CN115293639A - 一种基于隐马尔可夫模型的战场态势研判方法 - Google Patents

一种基于隐马尔可夫模型的战场态势研判方法 Download PDF

Info

Publication number
CN115293639A
CN115293639A CN202211035513.7A CN202211035513A CN115293639A CN 115293639 A CN115293639 A CN 115293639A CN 202211035513 A CN202211035513 A CN 202211035513A CN 115293639 A CN115293639 A CN 115293639A
Authority
CN
China
Prior art keywords
situation
hidden markov
battlefield
markov model
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211035513.7A
Other languages
English (en)
Inventor
朱伟强
杨蔚
杨佳敏
郑鹏飞
刘思捷
尹伟
陈迪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
8511 Research Institute of CASIC
Original Assignee
8511 Research Institute of CASIC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 8511 Research Institute of CASIC filed Critical 8511 Research Institute of CASIC
Priority to CN202211035513.7A priority Critical patent/CN115293639A/zh
Publication of CN115293639A publication Critical patent/CN115293639A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0637Strategic management or analysis, e.g. setting a goal or target of an organisation; Planning actions based on goals; Analysis or evaluation of effectiveness of goals
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/21Design, administration or maintenance of databases
    • G06F16/215Improving data quality; Data cleansing, e.g. de-duplication, removing invalid entries or correcting typographical errors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/30Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
    • G06F16/35Clustering; Classification

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Physics & Mathematics (AREA)
  • Databases & Information Systems (AREA)
  • General Physics & Mathematics (AREA)
  • Economics (AREA)
  • Educational Administration (AREA)
  • General Engineering & Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Quality & Reliability (AREA)
  • Strategic Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • General Business, Economics & Management (AREA)
  • Game Theory and Decision Science (AREA)
  • Development Economics (AREA)
  • Tourism & Hospitality (AREA)
  • Operations Research (AREA)
  • Marketing (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明提出了一种基于隐马尔可夫模型的战场态势研判方法,对态势信息进行分析,清洗和预处理,构建状态序列;利用样本态势数据初始化并且训练隐马尔可夫模型,对态势信息的四维数据量化处理,划分态势目标分类;依据隐马尔可夫模型对战场态势数据分析处理,完成态势研判。

Description

一种基于隐马尔可夫模型的战场态势研判方法
技术领域
本发明属于电子对抗领域,具体涉及一种基于隐马尔可夫模型的战场态势研判方法。
背景技术
态势信息是人们在面对高维数据系统中对目前情况的适应性理解,在空中管制、大型系统控制、医疗卫生、汽车驾驶、网络安全等领域都有所应用。随着战场信息化的飞速发展,战场信息已成为获得战场主动权的关键要素之一,而态势研判则是获取战场信息的主要手段。
战场态势研判的实质是对获取的战场信息进行逐层深入理解,逐步得到指挥员关注的隐含在态势信息中的各因素量化分析,是一个综合分析、逐步抽象的过程。在态势信息不完整的情况下,对战场态势的分析主要依靠已经掌握的信息,结合经验知识等进行多种猜测,并评估这些猜测的可信度。
目前基于概率模型的战场目标态势研判是研究的热点,主要包括,贝叶斯模型、最大熵模型、条件随机场、隐马模型、最大熵隐马模型。为了弥补条件随机场与最大熵模型的缺点,出现了基于多层次混合模型,如最大熵隐马尔可夫模型,其原理是通过一种模型进行粗切分,然后用另一种模型进行细切分。目前的基于隐马尔可夫模型的战场态势分析工具很少,复杂的代码结构限制了它的普及。本文针对隐马尔可夫模型的特点与态势分析相结合,设计并实现了基于隐马尔可夫模型的态势研判方法。
发明内容
本发明提出了一种基于隐马尔可夫模型的战场态势研判方法,对态势信息进行分析,清洗和预处理,构建状态序列;利用样本态势数据初始化并且训练隐马尔可夫模型,对态势信息的四维数据量化处理,划分态势目标类别;依据隐马尔可夫模型对战场态势目标进行识别,完成态势目标的分类。
实现本发明的技术解决方案为:一种基于隐马尔可夫模型的战场态势研判方法,步骤如下:
步骤一、采集态势数据,并对战场态势数据进行清洗,得到有效态势信息,对有效态势信息的属性进行量化处理,构建态势状态序列,转入步骤二。
步骤二、通过态势状态序列建立隐马尔可夫模型,并对其进行训练。
步骤三、对待分析的态势数据进行预处理,得到预处理后的态势状态序列,量化态势目标等级因子,对态势信息进行。
本发明与现有技术相比,其显著优点在于:针对现代战场态势知识信息的不完整、不及时而造成的态势研判不准确的问题,提出了一种基于隐马尔可夫模型的战场态势研判方法,利于信息化战争中各级作战单位之间的战场态势感知共享。本发明通过人、机和环境系统相互间自主交互,完成人机并行的战场态势研判活动。
附图说明
图1为本发明的基于隐马尔可夫模型的战场态势研判方法流程图。
图2为态势研判模型图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
下面将结合本设计实例对具体实施方式、以及本次发明的技术难点、发明点进行进一步介绍。
结合图1,本发明所述的一种基于隐马尔可夫模型的战场态势研判方法,步骤如下:
步骤一:采集态势数据,并对战场态势数据进行清洗,得到有效态势信息,对有效态势信息的属性进行量化处理,构建态势状态序列。
数据预处理的目的是生成供数据挖掘核心算法使用的目标数据,为后续进行的数据挖掘提供高可靠性、数据集规模适当、具有一定抽象性的数据,以提高聚类分析效率。
步骤1-1、采集战场态势数据,并对战场态势数据进行清洗,得到有效态势信息:
战场中的战场态势数据包括时间维度、空间维度、互作用对象、服务对象、平台支撑、数据支撑这六个维度的信息。
在战场态势数据的采集过程中,难免会有部分数据存在内容不完整,格式不一致、存放重复、信息缺失等情况,这些会对之后的战场态势展现和信息分产生影响,因此有必要对异常值进行处理。
基于邻近性将数据异常进行分类,为确定数据清洗提供依据。
基于上述原则,战场态势数据的清洗过程可通过以下步骤实现:
1-1-1)若变量的缺失率较高(大于80%),整体覆盖率较低(小于60%),可以直接将变量删除。
若变量缺失率较低(小于95%),则根据数据分布的情况进行填充,若需要填充的变量是连续型,采用均值法和随机差值进行填充,若变量是离散型,采用中位数或哑变量进行填充。
1-1-2)采取近邻排序法对重复记录进行识别、比较和排序,删除低价值的重复冗余数据。
1-1-3)对形式和内容不符合要求的数据进行纠正,对错误难以改正且不重要的数据采取删除整条记录的方法处理。
步骤1-2、上述有效态势信息有四维属性,按态势权重排序为目标距离Sd、目标速度Sv、目标高度Sh、目标方向角Sa。对四维属性进行量化处理,构建状态序列。
1-2-1)目标距离属性量化为:
Figure BDA0003818913410000031
其中,d为战场目标实际距离,d0为战场最大处置距离,α为目标量化因子,按照战场目标类型来区分:
Figure BDA0003818913410000032
1-2-2)目标速度属性量化为:
Figure BDA0003818913410000033
其中v为战场目标速度,v0为相对观测速度。
1-2-3)目标高度属性量化为:
Figure BDA0003818913410000041
其中h为战场目标实际高度,h0为战场最大处置高度。
1-2-4)目标方向角属性量化为:
Figure BDA0003818913410000042
其中θ为战场目标当前方向角,θ0为相对观测角度。
完成战场目标的态势属性量化后,得到态势数据观测集合M={m1,m2,......,mi},其中M中的每一个元素mi均为长度为N的状态序列。
步骤二:通过态势状态序列建立隐马尔可夫模型,并对其进行训练,具体如下:
马尔科夫模型是一个具有离散状态空间或者一个离散索引集合的马尔科夫过程。马尔科夫模型的状态转移矩阵收敛到的稳定概率分布与初始状态概率分布无关,这就是马尔科夫链的收敛性质,也就是说,如果得到了这个稳定概率分布对应的马尔科夫链模型的状态转移矩阵,则我们可以用任意的概率分布样本开始,带入马尔科夫链模型的状态转移矩阵,这样经过一些序列的转换,最终就可以得到符合对应稳定概率分布的样本。
本文中隐马尔可夫模型的参数为
Figure BDA0003818913410000043
其中π为初始概率矩阵,A为概率转移矩阵,B为状态输出矩阵。
使用维特尔算法对隐马尔可夫模型进行初始化,态势数据观测集合作为输入。
Figure BDA0003818913410000044
其中
Figure BDA0003818913410000045
为隐马尔可夫模型的迭代函数,k为迭代次数,
Figure BDA0003818913410000046
为在mi序列输入下参数为
Figure BDA0003818913410000047
的隐马尔可夫模型的条件概率,
Figure BDA0003818913410000048
表示mi序列输入参数下模型参数集合为
Figure BDA0003818913410000049
的贝叶斯概率,根据已知的状态序列求出最有可能产生该序列的隐马尔可夫模型的
Figure BDA00038189134100000410
根据贝叶斯定理,展开条件概率,模型各参数分别为:
Figure BDA00038189134100000411
Figure BDA0003818913410000051
Figure BDA0003818913410000052
其中,j表示序列mi中第j个态势目标;
每次迭代后更新模型为:
Figure BDA0003818913410000053
其中,πk为第k次迭代时的概率矩阵,Ak为第k次迭代时的概率转移矩阵,Bk为第k次迭代时的状态输出矩阵;
模型参数期望为:
Figure BDA0003818913410000054
r(k+1)为第k+1次维特尔迭代期望,重复迭代过程,直到迭代期望r(k+1)<=1或迭代次数大于预设的迭代上限为止。迭代结束后得到态势数据观测集合训练后的隐马尔可夫模型。
步骤三:利用训练好的隐马尔可夫模型完成态势数据研判,步骤如下:
对态势数据进行与步骤一相同的预处理过程,得到量化后的态势信息状态序列O={o1,o2,......,oN}。
根据步骤一中量化的态势四维信息,量化预处理后的态势数据目标等级因数T为:
Figure BDA0003818913410000055
根据目标等级因数T把目标态势等分为高威胁度T1、中威胁度T2、低威胁度T3三类态势,如图2。
利用训练好的隐马尔可夫模型对态势数据状态序列进行识别,N长度的状态序列模型输出结果为:
Figure BDA0003818913410000056
其中,Ao(i)对状态序列O第i次迭代后的状态转移矩阵;Bo(i)表示对状态序列O第i次迭代后的观测概率分布矩阵;πO(i)表示对状态序列O第i次迭代后的迭代向量阵;
Figure BDA0003818913410000061
表示状态序列O输入下模型参数
Figure BDA0003818913410000062
的贝叶斯概率。
选择概率最大的隐马尔可夫模型作为识别结果,按照目标等级因数进行分类:
Figure BDA0003818913410000063
其中,Rλ表示态势分类信息;Pmax表示公式(12)的输出识别结果。

Claims (6)

1.一种基于隐马尔可夫模型的战场态势研判方法,其特征在于,步骤如下:
步骤一、采集态势数据,并对战场态势数据进行清洗,得到有效态势信息,对有效态势信息的属性进行量化处理,构建态势状态序列,转入步骤二;
步骤二、通过态势状态序列建立隐马尔可夫模型,并对其进行训练;
步骤三、利用训练好的隐马尔可夫模型识别输入的态势数据,进行战场态势研判。
2.根据权利要求1所述的基于隐马尔可夫模型的战场态势研判方法,其特征在于,步骤一中,采集态势数据,并对战场态势数据进行清洗,得到有效态势信息,集成后得到态势信息数据集,具体如下:
步骤1-1、采集战场态势数据,并对战场态势数据进行清洗,得到有效态势信息;
步骤1-2、上述有效态势信息有四维属性,按态势权重排序为目标距离Sd、目标速度Sv、目标高度Sh、目标方向角Sa,对四维属性进行量化处理,构建态势状态序列。
3.根据权利要求2所述的基于隐马尔可夫模型的战场态势研判方法,其特征在于,步骤1-1中,对战场态势数据进行清洗,得到有效态势信息,具体如下:
1-1-1)若变量的缺失率大于80%,整体覆盖率小于60%,直接将变量删除;
若变量缺失率小于95%,则根据数据分布的情况进行填充,若需要填充的变量是连续型,采用均值法和随机差值进行填充,若变量是离散型,采用中位数或哑变量进行填充;
1-1-2)采取近邻排序法对重复记录进行识别、比较和排序,删除低价值的重复冗余数据;
1-1-3)对形式和内容不符合要求的数据进行纠正,对错误难以改正且不重要的数据采取删除整条记录的方法处理。
4.根据权利要求2所述的基于隐马尔可夫模型的战场态势研判方法,其特征在于,步骤1-2中,上述有效态势信息有四维属性,按态势权重排序为目标距离Sd、目标速度Sv、目标高度Sh、目标方向角Sa,对四维属性进行量化处理,构建态势状态序列,具体如下:
1-2-1)目标距离属性量化为:
Figure FDA0003818913400000021
其中,d为战场目标实际距离,d0为战场最大处置距离;α为目标量化因子,按照战场目标类型来区分:
Figure FDA0003818913400000022
1-2-2)目标速度属性量化为:
Figure FDA0003818913400000023
其中v为战场目标速度,v0为相对观测速度;
1-2-3)目标高度属性量化为:
Figure FDA0003818913400000024
其中h为战场目标实际高度,h0为战场最大处置高度;
1-2-4)目标方向角属性量化为:
Figure FDA0003818913400000025
其中θ为战场目标当前方向角,θ0为相对观测角度;
完成战场目标的态势属性量化后,得到战场态势数据观测集合M={m1,m2,......,mi},M中的每一个元素mi均为长度为N的态势状态序列。
5.根据权利要求4所述的基于隐马尔可夫模型的战场态势研判方法,其特征在于,步骤二中,通过态势状态序列建立隐马尔可夫模型,并对其进行训练,具体如下:
隐马尔可夫模型的参数集合
Figure FDA0003818913400000026
其中π为初始概率矩阵,A为概率转移矩阵,B为状态输出矩阵;
使用维特尔算法对隐马尔可夫模型进行初始化,战场态势数据观测集合作为输入:
Figure FDA0003818913400000027
其中
Figure FDA0003818913400000028
为隐马尔可夫模型的迭代函数,k为迭代次数,
Figure FDA0003818913400000029
为在mi序列输入下参数集合为
Figure FDA0003818913400000031
的隐马尔可夫模型的条件概率,
Figure FDA0003818913400000032
表示mi序列输入参数下模型参数集合为
Figure FDA0003818913400000033
的贝叶斯概率,根据已知的态势状态序列求出最有可能产生该序列的隐马尔可夫模型的
Figure FDA0003818913400000034
根据贝叶斯定理,展开条件概率,隐马尔可夫模型参数分别为:
Figure FDA0003818913400000035
Figure FDA0003818913400000036
Figure FDA0003818913400000037
其中,j表示序列mi中第j个态势目标;
每次迭代后更新的隐马尔可夫模型参数集合
Figure FDA0003818913400000038
为:
Figure FDA0003818913400000039
其中,πk为第k次迭代时的概率矩阵,Ak为第k次迭代时的概率转移矩阵,Bk为第k次迭代时的状态输出矩阵;
隐马尔可夫模型模型参数期望为:
Figure FDA00038189134000000310
r(k+1)为第k+1次维特尔迭代期望,重复迭代过程,直到迭代期望r(k+1)<=1或迭代次数大于预设的迭代上限为止,迭代结束后得到训练好的的隐马尔可夫模型。
6.根据权利要求5所述的基于隐马尔可夫模型的战场态势研判方法,其特征在于,步骤三中,利用训练好的隐马尔可夫模型完成态势数据研判,进行战场态势研判,具体如下:
对待处理的态势数据进行与步骤一相同的预处理过程,得到量化后的态势信息状态序列O={o1,o2,......,oN};
根据步骤一中量化的态势四维属性信息,量化预处理后的态势数据目标等级因数T为:
Figure FDA00038189134000000311
目标等级因数T把目标态势等分为高威胁度T1、中威胁度T2、低威胁度T3三类态势;
利用训练好的隐马尔可夫模型对量化后的态势信息状态序列O={o1,o2,......,oN}进行识别,N长度的状态序列的模型输出结果P为:
Figure FDA0003818913400000041
其中,Ao(i)对状态序列O第i次迭代后的状态转移矩阵;Bo(i)表示对状态序列O第i次迭代后的观测概率分布矩阵;πO(i)表示对状态序列O第i次迭代后的迭代向量阵;
Figure FDA0003818913400000042
表示状态序列O输入下,模型参数集合为
Figure FDA0003818913400000043
的贝叶斯概率;
选择概率最大的隐马尔可夫模型作为识别结果,按照目标等级因数进行分类:
Figure FDA0003818913400000044
其中,Rλ表示态势分类信息;Pmax表示式(12)的输出识别结果。
CN202211035513.7A 2022-08-26 2022-08-26 一种基于隐马尔可夫模型的战场态势研判方法 Pending CN115293639A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211035513.7A CN115293639A (zh) 2022-08-26 2022-08-26 一种基于隐马尔可夫模型的战场态势研判方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211035513.7A CN115293639A (zh) 2022-08-26 2022-08-26 一种基于隐马尔可夫模型的战场态势研判方法

Publications (1)

Publication Number Publication Date
CN115293639A true CN115293639A (zh) 2022-11-04

Family

ID=83832179

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211035513.7A Pending CN115293639A (zh) 2022-08-26 2022-08-26 一种基于隐马尔可夫模型的战场态势研判方法

Country Status (1)

Country Link
CN (1) CN115293639A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116502055A (zh) * 2023-01-10 2023-07-28 昆明理工大学 一种基于类马尔可夫模型的多维特征动态异常积分模型

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116502055A (zh) * 2023-01-10 2023-07-28 昆明理工大学 一种基于类马尔可夫模型的多维特征动态异常积分模型
CN116502055B (zh) * 2023-01-10 2024-05-03 昆明理工大学 一种基于类马尔可夫模型的多维特征动态异常积分模型

Similar Documents

Publication Publication Date Title
EP3940591A1 (en) Image generating method, neural network compression method, and related apparatus and device
CN109034264B (zh) 交通事故严重性预测csp-cnn模型及其建模方法
CN109671102B (zh) 一种基于深度特征融合卷积神经网络的综合式目标跟踪方法
CN109993100B (zh) 基于深层特征聚类的人脸表情识别的实现方法
CN111488917A (zh) 一种基于增量学习的垃圾图像细粒度分类方法
CN111767860A (zh) 一种通过卷积神经网络实现图像识别的方法及终端
CN113378938B (zh) 一种基于边Transformer图神经网络的小样本图像分类方法及系统
CN112966853A (zh) 基于时空残差混合模型的城市路网短时交通流预测方法
CN111832580B (zh) 结合少样本学习与目标属性特征的sar目标识别方法
KR20210039921A (ko) 신경망 모델을 최적화하도록 구성된 심층 신경망 시스템의 동작 방법
CN116362325A (zh) 一种基于模型压缩的电力图像识别模型轻量化应用方法
CN114373099A (zh) 一种基于稀疏图卷积的三维点云分类方法
CN115293639A (zh) 一种基于隐马尔可夫模型的战场态势研判方法
CN115393631A (zh) 基于贝叶斯层图卷积神经网络的高光谱图像分类方法
CN113627240B (zh) 一种基于改进ssd学习模型的无人机树木种类识别方法
CN113516019B (zh) 高光谱图像解混方法、装置及电子设备
CN112528554A (zh) 一种适于多发多源火箭试验数据的数据融合方法及系统
CN111325757B (zh) 一种基于贝叶斯神经网络的点云识别与分割方法
Senthilnath et al. A novel harmony search-based approach for clustering problems
Kuhn et al. Brcars: a dataset for fine-grained classification of car images
CN115861956A (zh) 一种基于解耦头部的Yolov3道路垃圾检测方法
CN117011219A (zh) 物品质量检测方法、装置、设备、存储介质和程序产品
CN109472319B (zh) 一种三维模型分类方法以及检索方法
Lee et al. Defect Classification of Cross-section of Additive Manufacturing Using Image-Labeling
CN115115079A (zh) 一种基于集成学习的太阳质子事件短期预报方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination