CN115290996A - 基于AlexNet模型的负荷投切事件检测方法 - Google Patents
基于AlexNet模型的负荷投切事件检测方法 Download PDFInfo
- Publication number
- CN115290996A CN115290996A CN202210692396.5A CN202210692396A CN115290996A CN 115290996 A CN115290996 A CN 115290996A CN 202210692396 A CN202210692396 A CN 202210692396A CN 115290996 A CN115290996 A CN 115290996A
- Authority
- CN
- China
- Prior art keywords
- switching event
- alexnet model
- information
- power information
- load switching
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 40
- 238000000034 method Methods 0.000 claims abstract description 57
- 230000000737 periodic effect Effects 0.000 claims abstract description 49
- 238000001914 filtration Methods 0.000 claims description 29
- 238000004590 computer program Methods 0.000 claims description 22
- 238000012545 processing Methods 0.000 claims description 22
- 230000002159 abnormal effect Effects 0.000 claims description 14
- 238000007781 pre-processing Methods 0.000 abstract description 9
- 230000001052 transient effect Effects 0.000 abstract description 7
- 238000005516 engineering process Methods 0.000 abstract description 6
- 238000013135 deep learning Methods 0.000 abstract description 4
- 230000006870 function Effects 0.000 description 24
- 238000004422 calculation algorithm Methods 0.000 description 17
- 230000008569 process Effects 0.000 description 17
- 238000010586 diagram Methods 0.000 description 14
- 230000000694 effects Effects 0.000 description 13
- 238000002474 experimental method Methods 0.000 description 9
- 230000008859 change Effects 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 238000004364 calculation method Methods 0.000 description 5
- 238000012549 training Methods 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 238000012544 monitoring process Methods 0.000 description 4
- 230000005611 electricity Effects 0.000 description 3
- 230000000670 limiting effect Effects 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 238000012795 verification Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000013079 data visualisation Methods 0.000 description 2
- 238000002372 labelling Methods 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000002789 length control Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R21/00—Arrangements for measuring electric power or power factor
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Power Engineering (AREA)
- Supply And Distribution Of Alternating Current (AREA)
Abstract
Description
Claims (10)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110693354 | 2021-06-22 | ||
CN2021106933549 | 2021-06-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115290996A true CN115290996A (zh) | 2022-11-04 |
Family
ID=83820907
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210692396.5A Pending CN115290996A (zh) | 2021-06-22 | 2022-06-17 | 基于AlexNet模型的负荷投切事件检测方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115290996A (zh) |
-
2022
- 2022-06-17 CN CN202210692396.5A patent/CN115290996A/zh active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105512799B (zh) | 一种基于海量在线历史数据的电力系统暂态稳定评估方法 | |
CN109272016B (zh) | 目标检测方法、装置、终端设备和计算机可读存储介质 | |
CN111428755B (zh) | 非侵入式负荷监测方法 | |
De Baets et al. | VI-based appliance classification using aggregated power consumption data | |
Tan et al. | Image co-saliency detection by propagating superpixel affinities | |
CN110245488B (zh) | 密码强度检测方法、装置、终端和计算机可读存储介质 | |
CN111626360B (zh) | 用于检测锅炉故障类型的方法、装置、设备和存储介质 | |
CN112532643B (zh) | 基于深度学习的流量异常检测方法、系统、终端及介质 | |
CN108989581A (zh) | 一种用户风险识别方法、装置及系统 | |
CN111860082A (zh) | 信息处理方法、装置以及系统 | |
CN113641906A (zh) | 基于资金交易关系数据实现相似目标人员识别处理的系统、方法、装置、处理器及其介质 | |
CN109586249A (zh) | 变压器励磁涌流判别方法和装置 | |
CN117909818A (zh) | 基于多周期特征和多尺度卷积的电弧故障识别方法及系统 | |
De Aguiar et al. | ST-NILM: A Wavelet Scattering-Based Architecture for Feature Extraction and Multi-Label Classification in NILM Signals | |
CN117877521A (zh) | 基于数据增强的无监督机械声音异常识别方法及系统 | |
CN111898694A (zh) | 一种基于随机树分类的非入侵式负荷识别方法及装置 | |
CN115290996A (zh) | 基于AlexNet模型的负荷投切事件检测方法 | |
Huang et al. | Generalized Pareto model based on particle swarm optimization for anomaly detection | |
CN112418089A (zh) | 一种手势识别方法、装置及终端 | |
CN114202224B (zh) | 用于检测生产环境中焊接质量的方法、设备、介质 | |
Khetarpal et al. | Noisy and non-stationary power quality disturbance classification based on adaptive segmentation empirical wavelet transform and support vector machine | |
CN110501568A (zh) | 一种基于图信号处理的非侵入式设备负载监测方法 | |
CN114677714B (zh) | 接触式指纹与非接触式指纹的匹配方法及相关装置 | |
CN111985380B (zh) | 轴承退化过程状态监测方法、系统、设备及存储介质 | |
US11899439B2 (en) | Method and device for calculating degree of abnormality |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information | ||
CB02 | Change of applicant information |
Country or region after: China Address after: No.168, Wenhai Middle Road, Jimo District, Qingdao City, Shandong Province 266237 Applicant after: Qingdao Marine Science and Technology Center Applicant after: OCEAN University OF CHINA Address before: No. 168 Wenhai Middle Road, Jimo District, Qingdao City, Shandong Province Applicant before: QINGDAO NATIONAL LABORATORY FOR MARINE SCIENCE AND TECHNOLOGY DEVELOPMENT CENTER Country or region before: China Applicant before: OCEAN University OF CHINA |