CN115294406A - 基于属性的多模态可解释分类的方法与系统 - Google Patents
基于属性的多模态可解释分类的方法与系统 Download PDFInfo
- Publication number
- CN115294406A CN115294406A CN202211206014.XA CN202211206014A CN115294406A CN 115294406 A CN115294406 A CN 115294406A CN 202211206014 A CN202211206014 A CN 202211206014A CN 115294406 A CN115294406 A CN 115294406A
- Authority
- CN
- China
- Prior art keywords
- attribute
- modal
- strength
- indicates
- loss function
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 36
- 238000003066 decision tree Methods 0.000 claims abstract description 41
- 238000010606 normalization Methods 0.000 claims abstract description 31
- 238000013527 convolutional neural network Methods 0.000 claims description 22
- 230000004927 fusion Effects 0.000 claims description 13
- 238000011176 pooling Methods 0.000 claims description 10
- 238000000605 extraction Methods 0.000 claims description 7
- 238000004364 calculation method Methods 0.000 claims description 5
- 239000011159 matrix material Substances 0.000 claims description 4
- 238000005457 optimization Methods 0.000 claims description 3
- 238000009499 grossing Methods 0.000 claims description 2
- 230000006870 function Effects 0.000 abstract description 60
- 238000012549 training Methods 0.000 abstract description 10
- 230000000295 complement effect Effects 0.000 abstract description 3
- 238000013473 artificial intelligence Methods 0.000 description 7
- 238000003491 array Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 235000000332 black box Nutrition 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/764—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using classification, e.g. of video objects
- G06V10/765—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using classification, e.g. of video objects using rules for classification or partitioning the feature space
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computing arrangements using knowledge-based models
- G06N5/04—Inference or reasoning models
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/77—Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
- G06V10/80—Fusion, i.e. combining data from various sources at the sensor level, preprocessing level, feature extraction level or classification level
- G06V10/806—Fusion, i.e. combining data from various sources at the sensor level, preprocessing level, feature extraction level or classification level of extracted features
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/82—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Evolutionary Computation (AREA)
- Software Systems (AREA)
- Computer Vision & Pattern Recognition (AREA)
- General Physics & Mathematics (AREA)
- Artificial Intelligence (AREA)
- Computing Systems (AREA)
- Physics & Mathematics (AREA)
- Databases & Information Systems (AREA)
- Medical Informatics (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Multimedia (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Abstract
Description
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211206014.XA CN115294406B (zh) | 2022-09-30 | 2022-09-30 | 基于属性的多模态可解释分类的方法与系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211206014.XA CN115294406B (zh) | 2022-09-30 | 2022-09-30 | 基于属性的多模态可解释分类的方法与系统 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115294406A true CN115294406A (zh) | 2022-11-04 |
CN115294406B CN115294406B (zh) | 2022-12-20 |
Family
ID=83833324
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211206014.XA Active CN115294406B (zh) | 2022-09-30 | 2022-09-30 | 基于属性的多模态可解释分类的方法与系统 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115294406B (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116884094A (zh) * | 2023-09-07 | 2023-10-13 | 武汉理工大学 | 基于视角和行为解耦的多视角行为识别方法及系统 |
CN118658184A (zh) * | 2024-08-21 | 2024-09-17 | 西安科技大学 | 一种基于特征增强与ds理论的多光谱人员检测方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02195473A (ja) * | 1989-01-25 | 1990-08-02 | Hitachi Ltd | 学習システムにおける属性値予測方法 |
US20190122073A1 (en) * | 2017-10-23 | 2019-04-25 | The Charles Stark Draper Laboratory, Inc. | System and method for quantifying uncertainty in reasoning about 2d and 3d spatial features with a computer machine learning architecture |
CN111046962A (zh) * | 2019-12-16 | 2020-04-21 | 中国人民解放军战略支援部队信息工程大学 | 基于稀疏注意力的卷积神经网络模型的特征可视化方法及系统 |
CN111652271A (zh) * | 2020-04-24 | 2020-09-11 | 华东交通大学 | 一种基于神经网络的非线性特征选择方法 |
US20210117760A1 (en) * | 2020-06-02 | 2021-04-22 | Intel Corporation | Methods and apparatus to obtain well-calibrated uncertainty in deep neural networks |
CN114037871A (zh) * | 2021-11-09 | 2022-02-11 | 浙江大学 | 一种基于神经支持决策树的图像分类可解释方法 |
CN114999006A (zh) * | 2022-05-20 | 2022-09-02 | 南京邮电大学 | 基于不确定性估计的多模态情感分析方法、装置及设备 |
CN115049130A (zh) * | 2022-06-20 | 2022-09-13 | 重庆邮电大学 | 一种基于时空金字塔的自动驾驶轨迹预测方法 |
-
2022
- 2022-09-30 CN CN202211206014.XA patent/CN115294406B/zh active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02195473A (ja) * | 1989-01-25 | 1990-08-02 | Hitachi Ltd | 学習システムにおける属性値予測方法 |
US20190122073A1 (en) * | 2017-10-23 | 2019-04-25 | The Charles Stark Draper Laboratory, Inc. | System and method for quantifying uncertainty in reasoning about 2d and 3d spatial features with a computer machine learning architecture |
CN111046962A (zh) * | 2019-12-16 | 2020-04-21 | 中国人民解放军战略支援部队信息工程大学 | 基于稀疏注意力的卷积神经网络模型的特征可视化方法及系统 |
CN111652271A (zh) * | 2020-04-24 | 2020-09-11 | 华东交通大学 | 一种基于神经网络的非线性特征选择方法 |
US20210117760A1 (en) * | 2020-06-02 | 2021-04-22 | Intel Corporation | Methods and apparatus to obtain well-calibrated uncertainty in deep neural networks |
CN114037871A (zh) * | 2021-11-09 | 2022-02-11 | 浙江大学 | 一种基于神经支持决策树的图像分类可解释方法 |
CN114999006A (zh) * | 2022-05-20 | 2022-09-02 | 南京邮电大学 | 基于不确定性估计的多模态情感分析方法、装置及设备 |
CN115049130A (zh) * | 2022-06-20 | 2022-09-13 | 重庆邮电大学 | 一种基于时空金字塔的自动驾驶轨迹预测方法 |
Non-Patent Citations (3)
Title |
---|
YUFENG CHEN等: "Intelligent Gain Flattening of FMF Raman Amplification by Machine Learning Based Inverse Design", 《IEEE》 * |
杨辉等: "基于多传感器数据融合的管廊环境评估方法", 《控制工程》 * |
薛惠锋等: "数据融合技术在环境监测网络中的应用与思考", 《中国环境监测》 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116884094A (zh) * | 2023-09-07 | 2023-10-13 | 武汉理工大学 | 基于视角和行为解耦的多视角行为识别方法及系统 |
CN116884094B (zh) * | 2023-09-07 | 2023-12-12 | 武汉理工大学 | 基于视角和行为解耦的多视角行为识别方法及系统 |
CN118658184A (zh) * | 2024-08-21 | 2024-09-17 | 西安科技大学 | 一种基于特征增强与ds理论的多光谱人员检测方法 |
CN118658184B (zh) * | 2024-08-21 | 2024-10-22 | 西安科技大学 | 一种基于特征增强与ds理论的多光谱人员检测方法 |
Also Published As
Publication number | Publication date |
---|---|
CN115294406B (zh) | 2022-12-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111462282B (zh) | 一种场景图生成方法 | |
CN110070141B (zh) | 一种网络入侵检测方法 | |
CN112132818B (zh) | 基于图卷积神经网络构建的肺结节检测和临床分析方法 | |
CN110213244A (zh) | 一种基于时空特征融合的网络入侵检测方法 | |
CN112087447B (zh) | 面向稀有攻击的网络入侵检测方法 | |
CN115294406B (zh) | 基于属性的多模态可解释分类的方法与系统 | |
CN107292097B (zh) | 基于特征组的中医主症选择方法 | |
CN107341447A (zh) | 一种基于深度卷积神经网络和证据k近邻的人脸核实方法 | |
CN111476261A (zh) | 一种社区增强的图卷积神经网络方法 | |
CN112767186B (zh) | 一种基于7-子图拓扑结构的社交网络链接预测方法 | |
CN107563414B (zh) | 一种基于Kohonen-SVM的复杂设备退化状态识别方法 | |
CN112308115A (zh) | 一种多标签图像深度学习分类方法及设备 | |
CN104156943B (zh) | 基于非支配邻域免疫算法的多目标模糊聚类图像变化检测方法 | |
CN115908908B (zh) | 基于图注意力网络的遥感图像聚集型目标识别方法及装置 | |
CN113076963B (zh) | 一种图像识别方法、装置和计算机可读存储介质 | |
CN114511905B (zh) | 一种基于图卷积神经网络的人脸聚类方法 | |
CN105046559A (zh) | 一种基于贝叶斯网络和互信息的客户信用评分方法 | |
CN115273244A (zh) | 基于图神经网络的人体动作识别方法和系统 | |
CN116912576B (zh) | 基于脑网络高阶结构的自适应图卷积脑疾病分类方法 | |
WO2023116565A1 (zh) | 智能设计网络安全架构图的方法 | |
CN106301888A (zh) | 基于核节点和社区融合策略的网络社区划分方法 | |
CN115169465A (zh) | 变压器数据异常检测方法、装置、设备、介质和产品 | |
CN114202035A (zh) | 一种多特征融合的大规模网络社区检测算法 | |
CN114419507A (zh) | 一种基于联邦学习的互联网工厂运行诊断方法及系统 | |
CN110348311B (zh) | 一种基于深度学习的道路交叉口识别系统及方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20241111 Address after: 200082 Shanghai Yangpu District Guotai Road 127 Lane 1, 3rd Floor (Centralized Registration Place) Patentee after: Shanghai Porcelain Culture Development Co.,Ltd. Country or region after: China Address before: 518000 1104, Building A, Zhiyun Industrial Park, No. 13, Huaxing Road, Henglang Community, Longhua District, Shenzhen, Guangdong Province Patentee before: Shenzhen Hongyue Information Technology Co.,Ltd. Country or region before: China Effective date of registration: 20241108 Address after: 518000 1104, Building A, Zhiyun Industrial Park, No. 13, Huaxing Road, Henglang Community, Longhua District, Shenzhen, Guangdong Province Patentee after: Shenzhen Hongyue Information Technology Co.,Ltd. Country or region after: China Address before: No. 808, Shuanggang East Street, Nanchang Economic and Technological Development Zone, Jiangxi Province Patentee before: East China Jiaotong University Country or region before: China |