that the peaks of the molecular sieve synthesized by the present invention and the standard card are compared in the spectrum. After the introduction of gallium and boron to replace the position of the framework aluminum, the framework structure of the NaY molecular sieve is not destroyed, and the structure of the NaY molecular sieve is maintained. Crystal form. And from Figure 1, we can find that the order of adding silica gel plays a very important role in the synthesis of molecular sieves.
通过图3的红外谱图可知,红外震动峰的偏移证明镓、硼引入了分子筛骨架。From the infrared spectrum in Figure 3, it can be seen that the shift of the infrared vibration peak proves that gallium and boron are introduced into the molecular sieve framework.
以上所述,仅是本申请的几个实施例,并非对本申请做任何形式的限制,虽然本申请以较佳实施例揭示如上,然而并非用以限制本申请,任何熟悉本专业的技术人员,在不脱离本申请技术方案的范围内,利用上述揭示的技术内容做出些许的变动或修饰均等同于等效实施案例,均属于技术方案范围内。The above are only a few embodiments of the present application, and are not intended to limit the present application in any way. Although the present application is disclosed as above with preferred embodiments, they are not intended to limit the present application. Any skilled person familiar with this field, Without departing from the scope of the technical solution of this application, slight changes or modifications made using the technical content disclosed above are equivalent to equivalent implementation examples and fall within the scope of the technical solution.
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210992397.1A CN115304078B (en) | 2022-08-18 | 2022-08-18 | A kind of preparation method of molecular sieve and its application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210992397.1A CN115304078B (en) | 2022-08-18 | 2022-08-18 | A kind of preparation method of molecular sieve and its application |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115304078A CN115304078A (en) | 2022-11-08 |
CN115304078B true CN115304078B (en) | 2023-10-03 |
Family
ID=83862778
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210992397.1A Active CN115304078B (en) | 2022-08-18 | 2022-08-18 | A kind of preparation method of molecular sieve and its application |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115304078B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0820561A (en) * | 1994-07-05 | 1996-01-23 | Ube Ind Ltd | Method for producing carbonate ester |
CN103204517A (en) * | 2012-01-16 | 2013-07-17 | 湖北大学 | Method for synthesizing microporous molecular sieve with methylene doped in skeleton without template |
CN107934985A (en) * | 2017-10-25 | 2018-04-20 | 陕西聚洁瀚化工有限公司 | The preparation method of high silica alumina ratio boron sodium Y type molecular sieve |
CN112939013A (en) * | 2021-03-10 | 2021-06-11 | 中国石油大学(北京) | High-silicon small-grain Y-type molecular sieve and preparation method and application of template-free molecular sieve |
CN114684831A (en) * | 2020-12-31 | 2022-07-01 | 中海油天津化工研究设计院有限公司 | High-silica-alumina-ratio Y molecular sieve with high relative crystallinity and preparation method thereof |
-
2022
- 2022-08-18 CN CN202210992397.1A patent/CN115304078B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0820561A (en) * | 1994-07-05 | 1996-01-23 | Ube Ind Ltd | Method for producing carbonate ester |
CN103204517A (en) * | 2012-01-16 | 2013-07-17 | 湖北大学 | Method for synthesizing microporous molecular sieve with methylene doped in skeleton without template |
CN107934985A (en) * | 2017-10-25 | 2018-04-20 | 陕西聚洁瀚化工有限公司 | The preparation method of high silica alumina ratio boron sodium Y type molecular sieve |
CN114684831A (en) * | 2020-12-31 | 2022-07-01 | 中海油天津化工研究设计院有限公司 | High-silica-alumina-ratio Y molecular sieve with high relative crystallinity and preparation method thereof |
CN112939013A (en) * | 2021-03-10 | 2021-06-11 | 中国石油大学(北京) | High-silicon small-grain Y-type molecular sieve and preparation method and application of template-free molecular sieve |
Non-Patent Citations (1)
Title |
---|
无导向剂法合成高结晶度NaY分子筛;王瑞婷;孙详彧;于丽娟;张培青;;烟台大学学报(自然科学与工程版)(02);第126页 * |
Also Published As
Publication number | Publication date |
---|---|
CN115304078A (en) | 2022-11-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103084201B (en) | Copper-based catalyst prepared by ammonia distillation method and application of copper-based catalyst in oxidation carbonylation synthesis of alkyl carbonate | |
CN111943227B (en) | A kind of preparation method of Prussian white analogue with low defect and low water content | |
CN108906050B (en) | A carbon nanotube-doped copper-aluminum composite metal oxide denitration catalyst and its preparation method and application | |
CN109399660B (en) | Hierarchical Pore Beta Molecular Sieve, Hierarchical Pore Beta Molecular Sieve Ca-Ni Catalyst and Preparation Method | |
WO2022156391A1 (en) | Preparation method for core-shell titanium-silicon molecular sieve coated zinc-cadmium alloy particle catalyst, and method for preparing n,n-diethylhydroxylamine by using core-shell titanium-silicon molecular sieve coated zinc-cadmium alloy particle catalyst | |
CN110270368B (en) | A solution-free method for the synthesis of carbon-chemical embedded catalyst materials | |
WO2020253712A1 (en) | Catalyst for directly converting syngas to prepare low-carbon olefin and preparation method therefor | |
CN108160041A (en) | A kind of sulfide in gas deep absorption desulfurization agent and preparation method | |
CN115304078B (en) | A kind of preparation method of molecular sieve and its application | |
CN110813303A (en) | Preparation of flower-like iron-doped cerium dioxide with porous structure and desulfurization application of flower-like iron-doped cerium dioxide | |
CN116730825B (en) | A microwave-assisted synthesis method for regulating the morphology of aluminum formate using solvent and its application | |
CN116474780B (en) | For direct CO2Catalyst for preparing ethanol by hydrogenation, and preparation method and application thereof | |
CN107162015A (en) | A kind of preparation method and applications and application method of the molecular sieves of LaZSM 5 | |
CN111992217A (en) | Catalyst for preparing alpha-olefin with high selectivity, preparation method and application | |
CN114618573B (en) | Embedded Ni-based catalyst, preparation method and application | |
CN102814193B (en) | Copper-composite molecular sieve catalyst used for synthesis of diethyl carbonate through gas-phase oxidative carbonylation and its preparation method | |
CN114247472B (en) | A synthesis method of mesoporous MFI zeolite coated ultra-small multi-metallic nanoparticles | |
CN105315163A (en) | Preparation method and application of templating agent | |
CN114751424A (en) | Fe-ZSM-5 molecular sieve, and preparation method and application thereof | |
CN113522293A (en) | Preparation method and application of a catalyst for hydrogen production by dry reforming of methane and carbon dioxide | |
CN113385232A (en) | Preparation method of nano bismuth chromate/graphene modified MOFs composite material based on 1H-imidazole-2-methylamine ligand | |
CN113443637B (en) | Double-acid-center zeolite molecular sieve and preparation method and application thereof | |
CN116037211B (en) | Cobalt-based complex catalyst and preparation method and application thereof | |
CN115181018B (en) | A method for directional synthesis of valeric acid using γ-valerolactone | |
CN116196936A (en) | Spherical micro-mesoporous composite material catalyst for preparing hydrogen by reforming methanol steam and preparation method and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |