CN115291622A - A Fractional-Order Sliding Mode Control Method for Distributed Formation of Obstacle Avoidance UAVs - Google Patents
A Fractional-Order Sliding Mode Control Method for Distributed Formation of Obstacle Avoidance UAVs Download PDFInfo
- Publication number
- CN115291622A CN115291622A CN202210595527.8A CN202210595527A CN115291622A CN 115291622 A CN115291622 A CN 115291622A CN 202210595527 A CN202210595527 A CN 202210595527A CN 115291622 A CN115291622 A CN 115291622A
- Authority
- CN
- China
- Prior art keywords
- unmanned aerial
- aerial vehicle
- vector
- obstacle
- sliding mode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000015572 biosynthetic process Effects 0.000 title claims abstract description 47
- 238000000034 method Methods 0.000 title claims abstract description 46
- 238000013528 artificial neural network Methods 0.000 claims abstract description 21
- 230000003044 adaptive effect Effects 0.000 claims abstract description 9
- 230000002490 cerebral effect Effects 0.000 claims abstract description 7
- 239000013598 vector Substances 0.000 claims description 39
- 230000006870 function Effects 0.000 claims description 23
- 239000011159 matrix material Substances 0.000 claims description 21
- 210000001638 cerebellum Anatomy 0.000 claims description 13
- 238000013461 design Methods 0.000 claims description 10
- 230000001133 acceleration Effects 0.000 claims description 5
- 230000008878 coupling Effects 0.000 claims description 5
- 238000010168 coupling process Methods 0.000 claims description 5
- 238000005859 coupling reaction Methods 0.000 claims description 5
- 230000007246 mechanism Effects 0.000 claims description 4
- 230000008569 process Effects 0.000 claims description 3
- 238000004458 analytical method Methods 0.000 claims description 2
- 230000008859 change Effects 0.000 claims description 2
- 238000001514 detection method Methods 0.000 claims description 2
- 230000009466 transformation Effects 0.000 claims description 2
- 208000011231 Crohn disease Diseases 0.000 claims 1
- 230000004888 barrier function Effects 0.000 claims 1
- 238000004088 simulation Methods 0.000 abstract description 9
- 230000002411 adverse Effects 0.000 abstract description 4
- 230000000694 effects Effects 0.000 abstract description 4
- 238000005755 formation reaction Methods 0.000 description 34
- 238000010586 diagram Methods 0.000 description 5
- 238000004891 communication Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 230000005484 gravity Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 244000145845 chattering Species 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/10—Simultaneous control of position or course in three dimensions
- G05D1/101—Simultaneous control of position or course in three dimensions specially adapted for aircraft
- G05D1/104—Simultaneous control of position or course in three dimensions specially adapted for aircraft involving a plurality of aircrafts, e.g. formation flying
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
本发明公开一种基于人工势场法和小脑模型神经网络的避障无人机分布式编队分数阶滑模控制方法,用于无人机编队避障控制和处理外部干扰和内部参数不确定性的影响。通过引入小脑模型神经网络来近似估计和补偿集总干扰的不利影响,并基于人工势场法设计出一种自适应分数阶滑模控制器。本发明实现了无人机编队闭环跟踪控制系统的稳定性和良好的避障性能,通过仿真实例验证了该方法具有一定的有效性和良好性能。
The invention discloses a fractional-order sliding mode control method for obstacle avoidance UAV distributed formation based on artificial potential field method and cerebellar model neural network, which is used for UAV formation obstacle avoidance control and processing external disturbance and internal parameter uncertainty Impact. The adverse effects of lumped disturbances are approximately estimated and compensated by introducing a cerebellar model neural network, and an adaptive fractional-order sliding mode controller is designed based on the artificial potential field method. The invention realizes the stability and good obstacle avoidance performance of the UAV formation closed-loop tracking control system, and the simulation example verifies that the method has certain validity and good performance.
Description
技术领域technical field
本发明涉及航空无人机控制领域,具体涉及一种考虑集总干扰影响的避障无人机分布式编队分数阶滑模控制的问题。The invention relates to the field of control of aviation unmanned aerial vehicles, in particular to a problem of fractional-order sliding mode control of distributed formations of obstacle-avoiding unmanned aerial vehicles considering the influence of lumped interference.
背景技术Background technique
近年来,随着无人机发展的日趋成熟,单架无人机已逐渐不能满足一些复杂任务的需要,研究人员开始对多无人机编队协同控制展开研究。和单无人机相比,无人机编队在装载运输、野火监控、灾难救援、战场侦察和打击等军事或民用领域具有巨大的优势。由于存在外部干扰、障碍物和内部参数不确定性等复杂因素影响,无人机编队协同控制也变得更加复杂和困难。因此,在外部干扰、内部参数不确定性和障碍物存在的情况下,无人机编队快速跟踪控制与避障问题引起了学者的广泛关注。In recent years, with the development of UAVs becoming more and more mature, a single UAV can no longer meet the needs of some complex tasks. Researchers have begun to study the cooperative control of multi-UAV formations. Compared with single drones, drone formations have huge advantages in military or civilian fields such as loading and transportation, wildfire monitoring, disaster relief, battlefield reconnaissance and strikes. Due to the influence of complex factors such as external interference, obstacles and internal parameter uncertainties, the coordinated control of UAV formations has become more complicated and difficult. Therefore, in the presence of external interference, internal parameter uncertainty and obstacles, the problem of UAV formation fast tracking control and obstacle avoidance has attracted extensive attention of scholars.
针对无人机编队避障问题,国内外众多学者提出了多种算法。专利CN112180954A发明了一种基于人工势场的无人机避障方法,主要贡献为提出额外设置横向避障控制力,从而解决了局部最小值对无人机避障的不良影响,但该方法不能使无人机在避开障碍物后立刻回到期望位置。专利CN111290429A发明了一种基于一致性算法和人工势场法的无人机编队及其避障控制方法,通过引入与障碍物移动方向垂直的辅助牵引加速度信息,可消除局部最小值的影响。然而,在避障过程中,基于该方法的无人机位置跟踪误差和速度跟踪误差波动较大,影响编队的稳定性。此外,上述两种方法均未考虑集总干扰(外部干扰和内部参数不确定性)对编队控制系统的影响。Aiming at the problem of UAV formation obstacle avoidance, many scholars at home and abroad have proposed a variety of algorithms. Patent CN112180954A invented a UAV obstacle avoidance method based on an artificial potential field. The main contribution is to propose an additional lateral obstacle avoidance control force, thereby solving the adverse effects of local minima on UAV obstacle avoidance, but this method cannot Make the drone return to the desired position immediately after avoiding the obstacle. Patent CN111290429A invented a UAV formation and its obstacle avoidance control method based on consensus algorithm and artificial potential field method. By introducing auxiliary traction acceleration information perpendicular to the moving direction of obstacles, the influence of local minimum can be eliminated. However, in the process of obstacle avoidance, the position tracking error and velocity tracking error of the UAV based on this method fluctuate greatly, which affects the stability of the formation. In addition, the above two methods do not consider the impact of aggregate disturbance (external disturbance and internal parameter uncertainty) on the formation control system.
针对外部干扰和参数不确定性影响非线性系统的控制性能的问题,众多学者已经进行了大量的研究,研究结果表明神经网络可以很好的估计和补偿外部干扰和参数不确定性。同时,改进的人工势场法能够解决局部极小值问题并实现了编队协同避障。此外,设计的分数阶滑模控制器可以保证闭环编队控制系统的稳定性和全局鲁棒性,并解决了传统避障算法在避开障碍物后不能立刻回到期望位置的问题。Aiming at the problem that external disturbance and parameter uncertainty affect the control performance of nonlinear systems, many scholars have done a lot of research. The research results show that neural network can estimate and compensate external disturbance and parameter uncertainty very well. At the same time, the improved artificial potential field method can solve the local minimum problem and realize the cooperative obstacle avoidance of the formation. In addition, the designed fractional-order sliding mode controller can ensure the stability and global robustness of the closed-loop formation control system, and solve the problem that the traditional obstacle avoidance algorithm cannot return to the desired position immediately after avoiding obstacles.
发明内容Contents of the invention
鉴于上述现有技术中的不足,本发明提出一种避障无人机分布式编队分数阶滑模控制方法,主要由以下步骤组成:In view of the deficiencies in the above-mentioned prior art, the present invention proposes a fractional-order sliding mode control method for obstacle avoidance UAV distributed formation, which mainly consists of the following steps:
步骤1、建立第i架无人机动力学模型如下所示:
其中,i为编队中无人机的编号,i=1,...,n,n为编队中无人机的数量,Vi,ψi,分别表示无人机的空速、俯仰角、航向角,xi,yi和zi为无人机的三维坐标,mi是机身质量,g是重力加速度,系统的控制输入为θi表示滚转角,Ti是发动机推力,uxi,uyi,uzi分别是X轴,Y轴,Z轴方向的控制输入,ni是动载荷系数,Di是阻力;Among them, i is the number of UAVs in the formation, i=1,...,n, n is the number of UAVs in the formation, V i , ψ i , respectively represent the airspeed, pitch angle, and heading angle of the UAV, x i , y i and zi are the three-dimensional coordinates of the UAV, m i is the mass of the fuselage, g is the acceleration of gravity, and the control input of the system is θ i represents the roll angle, T i is the engine thrust, u xi , u yi , u zi are the control inputs of the X-axis, Y-axis, and Z-axis directions respectively, n i is the dynamic load coefficient, and D i is the resistance;
步骤2、将步骤1中的无人机动力学模型转化为状态空间方程,同时考虑集总干扰的非线性模型可描述为:Step 2. Transform the UAV dynamics model in
其中,pi=[xi,yi,zi]T为位置向量,为速度向量,dsi为集总干扰,G和Ri可由下式所得:Among them, p i =[x i , y i , zi ] T is the position vector, is the velocity vector, d si is the lumped disturbance, G and R i can be obtained by the following formula:
G=[0 0 -g]T G=[0 0 -g] T
步骤3、利用小脑模型神经网络实现对集总干扰的在线估计,具体过程如下:Step 3. Use the cerebellar model neural network to realize online estimation of lumped interference. The specific process is as follows:
小脑模型神经网络的结构体系包括输入空间、联想记忆空间、接收域空间、权重记忆空间和输出空间。具体介绍如下:The structural system of the cerebellum model neural network includes input space, associative memory space, receptive field space, weight memory space and output space. The details are as follows:
(1)输入空间:对于输入I=[I1,I2,...,Iq]T∈Rq,I为连续且q维的输入空间;(1) Input space: For the input I=[I 1 , I 2 ,...,I q ] T ∈ R q , I is a continuous and q-dimensional input space;
(2)联想记忆空间:几个不同的元素堆积成一个区块,每个区块执行一个接受域基函数,这里采用高斯函数作为基函数,可以表示为:(2) Associative memory space: Several different elements are piled up into a block, and each block executes a receptive field basis function. Here, the Gaussian function is used as the basis function, which can be expressed as:
其中,为第j个输入Ij对应到第k个区块的高斯函数,和σjk分别为对应的高斯函数均值和方差,M为区块数;in, is the Gaussian function of the jth input I j corresponding to the kth block, and σ jk are the mean and variance of the corresponding Gaussian function respectively, and M is the number of blocks;
(3)接收域空间:在此空间内,多维接收域基函数定义为:(3) Receiving domain space: In this space, the multidimensional receiving domain basis function is defined as:
其中,L表示第L个接收域基函数,N为接收域基函数的个数,多维接收域基函数用向量表示为:Among them, L represents the L-th receiving domain basis function, N is the number of receiving domain basis functions, and the multidimensional receiving domain basis function is expressed as:
其中,和σ可由下列向量表示:in, and σ can be represented by the following vectors:
σ=[σ11,...,σq1,σ12,...,σq2,...,σ1M,...,σqM]T σ=[σ 11 ,...,σ q1 , σ 12 ,...,σ q2 ,...,σ 1M ,...,σ qM ] T
(4)权重记忆空间:接收域空间的每个位置到一个特定可调值的权重记忆空间的N个分量可以表示为:(4) Weight memory space: N components of the weight memory space from each position of the receiving domain space to a specific adjustable value can be expressed as:
W=[w1,...,wL,...,wN]T W=[w 1 , . . . , w L , . . . , w N ] T
其中,wL表示第L个接收域基函数的连接权值;Among them, w L represents the connection weight of the L-th receiving field basis function;
(5)输出空间:整个小脑模型神经网络的输出可以表示为:(5) Output space: the output of the neural network of the whole cerebellum model can be expressed as:
小脑模型神经网络的输出用向量可以表示为:The output of the cerebellum model neural network can be expressed as a vector:
小脑模型神经网络在线逼近集总干扰dsi的表达式为:The expression of the online approximation of the lumped disturbance d si by the neural network of the cerebellum model is:
其中,ε为逼近误差,W*T和φ*分别为W和φ的最优参数向量,和σ*分别为和σ的最优参数向量,dsi *为dsi的最优向量;where ε is the approximation error, W *T and φ * are the optimal parameter vectors of W and φ respectively, and σ * are respectively and the optimal parameter vector of σ, d si * is the optimal vector of d si ;
小脑模型神经网络估计误差可以表示为:The cerebellar model neural network estimation error can be expressed as:
其中, 和分别为W和φ的估计值;in, and are the estimated values of W and φ, respectively;
为了实现对集总干扰的良好估计,采用泰勒展开线性化技术将非线性函数转化为部分线性形式,即:In order to achieve a good estimate of the lumped interference, the nonlinear function is transformed into a partially linear form using Taylor expansion linearization technique, namely:
其中, 和分别为和σ的估计值,H是高阶项,并有:in, and respectively and estimates of σ, H is a higher-order term, and has:
并且和被定义为:and and is defined as:
根据以上公式得:According to the above formula:
其中,不确定项表示逼近误差项,并假设其有界,即||Δ||≤δ,δ为正的常数,||Δ||为Δ的欧几里得范数;Among them, the uncertain Represents the approximation error term, and assumes that it is bounded, that is, ||Δ||≤δ, δ is a positive constant, and ||Δ|| is the Euclidean norm of Δ;
通过李雅普诺夫稳定性分析方法,得出小脑模型神经网络自适应律如下:Through the Lyapunov stability analysis method, the adaptive law of the neural network of the cerebellum model is obtained as follows:
其中,λmax为矩阵的最大特征值,L为拉普拉斯矩阵,Λ为领导者的邻接矩阵,为克罗内克积,I3为3×3的单位矩阵,s为本文所设计的分数阶全局积分滑模,ησ,ζ1,ζ2和ζ3都为正常数,W0,σ0分别为W*,σ*的初始估计值;where λ max is the matrix The largest eigenvalue of , L is the Laplacian matrix, Λ is the adjacency matrix of the leader, is the Kronecker product, I 3 is a 3×3 identity matrix, s is the fractional-order global integral sliding mode designed in this paper, η σ , ζ 1 , ζ 2 and ζ 3 are all positive constants, W 0 , σ0 are respectively W * , initial estimate of σ * ;
步骤4、基于人工势场法设计出一种自适应分数阶滑模控制器;Step 4, designing an adaptive fractional-order sliding mode controller based on the artificial potential field method;
首先需要说明本发明控制系统的实现要求无人机编队在飞行过程中满足所设计的编队构型,因此,第i架无人机的期望位置应该满足:First of all, it needs to be explained that the realization of the control system of the present invention requires the UAV formation to meet the designed formation configuration during flight. Therefore, the expected position of the i-th UAV should satisfy:
其中表示虚拟领导者位置,表示每个无人机相对于虚拟领导者的期望位置;in denotes the virtual leader position, represents the desired position of each UAV relative to the virtual leader;
图论是编队飞行中重要的组成部分之一,本发明采用无向图其中表示图G的节点集,表示边集,表示邻接矩阵;在无向图中,我们可以得到: 和aij=aji;当第i架无人机可以接收第j架无人机的信息时,有(j,i)∈ε,并有aij=1,否则,aij=0;定义为度矩阵,其中因此,Laplacian矩阵为 对于具有一个领导者0和n个跟随者的通信拓扑图可以表示为:其中表示节点集;领导者的邻接矩阵为Λ=diag{λ1,...,λn}。如果第i个跟随者可以接收领导者的信息,则λi>0,否则,λi=0;Graph theory is one of important components in formation flight, and the present invention adopts undirected graph in Represents the node set of graph G, represents an edge set, Represents the adjacency matrix; in an undirected graph, we can get: and a ij = a ji ; when the i-th UAV can receive the information of the j-th UAV, there is (j, i)∈ε, and a ij = 1, otherwise, a ij = 0; define is a degree matrix, where Therefore, the Laplacian matrix is For a communication topology graph with one
基于人工势场法设计的一种自适应分数阶滑模控制器u由轨迹跟踪控制器和协同避障控制器两部分组成,即:An adaptive fractional-order sliding mode controller u designed based on the artificial potential field method is composed of two parts: a trajectory tracking controller and a cooperative obstacle avoidance controller, namely:
u=uα+uβ u=u α +u β
其中,u为自适应分数阶滑模控制器,uα为轨迹跟踪控制器,uβ为协同避障控制器;Among them, u is an adaptive fractional sliding mode controller, u α is a trajectory tracking controller, and u β is a cooperative obstacle avoidance controller;
(1)轨迹跟踪控制器设计(1) Design of trajectory tracking controller
第i架无人机的位置跟踪误差向量ei(t)和速度跟踪误差向量为:The position tracking error vector e i (t) and velocity tracking error vector of the i-th UAV for:
其中pi(t)和分别为无人机实际位置向量和期望位置向量,vi(t)和分别为无人机实际速度向量和期望速度向量,t为时间;where p i (t) and are the actual position vector and expected position vector of the UAV, v i (t) and are the actual velocity vector and the expected velocity vector of the UAV, respectively, and t is time;
无人机编队的分布式耦合位置跟踪误差可以描述为:Distributed Coupled Position Tracking Errors for UAV Formation Can be described as:
其中λi为领导者的邻接矩阵Λ的元素,aij为邻接矩阵的元素,ej(t)为第j架无人机的位置跟踪误差向量,j为无人机的编号,j=1,...,n;Where λ i is the element of the leader's adjacency matrix Λ, and a ij is the adjacency matrix element, e j (t) is the position tracking error vector of the jth UAV, j is the serial number of the UAV, j=1,...,n;
上式可以重写为:The above formula can be rewritten as:
其中,lii和lij都为拉普拉斯矩阵L的元素;Among them, both l ii and l ij are elements of the Laplacian matrix L;
因此,分布式耦合位置跟踪误差向量为:Therefore, the distributed coupling position tracking error vector is:
其中, in,
由上式得分布式耦合速度跟踪误差向量为:The distributed coupling speed tracking error vector is obtained from the above formula for:
对分布式耦合速度跟踪误差向量设计一个分数阶全局积分滑模:Tracking Error Vectors for Distributed Coupled Velocities Design a fractional-order global integral sliding mode:
其中,s为分数阶全局积分滑模,D-α表示分布式耦合速度跟踪误差矢量的分数积分,α∈(0,1)为分数阶阶次,c为正常数,h(t)可以表示为:Among them, s is the fractional order global integral sliding mode, and D -α represents the distributed coupling velocity tracking error vector The fractional integral of , α∈(0,1) is a fractional order, c is a normal constant, h(t) can be expressed as:
这里k为正常数,h(0)为h(t)的初始值,是初始分布式耦合速度跟踪误差向量,是在t=0时刻的分数阶积分值;Here k is a constant, h(0) is the initial value of h(t), is the initial distributed coupling velocity tracking error vector, is the fractional integral value at time t=0;
对s求导,得:Taking the derivative of s, we get:
为了有效减小滑模控制中的抖振问题,提高跟踪误差收敛的速率,本文使用的趋近律为:In order to effectively reduce the chattering problem in sliding mode control and improve the rate of tracking error convergence, the reaching law used in this paper is:
其中η1,η2,都为设计参数且都是正常数,tanh(·)为双曲正切函数;where η 1 , η 2 , Both are design parameters and are normal constants, and tanh( ) is a hyperbolic tangent function;
根据上面所述,轨迹跟踪控制器设计为:According to the above, the trajectory tracking controller is designed as:
其中,为小脑模型神经网络所估计出的集总干扰;in, Lumped noise estimated for the neural network of the cerebellar model;
(2)协同避障控制器设计(2) Cooperative obstacle avoidance controller design
与传统的人工势场法不同,本文所提出的控制器通过在障碍物的表面设计一个虚拟智能体β,并使编队中无人机的速度与虚拟智能体β的速度保持一致。此外,在无人机与虚拟智能体β之间设计一个斥力函数,并在控制器中引入避障预测机制和凹凸函数;Different from the traditional artificial potential field method, the controller proposed in this paper designs a virtual agent β on the surface of the obstacle, and keeps the speed of the drones in the formation consistent with the speed of the virtual agent β. In addition, a repulsion function is designed between the UAV and the virtual agent β, and an obstacle avoidance prediction mechanism and a bump function are introduced into the controller;
假设障碍物为一个半径为ro球心为Oβ的球体,因此,虚拟智能体β的状态信息可由下式得出:Assuming that the obstacle is a sphere with a radius r o and a center O β , the state information of the virtual agent β can be obtained by the following formula:
pi,β=τpi+(I-τ)Oβ,vi,β=τPvi p i,β =τp i +(I-τ)O β ,v i,β =τPv i
其中,pi,β,vi,β分别为第i架无人机所对应的虚拟智能体β的位置和速度, I3为3×3的单位矩阵,||·||为欧几里得范数;Among them, p i, β , v i, β are the position and velocity of the virtual agent β corresponding to the i-th UAV, I 3 is a 3×3 identity matrix, and ||·|| is the Euclidean norm;
在编队飞行中,第i架无人机不仅要共享已探测到的障碍物信息,还会接收来自邻近无人机的障碍物信息。通过将得到的障碍物信息进行比较,选取出一对障碍物信息,具体选择原则如下:In formation flight, the i-th UAV not only shares the detected obstacle information, but also receives obstacle information from neighboring UAVs. By comparing the obtained obstacle information, a pair of obstacle information is selected. The specific selection principles are as follows:
1)当多对障碍物信息的速度值不同时,根据最大速度值max(||vi,β||)来选择对应的障碍物信息;1) When the speed values of multiple pairs of obstacle information are different, select the corresponding obstacle information according to the maximum speed value max(||v i, β ||);
2)当多对障碍物信息的速度值相同时,根据最小距离值min(||pi-pi,β||)来选择对应的障碍物信息;2) When the speed values of multiple pairs of obstacle information are the same, select the corresponding obstacle information according to the minimum distance value min(||p i -p i, β ||);
3)如果上述两个条件都不满足,则随机选择一对障碍物信息;3) If the above two conditions are not met, randomly select a pair of obstacle information;
因此,协同避障控制器设计为:Therefore, the cooperative obstacle avoidance controller is designed as:
其中,表示协同避障控制器,∈β,cp,cv都是正常数,pγ,β和vγ,β是根据上述原则选择出的虚拟智能体β的位置和速度,kβ为避障预测机制,其决定无人机在探测到障碍物时是否需要避障,是一个连续光滑的凹凸函数,其能改变斥力对无人机的影响程度,kβ和可由下式所得:in, Indicates the cooperative obstacle avoidance controller, ∈ β , c p , c v are all normal numbers, p γ, β and v γ, β is the position and speed of the virtual agent β selected according to the above principles, and k β is the obstacle avoidance Prediction mechanism, which decides whether the UAV needs to avoid obstacles when it detects obstacles, is a continuous smooth concave-convex function, which can change the degree of influence of the repulsive force on the UAV, k β and Can be obtained by the following formula:
其中,ri为无人机的半径,rd为无人机的探测半径,ro为障碍物的半径,Oβ为障碍物中心,dio为无人机与障碍物之间的距离,dio=||pi-Oβ||, 决定无人机受斥力场影响的最大范围, Among them, ri is the radius of the UAV, rd is the detection radius of the UAV, r o is the radius of the obstacle, O β is the center of the obstacle, and d io is the distance between the UAV and the obstacle, d io =||p i -O β ||, Determines the maximum range of drones affected by the repulsion field,
步骤5、验证无人机编队闭环控制系统的稳定性。
根据所述的一种自适应分数阶滑模控制器,需证明在集总干扰影响下的编队闭环控制系统的稳定性。According to the described adaptive fractional-order sliding mode controller, it is necessary to prove the stability of the formation closed-loop control system under the influence of lumped disturbance.
定义李雅普诺夫函数V:Define the Lyapunov function V:
对V求导得:Deriving with respect to V gives:
等效变换后不难得出:After the equivalent transformation, it is not difficult to get:
上式可以被描述为:The above formula can be described as:
其中,χ和b是正常数,可由下式得到:Among them, χ and b are normal numbers, which can be obtained by the following formula:
根据以上式子我们可得:According to the above formula we can get:
由上式得出:根据李雅普诺夫稳定性条件,所有的误差信号都是有界的,因此上述闭环控制系统是渐进稳定的。From the above formula: according to the Lyapunov stability condition, all error signals are bounded, so the above closed-loop control system is asymptotically stable.
与已有技术相比,本发明的有益效果体现在以下方面:Compared with the prior art, the beneficial effects of the present invention are reflected in the following aspects:
(1)根据本发明提出的一种基于人工势场法和小脑模型神经网络的避障无人机分布式编队分数阶滑模控制方法具有跟踪速度快、控制精度高等优点,并保证了编队在避障完成后快速恢复至期望位置;(1) According to the present invention, a distributed formation fractional sliding mode control method based on artificial potential field method and cerebellum model neural network for obstacle avoidance UAVs has the advantages of fast tracking speed and high control precision, and ensures that the formation is Quickly return to the desired position after obstacle avoidance;
(2)根据本发明提出的一种基于人工势场法和小脑模型神经网络避障无人机分布式编队分数阶滑模控制方法考虑了集总干扰的不利影响;(2) a kind of artificial potential field method and cerebellar model neural network obstacle-avoiding unmanned aerial vehicle distributed formation fractional order sliding mode control method based on artificial potential field method proposed by the present invention has considered the adverse effect of lumped interference;
(3)根据本发明提出的一种基于人工势场法和小脑模型神经网络避障无人机分布式编队分数阶滑模控制方法能够解决局部极小值问题并成功实现编队避障。(3) A fractional order sliding mode control method for UAV distributed formation based on artificial potential field method and cerebellum model neural network obstacle avoidance proposed by the present invention can solve the local minimum problem and successfully realize formation obstacle avoidance.
附图说明Description of drawings
为更好地体现本发明所设计方法的优势所在,针对无人机避障问题,选取了一种传统人工势场法的避障方法与本发明所设计的避障无人机分布式编队分数阶滑模控制方法相比较,结果表明本发明所提出的方法具有更好的跟踪性能和避障性能。In order to better reflect the advantages of the method designed in the present invention, for the problem of UAV obstacle avoidance, a traditional artificial potential field method of obstacle avoidance method and the distributed formation score of UAV obstacle avoidance designed in the present invention are selected. Compared with the first-order sliding mode control method, the results show that the method proposed by the present invention has better tracking performance and obstacle avoidance performance.
图1为本发明的无人机编队通信拓扑图;Fig. 1 is the UAV formation communication topological diagram of the present invention;
图2为三维轨迹仿真对比图;Figure 2 is a comparison diagram of three-dimensional trajectory simulation;
图3为x轴的位置跟踪误差仿真对比图;Figure 3 is a comparison diagram of the position tracking error simulation of the x-axis;
图4为y轴的位置跟踪误差仿真对比图;Figure 4 is a comparison diagram of the position tracking error simulation of the y-axis;
图5为z轴的位置跟踪误差仿真对比图。Fig. 5 is a simulation comparison diagram of the position tracking error of the z-axis.
具体实施方式Detailed ways
以下将结合附图及实施方式对本发明进一步详细地解释说明。此处所描述的具体实施例仅用于解释本发明,并不用于限定本发明。The present invention will be explained in further detail below in conjunction with the drawings and embodiments. The specific embodiments described here are only used to explain the present invention, not to limit the present invention.
为了让本研究领域人员可以更好地理解本发明的实施,本发明将运用Matlab2017a软件进行无人机编队跟踪控制与避障的仿真以验证其可靠性。本文给出了由一架虚拟领导者和四架相同无人机组成的编队的仿真结果。无人机编队通信拓扑图的拉普拉斯矩阵L为:In order to allow those in this research field to better understand the implementation of the present invention, the present invention will use Matlab2017a software to carry out the simulation of UAV formation tracking control and obstacle avoidance to verify its reliability. This paper presents the simulation results of a formation consisting of a virtual leader and four identical UAVs. The Laplacian matrix L of the UAV formation communication topology map is:
在本文中,虚拟领航者的初始速度和位置分别为:vL(0)=50m/s,飞行路径为[50t,200,400]Tm。无人机最大速度为60m/s,最大加速度为10m/s2,重力加速度g=9.8m/s2。无人机的初始状态如表1所示,控制器的各设计参数选择为:k=0.01,η1=η2=1,∈β=1,cv=6,cp=5,c=1,λi=1,ro=60,rd=100,各无人机相对于虚拟领航者的期望位置分别为:为了简化障碍物的形状,我们假设障碍物为半径为rd=60m中心在Oβ=[1000,200,400]Tm的球形物体。同时,设集总干扰为:dsi=0.12[sin0.5t,sin0.5t,sin0.5t]T,仿真步长为0.1s。In this paper, the initial velocity and position of the virtual navigator are: v L (0) = 50m/s, The flight path is [50t, 200, 400] T m. The maximum speed of the UAV is 60m/s, the maximum acceleration is 10m/s 2 , and the acceleration of gravity g=9.8m/s 2 . The initial state of the UAV is shown in Table 1, and the design parameters of the controller are selected as follows: k=0.01, η 1 =η 2 =1, ∈ β = 1, c v = 6, c p = 5, c = 1, λ i = 1, r o =60, r d =100, the expected positions of each UAV relative to the virtual leader are: In order to simplify the shape of the obstacle, we assume that the obstacle is a spherical object with a radius r d =60 m and a center at O β =[1000, 200, 400] T m. At the same time, it is assumed that the aggregate interference is: d si =0.12[sin0.5t, sin0.5t, sin0.5t] T , and the simulation step size is 0.1s.
表格1 无人机初始状态Table 1 Initial state of UAV
结果表明,本文所提出的避障无人机分布式编队分数阶滑模控制方法能够实现在0~5s内对期望轨迹的快速跟踪,同时在避障完成后能够立刻恢复到期望轨迹。相比于传统的人工势场法,本发明所提出的方法不仅考虑了集总干扰的不利影响,而且能够解决局部极小值问题并实现避障。通过上述仿真结果对比,验证了本发明提出的避障无人机分布式编队分数阶滑模控制方法的有效性和可行性,符合预期。The results show that the fractional-order sliding mode control method of the distributed formation of UAVs for obstacle avoidance proposed in this paper can quickly track the desired trajectory within 0-5s, and at the same time return to the desired trajectory immediately after the obstacle avoidance is completed. Compared with the traditional artificial potential field method, the method proposed by the present invention not only considers the adverse effect of lumped interference, but also can solve the problem of local minimum value and realize obstacle avoidance. Through the comparison of the above simulation results, the validity and feasibility of the fractional-order sliding mode control method for the distributed formation of obstacle-avoiding UAVs proposed by the present invention is verified, which meets expectations.
最后说明,本发明未详细解释该领域技术人员公认常识,以上所述仅为本发明的一个具体实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。Finally, the present invention does not explain in detail the common knowledge recognized by those skilled in the art. The above description is only a specific embodiment of the present invention, and is not intended to limit the present invention. Any modifications made within the spirit and principles of the present invention , equivalent replacements, improvements, etc., should all be included within the protection scope of the present invention.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210595527.8A CN115291622A (en) | 2022-05-27 | 2022-05-27 | A Fractional-Order Sliding Mode Control Method for Distributed Formation of Obstacle Avoidance UAVs |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210595527.8A CN115291622A (en) | 2022-05-27 | 2022-05-27 | A Fractional-Order Sliding Mode Control Method for Distributed Formation of Obstacle Avoidance UAVs |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115291622A true CN115291622A (en) | 2022-11-04 |
Family
ID=83820971
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210595527.8A Pending CN115291622A (en) | 2022-05-27 | 2022-05-27 | A Fractional-Order Sliding Mode Control Method for Distributed Formation of Obstacle Avoidance UAVs |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115291622A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116414148A (en) * | 2023-03-15 | 2023-07-11 | 华中科技大学 | A Distributed Cooperative Control Method, Device and System for Rotor UAVs |
CN116700355A (en) * | 2023-08-04 | 2023-09-05 | 南京航空航天大学 | Fixed wing unmanned aerial vehicle fault-tolerant control method for facing tracking of unmanned aerial vehicle |
CN117608318A (en) * | 2024-01-23 | 2024-02-27 | 北京航空航天大学 | Unmanned aerial vehicle formation obstacle avoidance control method and system based on bird-like phototaxis |
CN117873078A (en) * | 2023-12-28 | 2024-04-12 | 哈尔滨理工大学 | Unmanned surface vessel formation fault-tolerant control method based on artificial potential function |
CN118012129A (en) * | 2024-02-01 | 2024-05-10 | 辽宁工业大学 | A distributed formation control method for UAV swarm with preset convergence accuracy |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110609568A (en) * | 2019-09-24 | 2019-12-24 | 广东名阳信息科技有限公司 | Strong self-coupling PI cooperative control method for large unmanned aerial vehicle UAV |
CN113157000A (en) * | 2021-05-06 | 2021-07-23 | 西北工业大学 | Flight formation cooperative obstacle avoidance self-adaptive control method based on virtual structure and artificial potential field |
CN113268084A (en) * | 2021-06-29 | 2021-08-17 | 南京工业大学 | Intelligent fault-tolerant control method for unmanned aerial vehicle formation |
-
2022
- 2022-05-27 CN CN202210595527.8A patent/CN115291622A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110609568A (en) * | 2019-09-24 | 2019-12-24 | 广东名阳信息科技有限公司 | Strong self-coupling PI cooperative control method for large unmanned aerial vehicle UAV |
CN113157000A (en) * | 2021-05-06 | 2021-07-23 | 西北工业大学 | Flight formation cooperative obstacle avoidance self-adaptive control method based on virtual structure and artificial potential field |
CN113268084A (en) * | 2021-06-29 | 2021-08-17 | 南京工业大学 | Intelligent fault-tolerant control method for unmanned aerial vehicle formation |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116414148A (en) * | 2023-03-15 | 2023-07-11 | 华中科技大学 | A Distributed Cooperative Control Method, Device and System for Rotor UAVs |
CN116414148B (en) * | 2023-03-15 | 2023-12-05 | 华中科技大学 | Distributed rotor unmanned aerial vehicle cooperative control method, device and system |
CN116700355A (en) * | 2023-08-04 | 2023-09-05 | 南京航空航天大学 | Fixed wing unmanned aerial vehicle fault-tolerant control method for facing tracking of unmanned aerial vehicle |
CN116700355B (en) * | 2023-08-04 | 2023-11-07 | 南京航空航天大学 | Fixed wing unmanned aerial vehicle fault-tolerant control method for facing tracking of unmanned aerial vehicle |
CN117873078A (en) * | 2023-12-28 | 2024-04-12 | 哈尔滨理工大学 | Unmanned surface vessel formation fault-tolerant control method based on artificial potential function |
CN117608318A (en) * | 2024-01-23 | 2024-02-27 | 北京航空航天大学 | Unmanned aerial vehicle formation obstacle avoidance control method and system based on bird-like phototaxis |
CN117608318B (en) * | 2024-01-23 | 2024-04-09 | 北京航空航天大学 | Unmanned aerial vehicle formation obstacle avoidance control method and system based on bird-like phototaxis |
CN118012129A (en) * | 2024-02-01 | 2024-05-10 | 辽宁工业大学 | A distributed formation control method for UAV swarm with preset convergence accuracy |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN115291622A (en) | A Fractional-Order Sliding Mode Control Method for Distributed Formation of Obstacle Avoidance UAVs | |
Dai et al. | Adaptive leader–follower formation control of underactuated surface vehicles with guaranteed performance | |
CN111638726B (en) | Consistent control method of multi-UAV formation based on event-triggered communication | |
Yan et al. | Consensus formation tracking for multiple AUV systems using distributed bioinspired sliding mode control | |
CN112327926B (en) | An Adaptive Sliding Mode Control Method for UAV Formation | |
CN111948944A (en) | A fault-tolerant control method for quadrotor formation based on adaptive neural network | |
CN113268084B (en) | Intelligent fault-tolerant control method for unmanned aerial vehicle formation | |
CN113759935B (en) | Intelligent group formation mobile control method based on fuzzy logic | |
CN112148036A (en) | Bilateral tracking control method of fixed time estimator of networked robot system | |
CN114594784A (en) | A limited-time fault-tolerant control method for fixed-wing UAV formation based on neural network | |
CN114791743A (en) | A collaborative trajectory planning method for UAV swarms considering communication delay | |
CN113156954A (en) | Multi-agent cluster obstacle avoidance method based on reinforcement learning | |
CN112379596B (en) | RBF neural network-based cooperative fault-tolerant control method for heterogeneous multi-agent system | |
CN116700327A (en) | Unmanned aerial vehicle track planning method based on continuous action dominant function learning | |
CN112947086B (en) | Self-adaptive compensation method for actuator faults in formation control of heterogeneous multi-agent system consisting of unmanned aerial vehicle and unmanned vehicle | |
CN114138022B (en) | A Distributed Formation Control Method for UAV Swarms Based on Elite Pigeon Group Intelligence | |
ZHANG et al. | AUV cluster path planning based on improved RRT* algorithm | |
CN114115335A (en) | Multi-quad-rotor unmanned aerial vehicle safety formation control method based on tracking differentiator | |
CN117369507B (en) | An adaptive particle swarm algorithm based method for dynamic path planning of unmanned aerial vehicles | |
Abdessameud et al. | Synchronization of networked Lagrangian systems with input constraints | |
CN117724533A (en) | A high-speed aircraft formation control method and system based on improved superhelix | |
CN116774731A (en) | A UAV formation path planning method based on reinforcement learning | |
Xu et al. | A formation keeping approach for fixed-wing uavs with exploration proximal policy optimization | |
Li et al. | Synchronous control method of multiple under-actuated USVs based on leader-follower mode | |
Wei | UAV formation obstacle avoidance control method based on artificial potential field and consistency |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |