CN115289100B - Hydraulic cylinder degradation trend evaluation method - Google Patents
Hydraulic cylinder degradation trend evaluation method Download PDFInfo
- Publication number
- CN115289100B CN115289100B CN202210901662.0A CN202210901662A CN115289100B CN 115289100 B CN115289100 B CN 115289100B CN 202210901662 A CN202210901662 A CN 202210901662A CN 115289100 B CN115289100 B CN 115289100B
- Authority
- CN
- China
- Prior art keywords
- hydraulic cylinder
- stribeck
- parameter
- degradation
- piston
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000015556 catabolic process Effects 0.000 title claims abstract description 74
- 238000006731 degradation reaction Methods 0.000 title claims abstract description 74
- 238000011156 evaluation Methods 0.000 title abstract description 6
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 46
- 238000006073 displacement reaction Methods 0.000 claims abstract description 34
- 238000000034 method Methods 0.000 claims abstract description 22
- 230000006866 deterioration Effects 0.000 claims description 19
- 230000001133 acceleration Effects 0.000 claims description 17
- 238000005070 sampling Methods 0.000 claims description 17
- 239000011159 matrix material Substances 0.000 claims description 12
- 238000004364 calculation method Methods 0.000 claims description 7
- 230000008569 process Effects 0.000 claims description 6
- 238000005096 rolling process Methods 0.000 claims description 5
- 238000013016 damping Methods 0.000 claims description 4
- 238000005259 measurement Methods 0.000 claims description 4
- 229910000831 Steel Inorganic materials 0.000 abstract description 2
- 239000010959 steel Substances 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 8
- 238000012544 monitoring process Methods 0.000 description 6
- 238000003745 diagnosis Methods 0.000 description 4
- 238000012423 maintenance Methods 0.000 description 4
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 2
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 2
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 2
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B19/00—Testing; Calibrating; Fault detection or monitoring; Simulation or modelling of fluid-pressure systems or apparatus not otherwise provided for
- F15B19/005—Fault detection or monitoring
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B19/00—Testing; Calibrating; Fault detection or monitoring; Simulation or modelling of fluid-pressure systems or apparatus not otherwise provided for
- F15B19/007—Simulation or modelling
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/11—Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
- G06Q10/063—Operations research, analysis or management
- G06Q10/0639—Performance analysis of employees; Performance analysis of enterprise or organisation operations
- G06Q10/06393—Score-carding, benchmarking or key performance indicator [KPI] analysis
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Business, Economics & Management (AREA)
- Human Resources & Organizations (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Theoretical Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Operations Research (AREA)
- Mechanical Engineering (AREA)
- Entrepreneurship & Innovation (AREA)
- Data Mining & Analysis (AREA)
- Strategic Management (AREA)
- Pure & Applied Mathematics (AREA)
- Educational Administration (AREA)
- Fluid Mechanics (AREA)
- Mathematical Optimization (AREA)
- Mathematical Analysis (AREA)
- Development Economics (AREA)
- Economics (AREA)
- Computational Mathematics (AREA)
- General Business, Economics & Management (AREA)
- Tourism & Hospitality (AREA)
- Quality & Reliability (AREA)
- Marketing (AREA)
- Algebra (AREA)
- Game Theory and Decision Science (AREA)
- Databases & Information Systems (AREA)
- Software Systems (AREA)
- Fluid-Pressure Circuits (AREA)
Abstract
Description
技术领域Technical Field
本发明涉及热轧带钢自动化控制技术领域,特别是指一种液压缸劣化趋势评价方法。The invention relates to the technical field of hot-rolled strip steel automation control, in particular to a method for evaluating a hydraulic cylinder degradation trend.
背景技术Background Art
大量工业现场数据表明,液压缸在工作时总会受到一些扰动的影响,导致力平衡状态受到破坏,产生不同幅度的颤振,严重时甚至会造成设备损坏和工厂停产。因此,对液压缸系统进行故障诊断、寿命预测、日常监测和维护等手段都应该重点考虑。现阶段,针对液压缸故障诊断与寿命预测的研究已经十分深入,石家庄铁道大学马怀祥教授团队主要研究盾构机和挖掘机两种典型工程机械液压系统的工作状态,以压力、流量、振动、温度和油液信号为检测量,应用Labview软件开发工程机械液压系统故障诊断与健康评估系统,对液压系统的故障诊断与健康预测的效果提升显著。对于液压系统的日常监测和维护方面,通过引入摩擦模型,分析模型的参数变化来表征液压缸的劣化趋势。常用的摩擦模型包括:库伦模型、库伦+黏性摩擦模型、Stribeck摩擦模型、Karnopp模型以及LuGre模型等;其中,Stribeck摩擦模型的使用率高,应用范围十分广泛。文章(摩擦和反弹的机械系统控制)研究了基于永磁同步电机低速运行时粘滑现象下的控制器设计问题,利用Stribeck摩擦模型对非线性摩擦力矩建模,通过设计补偿控制器解决了系统稳态误差和低速爬行问题。A large amount of industrial field data shows that hydraulic cylinders are always affected by some disturbances when working, which leads to the destruction of the force balance state and the generation of vibrations of different amplitudes. In severe cases, it may even cause equipment damage and factory shutdown. Therefore, the fault diagnosis, life prediction, daily monitoring and maintenance of hydraulic cylinder systems should be given priority consideration. At present, the research on hydraulic cylinder fault diagnosis and life prediction has been very in-depth. The team of Professor Ma Huaixiang of Shijiazhuang Tiedao University mainly studies the working conditions of two typical engineering machinery hydraulic systems, namely shield machines and excavators. With pressure, flow, vibration, temperature and oil signals as detection quantities, the team uses Labview software to develop a fault diagnosis and health assessment system for engineering machinery hydraulic systems, which significantly improves the effect of fault diagnosis and health prediction of hydraulic systems. For the daily monitoring and maintenance of hydraulic systems, the friction model is introduced to analyze the parameter changes of the model to characterize the degradation trend of the hydraulic cylinder. Commonly used friction models include: Coulomb model, Coulomb + viscous friction model, Stribeck friction model, Karnopp model and LuGre model, etc. Among them, the Stribeck friction model has a high usage rate and a wide range of applications. The article (Control of Mechanical Systems with Friction and Rebound) studies the controller design problem based on the stick-slip phenomenon when a permanent magnet synchronous motor runs at low speed. The nonlinear friction torque is modeled using the Stribeck friction model, and the system steady-state error and low-speed creep problems are solved by designing a compensation controller.
目前,大多数研究都是从如何影响系统稳定性能的角度去分析Stribeck摩擦模型,利用Stribeck摩擦模型研究液压缸劣化问题的文献鲜有。At present, most studies analyze the Stribeck friction model from the perspective of how it affects the stability performance of the system, and there are few literatures that use the Stribeck friction model to study the deterioration problem of hydraulic cylinders.
发明内容Summary of the invention
本发明实施例提供了液压缸劣化趋势评价方法,能够对液压缸的劣化程度进行精准评价。所述方法包括:The embodiment of the present invention provides a method for evaluating the deterioration trend of a hydraulic cylinder, which can accurately evaluate the deterioration degree of the hydraulic cylinder. The method comprises:
实时采集液压缸在不同工作时间段的活塞位移信号;Real-time collection of piston displacement signals of hydraulic cylinders in different working time periods;
基于采集的活塞位移信号,确定液压缸运动模型的LS算法格式;其中,LS表示最小二乘;Based on the collected piston displacement signal, the LS algorithm format of the hydraulic cylinder motion model is determined; where LS stands for least squares;
基于确定的液压缸运动模型的LS算法格式,对Stribeck参数进行估计,得到收敛至稳定的Stribeck参数;Based on the LS algorithm format of the determined hydraulic cylinder motion model, the Stribeck parameters are estimated and the Stribeck parameters that converge to stability are obtained;
将得到的稳定的Stribeck参数与初始状态下的Stribeck参数进行比较,建立液压缸工作状态劣化指标,绘制液压缸工作状态劣化曲线,根据绘制的液压缸工作状态劣化曲线,确定液压缸劣化趋势,并根据当前时刻的劣化指标确定液压缸目前的劣化程度。The obtained stable Stribeck parameters are compared with the Stribeck parameters in the initial state, the hydraulic cylinder working state degradation index is established, and the hydraulic cylinder working state degradation curve is drawn. According to the drawn hydraulic cylinder working state degradation curve, the hydraulic cylinder degradation trend is determined, and the current degradation degree of the hydraulic cylinder is determined according to the degradation index at the current moment.
进一步地,确定的液压缸运动模型的LS算法格式表示为:Furthermore, the LS algorithm format of the determined hydraulic cylinder motion model is expressed as:
y(t)=φT(t)θ+d(t)y(t)=φ T (t)θ+d(t)
θ=[m K fc fv fs]T θ=[m K f c f v f s ] T
其中,y(t)为LS算法输出,φ(t)为LS算法输入,θ为待估计的参数,d(t)为测量噪声,上标T表示矩阵转置,p1、p2分别为无杆腔压强、有杆腔压强,A1、A2分别为无杆腔有效面积、有杆腔有效面积,p1A1和p2A2分别代表无杆腔和有杆腔的压力,FL表示外部轧制力,c表示粘性阻尼系数,x、分别表示活塞的位移、速度、加速度,sgn(·)为符号函数,m为活塞及负载的折合质量,K表示液压缸系统的等效刚度,fc为库仑摩擦参数,fv为黏性摩擦系数,fs为Stribeck摩擦参数。Where y(t) is the output of the LS algorithm, φ(t) is the input of the LS algorithm, θ is the parameter to be estimated, d(t) is the measurement noise, the superscript T represents the matrix transpose, p 1 and p 2 are the pressure of the rodless cavity and the pressure of the rod cavity, A 1 and A 2 are the effective area of the rodless cavity and the effective area of the rod cavity, p 1 A 1 and p 2 A 2 represent the pressure of the rodless cavity and the rod cavity, F L represents the external rolling force, c represents the viscous damping coefficient, x, represents the displacement, velocity and acceleration of the piston respectively, sgn(·) is the sign function, m is the reduced mass of the piston and the load, K represents the equivalent stiffness of the hydraulic cylinder system, fc is the Coulomb friction parameter, fv is the viscous friction coefficient, and fs is the Stribeck friction parameter.
进一步地,所述基于确定的液压缸运动模型的LS算法格式,对Stribeck参数进行估计,得到收敛至稳定的Stribeck参数包括:Furthermore, the LS algorithm format based on the determined hydraulic cylinder motion model estimates the Stribeck parameters, and the Stribeck parameters that converge to stability include:
A1,在初始采样时间段的LS算法参数估计过程中,给定参数初值θ0、增益矩阵初值P0、位移初值x0和速度初值 A1, in the LS algorithm parameter estimation process of the initial sampling time period, given the initial parameter value θ 0 , the initial gain matrix value P 0 , the initial displacement value x 0 and the initial velocity value
A2,输入活塞位移信号x1,采用差分算法计算出活塞的速度信号和加速度信号,构建出液压缸运动模型的LS算法格式的输出yk和输入φk,依次更新计算Kk、Pk的值;A2, input piston displacement signal x1 , use differential algorithm to calculate piston velocity signal and acceleration signal, construct output yk and input φk of hydraulic cylinder motion model in LS algorithm format, and update and calculate Kk , The value of P k ;
A3,更新计算Kk、Pk的值后,k=k+1,返回步骤A2,输入下一时刻活塞位移信号x2,重新计算Kk、Pk的值,不断循环,直至得到对应的采样时间段收敛至稳定的Stribeck参数,并且每一次采样时间段的参数估计结果作为下一次参数估计的初值加入计算;其中,Stribeck参数包括:fc、fv和fs,下一次指下一采样时间段。A3, update calculation K k , After the value of P k is obtained, k=k+1, and the process returns to step A2, inputs the piston displacement signal x 2 at the next moment, and recalculates K k , The value of P k is continuously cycled until the corresponding sampling time period converges to a stable Stribeck parameter, and the parameter estimation result of each sampling time period is added to the calculation as the initial value of the next parameter estimation; wherein the Stribeck parameters include: f c , f v and f s , and the next time refers to the next sampling time period.
进一步地,所述采用差分算法计算出活塞的速度信号和加速度信号包括:Furthermore, the method of calculating the speed signal and acceleration signal of the piston by using a differential algorithm includes:
通过公式求解活塞的速度信号vk;其中,△为差分间隔,xk为第k时刻活塞的位移信号;By formula Solve for the piston velocity signal v k ; where △ is the differential interval, and x k is the piston displacement signal at the kth moment;
通过公式求解活塞的加速度信号ak;其中,为第k时刻活塞的加速度信号。By formula Solve for the piston acceleration signal ak ; where, is the acceleration signal of the piston at the kth moment.
进一步地,第k时刻Kk、Pk的更新表达式为:Furthermore, at the kth moment K k , The update expression of P k is:
其中,Kk和Pk都表示第k时刻的增益矩阵;表示第k时刻的参数估计值;Pk-1表示第k-1时刻的增益矩阵;φk表示第k时刻的LS算法输入;表示第k-1时刻的参数估计值;yk表示第k时刻的LS算法输出。Among them, K k and P k both represent the gain matrix at the kth moment; represents the parameter estimation value at the kth moment; P k-1 represents the gain matrix at the k-1th moment; φ k represents the LS algorithm input at the kth moment; represents the parameter estimate at the k-1th moment; y k represents the LS algorithm output at the kth moment.
进一步地,参数估计循环终止条件为:Furthermore, the parameter estimation loop termination condition is:
其中,分别为第n次参数估计得到的第k时刻、k-1时刻的参数估计值,ε为停止条件参数。in, are the parameter estimates at the kth moment and k-1th moment respectively obtained by the nth parameter estimation, and ε is the stopping condition parameter.
进一步地,所述将得到的稳定的Stribeck参数与初始状态下的Stribeck参数进行比较,建立液压缸工作状态劣化指标,绘制液压缸工作状态劣化曲线,根据绘制的液压缸工作状态劣化曲线,确定液压缸目前的劣化程度包括:Further, the obtained stable Stribeck parameters are compared with the Stribeck parameters in the initial state, a hydraulic cylinder working state degradation index is established, a hydraulic cylinder working state degradation curve is drawn, and according to the drawn hydraulic cylinder working state degradation curve, the current degradation degree of the hydraulic cylinder is determined, including:
将每次得到的稳定的Stribeck参数与初始状态下的Stribeck参数进行比较,建立液压缸工作状态劣化指标Jn:The stable Stribeck parameters obtained each time are compared with the Stribeck parameters in the initial state, and the hydraulic cylinder working state degradation index J n is established:
其中,表示活塞工作时的速度上限;v表示活塞的速度信号;分别表示第n次参数估计得到的库仑摩擦参数、黏性摩擦系数、Stribeck摩擦参数,分别表示液压缸初始状态下的库仑摩擦参数、黏性摩擦系数、Stribeck摩擦参数,函数Fd(·)为线性化后的Stribeck摩擦模型;in, Indicates the upper speed limit of the piston when it is working; v indicates the speed signal of the piston; They represent the Coulomb friction parameter, viscous friction coefficient, and Stribeck friction parameter obtained by the nth parameter estimation, respectively. They represent the Coulomb friction parameter, viscous friction coefficient, and Stribeck friction parameter in the initial state of the hydraulic cylinder, respectively. Function F d (·) is the linearized Stribeck friction model.
以为横坐标,Jn为纵坐标,绘制液压缸工作状态劣化曲线;其中,Ti表示第i次估计参数与第i+1次估计参数之间的时间间隔,τn表示第n次参数估计所用的活塞位移信号对应的采样时间段;by As the horizontal coordinate, J n as the vertical coordinate, the hydraulic cylinder working state degradation curve is drawn; wherein Ti represents the time interval between the i-th estimated parameter and the i+1-th estimated parameter, and τ n represents the sampling time period corresponding to the piston displacement signal used for the n-th parameter estimation;
根据绘制的液压缸工作状态劣化曲线,确定液压缸劣化趋势,并根据当前时刻的劣化指标确定液压缸目前的劣化程度。According to the drawn hydraulic cylinder working state degradation curve, the hydraulic cylinder degradation trend is determined, and the current degradation degree of the hydraulic cylinder is determined according to the degradation index at the current moment.
进一步地,函数Fd(·)表示为:Furthermore, the function F d (·) is expressed as:
其中,fc为库仑摩擦参数,fv为黏性摩擦系数,fs为Stribeck摩擦参数,sgn(·)为符号函数,表示活塞的速度。Where, f c is the Coulomb friction parameter, f v is the viscous friction coefficient, f s is the Stribeck friction parameter, sgn(·) is the sign function, Indicates the speed of the piston.
本发明实施例提供的技术方案带来的有益效果至少包括:The beneficial effects brought about by the technical solution provided by the embodiment of the present invention include at least:
本发明实施例中,实时采集液压缸在不同工作时间段的活塞位移信号;基于采集的活塞位移信号,确定液压缸运动模型的LS算法格式;基于确定的液压缸运动模型的LS算法格式,对Stribeck参数进行估计,得到收敛至稳定的Stribeck参数;将得到的稳定的Stribeck参数与初始状态下的Stribeck参数进行比较,建立液压缸工作状态劣化指标,绘制液压缸工作状态劣化曲线,根据绘制的液压缸工作状态劣化曲线,确定液压缸劣化趋势,并根据当前时刻的劣化指标确定液压缸目前的劣化程度。这样,通过建立的基于Stribeck曲线的液压缸劣化趋势评价方法,能够对液压缸的劣化程度进行精准评价,辅助液压系统的日常监测和维护,对液压系统的性能监控与评估以及提升生产过程的工作效率有着重要意义,从而解决现有技术无法对液压缸劣化程度进行评价的问题。In the embodiment of the present invention, the piston displacement signal of the hydraulic cylinder in different working time periods is collected in real time; based on the collected piston displacement signal, the LS algorithm format of the hydraulic cylinder motion model is determined; based on the determined LS algorithm format of the hydraulic cylinder motion model, the Stribeck parameter is estimated to obtain the Stribeck parameter that converges to stability; the obtained stable Stribeck parameter is compared with the Stribeck parameter in the initial state, the hydraulic cylinder working state degradation index is established, the hydraulic cylinder working state degradation curve is drawn, the hydraulic cylinder degradation trend is determined according to the drawn hydraulic cylinder working state degradation curve, and the current degradation degree of the hydraulic cylinder is determined according to the degradation index at the current moment. In this way, by establishing a hydraulic cylinder degradation trend evaluation method based on the Stribeck curve, the degradation degree of the hydraulic cylinder can be accurately evaluated, which assists the daily monitoring and maintenance of the hydraulic system, and has important significance for the performance monitoring and evaluation of the hydraulic system and improving the work efficiency of the production process, thereby solving the problem that the existing technology cannot evaluate the degradation degree of the hydraulic cylinder.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention, the drawings required for use in the description of the embodiments will be briefly introduced below. Obviously, the drawings described below are only some embodiments of the present invention. For ordinary technicians in this field, other drawings can be obtained based on these drawings without creative work.
图1为本发明实施例提供的液压缸劣化趋势评价方法的流程示意图;FIG1 is a schematic flow chart of a method for evaluating a hydraulic cylinder degradation trend according to an embodiment of the present invention;
图2(a)-(f)为本发明实施例提供的第1-6次参数估计所用的活塞位移信号以及利用差分算法求解得到的速度、加速度信号曲线示意图;2(a)-(f) are schematic diagrams of piston displacement signals used for the 1st to 6th parameter estimations provided by an embodiment of the present invention and velocity and acceleration signal curves obtained by using a differential algorithm;
图3(a)-(f)为本发明实施例提供的第1-6次参数估计得到的Stribeck参数估计值和真值曲线示意图;3(a)-(f) are schematic diagrams of Stribeck parameter estimation values and true value curves obtained by the 1st to 6th parameter estimations provided by an embodiment of the present invention;
图4为本发明实施例提供的不同采样时间段下Stribeck摩擦模型曲线示意图;FIG4 is a schematic diagram of a Stribeck friction model curve under different sampling time periods provided by an embodiment of the present invention;
图5为本发明实施例提供的液压缸的劣化趋势折线示意图。FIG. 5 is a schematic diagram of a degradation trend line diagram of a hydraulic cylinder provided in an embodiment of the present invention.
具体实施方式DETAILED DESCRIPTION
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。In order to make the objectives, technical solutions and advantages of the present invention more clear, the embodiments of the present invention will be further described in detail below with reference to the accompanying drawings.
如图1所示,本发明实施例提供了一种液压缸劣化趋势评价方法,包括:As shown in FIG1 , an embodiment of the present invention provides a method for evaluating a hydraulic cylinder degradation trend, comprising:
S101,实时采集液压缸在不同工作时间段的活塞位移信号;S101, real-time acquisition of piston displacement signals of the hydraulic cylinder in different working time periods;
S102,基于采集的活塞位移信号,确定液压缸运动模型的LS(Least Squares,最小二乘)算法格式;其中,LS表示最小二乘;S102, based on the collected piston displacement signal, determining the LS (Least Squares) algorithm format of the hydraulic cylinder motion model; wherein LS represents least squares;
本实施例中,确定的液压缸运动模型的LS算法格式表示为:In this embodiment, the LS algorithm format of the determined hydraulic cylinder motion model is expressed as:
y(t)=φT(t)θ+d(t)y(t)=φ T (t)θ+d(t)
θ=[m K fc fv fs]T θ=[m K f c f v f s ] T
其中,y(t)为LS算法输出,φ(t)为LS算法输入,θ为待估计的参数,d(t)为测量噪声,上标T表示矩阵转置,p1、p2分别为无杆腔压强、有杆腔压强,A1、A2分别为无杆腔有效面积、有杆腔有效面积,p1A1和p2A2分别代表无杆腔和有杆腔的压力,FL表示外部轧制力,c表示粘性阻尼系数,x、分别表示活塞的位移、速度、加速度,sgn(·)为符号函数,m为活塞及负载的折合质量,K表示液压缸系统的等效刚度,fc为库仑摩擦参数,fv为黏性摩擦系数,fs为Stribeck摩擦参数。Where y(t) is the output of the LS algorithm, φ(t) is the input of the LS algorithm, θ is the parameter to be estimated, d(t) is the measurement noise, the superscript T represents the matrix transpose, p 1 and p 2 are the pressure of the rodless cavity and the pressure of the rod cavity, A 1 and A 2 are the effective area of the rodless cavity and the effective area of the rod cavity, p 1 A 1 and p 2 A 2 represent the pressure of the rodless cavity and the rod cavity, F L represents the external rolling force, c represents the viscous damping coefficient, x, represents the displacement, velocity and acceleration of the piston respectively, sgn(·) is the sign function, m is the reduced mass of the piston and the load, K represents the equivalent stiffness of the hydraulic cylinder system, fc is the Coulomb friction parameter, fv is the viscous friction coefficient, and fs is the Stribeck friction parameter.
本实施例中,d(t)为测量噪声,假设其服从0均值的高斯分布;根据公式“压力=压强×表面积”可知,p1A1和p2A2分别代表无杆腔和有杆腔的压力,两腔的压力随着活塞位移变化而变化,可通过压力传感器测量;外部轧制力FL可根据工况的不同自行设计;粘性阻尼系数c在实际系统中被视为已知常数,因此粘性力已知。In this embodiment, d(t) is the measurement noise, which is assumed to obey a Gaussian distribution with a mean of 0. According to the formula “pressure = pressure × surface area”, p 1 A 1 and p 2 A 2 represent the pressure of the rodless chamber and the rod chamber, respectively. The pressures of the two chambers change with the displacement of the piston and can be measured by a pressure sensor. The external rolling force F L can be designed according to different working conditions. The viscous damping coefficient c is regarded as a known constant in the actual system, so the viscous force Known.
本实施例中,由活塞位移求导得到活塞速度、无杆腔和有杆腔的压力、外部轧制力、粘性力组成LS算法输出;由x、组成回归向量,即:LS算法输入。In this embodiment, the piston speed, the pressure of the rodless cavity and the rod cavity, the external rolling force, and the viscous force are obtained by derivation of the piston displacement to form the LS algorithm output; x, Constitute the regression vector, that is, the LS algorithm input.
S103,基于确定的液压缸运动模型的LS算法格式,对Stribeck参数进行估计,得到收敛至稳定的Stribeck(斯特里贝克)参数;具体可以包括以下步骤:S103, based on the determined LS algorithm format of the hydraulic cylinder motion model, estimating the Stribeck parameters to obtain the Stribeck parameters that converge to stability; specifically, the following steps may be included:
A1,在初始采样时间段的LS算法参数估计过程中,给定参数初值θ0、增益矩阵初值P0、位移初值x0和速度初值 A1, in the LS algorithm parameter estimation process of the initial sampling time period, given the initial parameter value θ 0 , the initial gain matrix value P 0 , the initial displacement value x 0 and the initial velocity value
A2,输入活塞位移信号x1,采用差分算法计算出活塞的速度信号和加速度信号,构建出液压缸运动模型的LS算法格式的输出yk和输入φk,依次更新计算Kk、Pk的值;A2, input piston displacement signal x1 , use differential algorithm to calculate piston velocity signal and acceleration signal, construct output yk and input φk of hydraulic cylinder motion model in LS algorithm format, and update and calculate Kk , The value of P k ;
本实施例中,采用差分算法计算出活塞的速度信号和加速度信号,具体可以包括以下步骤:In this embodiment, a differential algorithm is used to calculate the speed signal and acceleration signal of the piston, which may specifically include the following steps:
通过公式求解活塞的速度信号vk;其中,△为差分间隔,xk为第k时刻活塞的位移信号;By formula Solve for the piston velocity signal v k ; where △ is the differential interval, and x k is the piston displacement signal at the kth moment;
通过公式求解活塞的加速度信号ak;其中,为第k时刻活塞的加速度信号。By formula Solve for the piston's acceleration signal ak ; where, is the acceleration signal of the piston at the kth moment.
本实施例中,第1-6次参数估计所用的活塞位移信号以及利用差分算法求解得到的速度、加速度信号曲线示意图,如图2(a)-(f)所示。In this embodiment, the piston displacement signal used for the 1st to 6th parameter estimation and the schematic diagram of the velocity and acceleration signal curves obtained by using the difference algorithm are shown in Figures 2(a)-(f).
本实施例中,已知液压缸运动模型的LS算法格式与液压缸动力学方程如下:In this embodiment, the LS algorithm format of the known hydraulic cylinder motion model and the hydraulic cylinder dynamics equation are as follows:
y(t)=φT(t)θ+d(t)y(t)=φ T (t)θ+d(t)
通过计算,得到第k时刻Kk、Pk的更新表达式为:By calculation, we can get K k at the kth moment, The update expression of P k is:
其中,Kk和Pk都表示第k时刻的增益矩阵;表示第k时刻的参数估计值,初值Pk-1表示第k-1时刻的增益矩阵;φk表示第k时刻的LS算法输入;表示第k-1时刻的参数估计值;yk表示第k时刻的LS算法输出。Among them, K k and P k both represent the gain matrix at the kth moment; Represents the parameter estimate at the kth moment, the initial value P k-1 represents the gain matrix at the k-1th moment; φ k represents the LS algorithm input at the kth moment; represents the parameter estimate at the k-1th moment; y k represents the LS algorithm output at the kth moment.
A3,更新计算Kk、Pk的值后,k=k+1,返回步骤A2,输入下一时刻活塞位移信号x2,重新计算Kk、Pk的值,不断循环,直至得到对应的采样时间段收敛至稳定的Stribeck参数,并且每一次采样时间段的参数估计结果作为下一次参数估计的初值加入计算;其中,Stribeck参数包括:fc、fv和fs,下一次指下一采样时间段。A3, update calculation K k , After the value of P k is obtained, k=k+1, and the process returns to step A2, inputs the piston displacement signal x 2 at the next moment, and recalculates K k , The value of P k is continuously cycled until the corresponding sampling time period converges to a stable Stribeck parameter, and the parameter estimation result of each sampling time period is added to the calculation as the initial value of the next parameter estimation; wherein the Stribeck parameters include: f c , f v and f s , and the next time refers to the next sampling time period.
本实施例中,参数估计循环终止条件为:In this embodiment, the parameter estimation loop termination condition is:
其中,分别为第n次参数估计得到的第k时刻、k-1时刻的参数估计值,ε为停止条件参数,ε一般接近于0。in, are the parameter estimates at the kth moment and k-1th moment respectively obtained by the nth parameter estimation. ε is the stopping condition parameter, which is generally close to 0.
本实施例中,第1-6次参数估计得到的Stribeck参数估计值和真值曲线示意图,如图3(a)-(f)所示。In this embodiment, schematic diagrams of Stribeck parameter estimation values and true value curves obtained from the 1st to 6th parameter estimations are shown in FIG. 3(a)-(f).
S104,将得到的稳定的Stribeck参数与初始状态下的Stribeck参数进行比较,建立液压缸工作状态劣化指标,绘制液压缸工作状态劣化曲线,根据绘制的液压缸工作状态劣化曲线,确定液压缸劣化趋势,并根据当前时刻的劣化指标确定液压缸目前的劣化程度,具体可以包括以下步骤:S104, comparing the obtained stable Stribeck parameters with the Stribeck parameters in the initial state, establishing a hydraulic cylinder working state degradation index, drawing a hydraulic cylinder working state degradation curve, determining the hydraulic cylinder degradation trend according to the drawn hydraulic cylinder working state degradation curve, and determining the current degradation degree of the hydraulic cylinder according to the degradation index at the current moment, which may specifically include the following steps:
B1,将每次得到的稳定的Stribeck参数与初始状态下的Stribeck参数进行比较,建立液压缸工作状态劣化指标Jn:B1, compare the stable Stribeck parameters obtained each time with the Stribeck parameters in the initial state, and establish the hydraulic cylinder working state degradation index Jn :
其中,表示活塞工作时的速度上限;v表示活塞的速度信号;分别表示第n次参数估计得到的库仑摩擦参数、黏性摩擦系数、Stribeck摩擦参数,分别表示液压缸初始状态下的库仑摩擦参数、黏性摩擦系数、Stribeck摩擦参数,函数Fd(·)为线性化后的Stribeck摩擦模型;in, Indicates the upper speed limit of the piston when it is working; v indicates the speed signal of the piston; They represent the Coulomb friction parameter, viscous friction coefficient, and Stribeck friction parameter obtained by the nth parameter estimation, respectively. They represent the Coulomb friction parameter, viscous friction coefficient, and Stribeck friction parameter in the initial state of the hydraulic cylinder, respectively. Function F d (·) is the linearized Stribeck friction model.
本实施例中,函数Fd(·)表示为:In this embodiment, the function F d (·) is expressed as:
其中,fc为库仑摩擦参数,fv为黏性摩擦系数,fs为Stribeck摩擦参数,sgn(·)为符号函数,表示活塞的速度。Where, f c is the Coulomb friction parameter, f v is the viscous friction coefficient, f s is the Stribeck friction parameter, sgn(·) is the sign function, Indicates the speed of the piston.
本实施例中,不同采样时间段下Stribeck摩擦模型曲线,如图4所示。In this embodiment, the Stribeck friction model curves at different sampling time periods are shown in FIG4 .
B2,以为横坐标,Jn为纵坐标,绘制液压缸工作状态劣化曲线;其中,Ti表示第i次估计参数与第i+1次估计参数之间的时间间隔,τn表示第n次参数估计所用的活塞位移信号对应的采样时间段;B2, with As the horizontal coordinate, J n as the vertical coordinate, the hydraulic cylinder working state degradation curve is drawn; wherein Ti represents the time interval between the i-th estimated parameter and the i+1-th estimated parameter, and τ n represents the sampling time period corresponding to the piston displacement signal used for the n-th parameter estimation;
B3,根据绘制的液压缸工作状态劣化曲线,确定液压缸劣化趋势,并根据当前时刻的劣化指标确定液压缸目前的劣化程度。B3, determine the hydraulic cylinder degradation trend according to the drawn hydraulic cylinder working state degradation curve, and determine the current degradation degree of the hydraulic cylinder according to the degradation index at the current moment.
本实施例中,可以根据经验设定4个阈值范围,从而将劣化程度分为:轻微损耗、中度损耗、设备故障和完全报废四个等级。本实施例中,通过判断液压缸当前时刻劣化指标所属的阈值范围,得到液压缸目前的劣化程度。In this embodiment, four threshold ranges can be set based on experience, so that the degree of degradation is divided into four levels: slight loss, moderate loss, equipment failure and complete scrapping. In this embodiment, the current degree of degradation of the hydraulic cylinder is obtained by determining the threshold range to which the degradation index of the hydraulic cylinder belongs at the current moment.
本实施例中,液压缸的劣化趋势折线示意图如图5所示。In this embodiment, a schematic diagram of the degradation trend of the hydraulic cylinder is shown in FIG5 .
本实施例中,通过对液压缸工作状态劣化曲线进行分析,可以确定液压缸目前的劣化程度,为是否更换系统部件提供依据。In this embodiment, by analyzing the degradation curve of the hydraulic cylinder working state, the current degradation degree of the hydraulic cylinder can be determined, providing a basis for whether to replace system components.
本发明实施例所述的液压缸劣化趋势评价方法,实时采集液压缸在不同工作时间段的活塞位移信号;基于采集的活塞位移信号,确定液压缸运动模型的LS算法格式;基于确定的液压缸运动模型的LS算法格式,对Stribeck参数进行估计,得到收敛至稳定的Stribeck参数;将得到的稳定的Stribeck参数与初始状态下的Stribeck参数进行比较,建立液压缸工作状态劣化指标,绘制液压缸工作状态劣化曲线,根据绘制的液压缸工作状态劣化曲线,确定液压缸劣化趋势,并根据当前时刻的劣化指标确定液压缸目前的劣化程度。这样,通过建立的基于Stribeck曲线的液压缸劣化趋势评价方法,能够对液压缸的劣化程度进行精准评价,辅助液压系统的日常监测和维护,对液压系统的性能监控与评估以及提升生产过程的工作效率有着重要意义,从而解决现有技术无法对液压缸劣化程度进行评价的问题。The method for evaluating the deterioration trend of a hydraulic cylinder described in the embodiment of the present invention collects the piston displacement signal of the hydraulic cylinder in different working time periods in real time; determines the LS algorithm format of the hydraulic cylinder motion model based on the collected piston displacement signal; estimates the Stribeck parameters based on the determined LS algorithm format of the hydraulic cylinder motion model to obtain the Stribeck parameters that converge to stability; compares the obtained stable Stribeck parameters with the Stribeck parameters in the initial state, establishes the deterioration index of the hydraulic cylinder working state, draws the deterioration curve of the hydraulic cylinder working state, determines the deterioration trend of the hydraulic cylinder based on the drawn deterioration curve of the hydraulic cylinder working state, and determines the current deterioration degree of the hydraulic cylinder based on the deterioration index at the current moment. In this way, by establishing the deterioration trend evaluation method of the hydraulic cylinder based on the Stribeck curve, the deterioration degree of the hydraulic cylinder can be accurately evaluated, which assists the daily monitoring and maintenance of the hydraulic system, and has important significance for the performance monitoring and evaluation of the hydraulic system and the improvement of the work efficiency of the production process, thereby solving the problem that the prior art cannot evaluate the deterioration degree of the hydraulic cylinder.
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above description is only a preferred embodiment of the present invention and is not intended to limit the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and principle of the present invention should be included in the protection scope of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210901662.0A CN115289100B (en) | 2022-07-28 | 2022-07-28 | Hydraulic cylinder degradation trend evaluation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210901662.0A CN115289100B (en) | 2022-07-28 | 2022-07-28 | Hydraulic cylinder degradation trend evaluation method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115289100A CN115289100A (en) | 2022-11-04 |
CN115289100B true CN115289100B (en) | 2023-05-02 |
Family
ID=83823686
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210901662.0A Active CN115289100B (en) | 2022-07-28 | 2022-07-28 | Hydraulic cylinder degradation trend evaluation method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115289100B (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN203374559U (en) * | 2013-08-01 | 2014-01-01 | 中冶赛迪工程技术股份有限公司 | Test system for hydraulic cylinder stribeck model friction parameter |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080228329A1 (en) * | 2007-03-13 | 2008-09-18 | Honeywell International Inc. | Methods and systems for friction detection and slippage control |
US9128008B2 (en) * | 2012-04-20 | 2015-09-08 | Kent Tabor | Actuator predictive system |
CN102635597B (en) * | 2012-05-02 | 2015-02-04 | 武汉理工大学 | Health management system and method of engineering machinery hydraulic system |
CN103410809B (en) * | 2013-08-01 | 2016-01-20 | 中冶赛迪工程技术股份有限公司 | The test system of oil hydraulic cylinder Stribeck model friction parameter and test method |
JP6502063B2 (en) * | 2014-11-05 | 2019-04-17 | 国立大学法人 東京大学 | Electrohydrostatic actuator and parameter estimation method for electrohydrostatic actuator |
CN104678763B (en) * | 2015-01-21 | 2017-02-22 | 浙江工业大学 | Friction compensation and dynamic surface control method based on least squares support vector machine for electromechanical servo system |
JP5990729B1 (en) * | 2015-04-03 | 2016-09-14 | トライボテックス株式会社 | General-purpose deterioration curve creation method and machine life prediction method, and general-purpose deterioration curve creation program and machine life prediction program |
CN106093782A (en) * | 2016-06-03 | 2016-11-09 | 哈尔滨工业大学 | The least square method supporting vector machine SOC method of estimation of dynamic modeling |
US10837472B2 (en) * | 2018-02-22 | 2020-11-17 | Caterpillar Inc. | Hydraulic cylinder health monitoring and remaining life system |
CN110296833B (en) * | 2019-07-22 | 2020-08-18 | 齐鲁工业大学 | Soft measurement method and system for hydraulic cylinder comprehensive test board |
CN112507487B (en) * | 2020-11-30 | 2023-06-27 | 中国长江电力股份有限公司 | Reliability evaluation method and system for hydraulic turbine governor servomotor |
-
2022
- 2022-07-28 CN CN202210901662.0A patent/CN115289100B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN203374559U (en) * | 2013-08-01 | 2014-01-01 | 中冶赛迪工程技术股份有限公司 | Test system for hydraulic cylinder stribeck model friction parameter |
Also Published As
Publication number | Publication date |
---|---|
CN115289100A (en) | 2022-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020118512A1 (en) | Lft-based aeroengine sensor and actuator fault diagnosis method | |
CN104111607B (en) | A kind of control method of the electric machine position servo system considering input delay | |
CN112487584A (en) | Dynamics-based rolling bearing digital twin modeling method | |
CN108227676A (en) | The online fault detect of valve-controlled cylinder electrohydraulic servo system, estimation and localization method | |
CN104345638A (en) | ADRAC (active-disturbance-rejection adaptive control) method for hydraulic motor position servo system | |
CN114036605B (en) | Kalman filtering steel truss bridge structure parameter monitoring method based on self-adaptive control | |
CN111367173B (en) | A robust predictive control method for high-speed railway pantograph based on state estimation | |
CN104821579B (en) | A kind of sub-synchronous oscillation method for monitoring and analyzing based on current conversion station electric signal | |
KR20120114439A (en) | System for intelligent monitoring and safety evaluation of bridge based on usn | |
CN109334376B (en) | Time-varying compensation control system for mechanical property of shock absorber of magneto-rheological semi-active suspension and construction method thereof | |
CN114114928A (en) | A fixed-time adaptive event-triggered control method for a piezoelectric micropositioning platform | |
CN117131747B (en) | State estimation method and device based on sampling point Kalman filtering | |
CN101871862A (en) | A New Method for Identifying Interstory Stiffness of Shear Structures Under Environmental Excitation | |
Dong et al. | Robust fault diagnosis based on nonlinear model of hydraulic gauge control system on rolling mill | |
CN115289100B (en) | Hydraulic cylinder degradation trend evaluation method | |
CN108107728A (en) | A kind of electro-hydraulic position servo system control method based on interference compensation | |
Wei et al. | Application of non-equidistant gray model based on optimization of background value in settlement prediction | |
Zhang et al. | Torsional vibration suppression control in the main drive system of rolling mill by state feedback speed controller based on extended state observer | |
CN116127762A (en) | Reactive flywheel reliability assessment method based on multiplicative fault performance index and estimation thereof | |
CN111337257B (en) | A ball bearing fault detection method | |
CN107144250B (en) | The method and device of on-line measurement reciprocating machine transmission chain gap value | |
CN106936628B (en) | A Fractional Order Network System State Estimation Method Considering Sensor Faults | |
CN115303856B (en) | Method for measuring tension of material belt of web printing machine based on extended state observer | |
CN119191140B (en) | A visual working monitoring method for tower crane based on digital twin | |
CN113221420B (en) | Sensor capacitance error evaluation method based on ANSYS software |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |