CN115270065A - 一种基于海上风电场scada运行数据的风电机组局地有效湍流强度计算方法 - Google Patents

一种基于海上风电场scada运行数据的风电机组局地有效湍流强度计算方法 Download PDF

Info

Publication number
CN115270065A
CN115270065A CN202210825429.9A CN202210825429A CN115270065A CN 115270065 A CN115270065 A CN 115270065A CN 202210825429 A CN202210825429 A CN 202210825429A CN 115270065 A CN115270065 A CN 115270065A
Authority
CN
China
Prior art keywords
wind
turbulence intensity
wind turbine
data
turbine generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210825429.9A
Other languages
English (en)
Inventor
刘树洁
崔冬林
沙伟
王尼娜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PowerChina Huadong Engineering Corp Ltd
Original Assignee
PowerChina Huadong Engineering Corp Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PowerChina Huadong Engineering Corp Ltd filed Critical PowerChina Huadong Engineering Corp Ltd
Priority to CN202210825429.9A priority Critical patent/CN115270065A/zh
Publication of CN115270065A publication Critical patent/CN115270065A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/16Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Data Mining & Analysis (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Economics (AREA)
  • General Engineering & Computer Science (AREA)
  • Databases & Information Systems (AREA)
  • Algebra (AREA)
  • Software Systems (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Computing Systems (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Wind Motors (AREA)

Abstract

本发明提供了一种基于海上风电场SCADA运行数据的风电机组局地有效湍流强度计算方法,S1、获取风电场场区周边处于自由流的历史或同期完整年测风塔风数据、风电场中各风电机组SCADA实际运行风数据及风电机组坐标信息、机组型号,SCADA实际运行风数据包括风速、风速标准差、风向,SCADA实际运行风数据用于计算各扇区对应的机舱湍流强度代表值;S2、对风电场中风电机组SCADA实际运行风数据、测风塔风数据进行数据筛选,剔除异常、无效数据;本发明以解决软件仿真模拟湍流强度的偏差带来的机组载荷安全的不确定性及对机组发电能力的优化提升。

Description

一种基于海上风电场SCADA运行数据的风电机组局地有效湍 流强度计算方法
技术领域
本发明涉及风电场风资源评估及后评估技术领域,具体涉及一种基于海上风电场SCADA运行数据的风电机组局地有效湍流强度计算方法。
背景技术
随着全球范围内的风电开发,中国海上风电发展规模也越来越大,海上风电场大规模、集群式的开发,除了关注风电场的经济收益,机组运行安全也是需要关注的问题之一。海上风能资源分布较均匀,风电机组排布在空间上一般呈较规则的几何形态,虽然地表粗糙度小,环境湍流强度小,但多台、多排风电机组相互叠加影响之后,风电场场内的局地湍流强度受尾流扰动的影响会明显增大,随着海上风电场建设规模越来越大,场群越来越集中,风电场场内的实际局地湍流强度对机组载荷安全及对发电量损失的影响也越来越大,仿真模型不能够准确的反应真实的湍流情况,给机组研发设计和优化控制带来不确定性,故后评估工作中基于实际运行的海上风电场风电机组的局地湍流强度分析很有必要。
发明内容
针对现有技术中存在的不足,本发明的第一个目的在于提供一种基于海上风电场SCADA运行数据的风电机组局地有效湍流强度计算方法。本发明以解决软件仿真模拟湍流强度的偏差带来的机组载荷安全的不确定性及对机组发电能力的优化提升。
为解决上述技术问题,本发明通过下述技术方案实现:
一种基于海上风电场SCADA运行数据的风电机组局地有效湍流强度计算方法,其特征在于:包括如下步骤:
S1、获取风电场场区周边处于自由流的历史完整年测风塔风数据、风电场中各风电机组SCADA实际运行风数据及风电机组坐标信息、机组型号,SCADA实际运行风数据包括风速、风速标准差、风向,SCADA实际运行风数据用于计算各扇区对应的机舱湍流强度代表值;
S2、对风电场中风电机组SCADA实际运行风数据、测风塔风数据进行数据筛选,剔除异常、无效数据;
S3、根据风电场风电机组的坐标信息,确定各个风电机组间的距离和方位角,进一步计算各个目标风电机组的自由流和非自由流扇区范围;
S4、选取风电场处于边缘的多个风电机组,所述边缘的多个风电机组位于目标风电机组的不同方位,并分别计算所述边缘的多个风电机组的若干个等分扇区在不同风速段下的机舱湍流强度代表值分布矩阵TIN.W(V,deg);
S5、剔除受影响非自由流扇区,分别从步骤S4计算的各个风电机组机舱湍流强度代表值分布矩阵中提取各自由流扇区的湍流强度值进行若干个等分扇区重组,得到一个全扇区范围均处于自由流的虚拟风电机组A0的机舱湍流强度代表值分布矩阵TIA0(V,deg);
S6、基于SCADA实际运行风数据,计算任一目标风电机组的机舱湍流强度代表值分布矩阵TIN.Wi(V,deg),并与步骤S5得到的虚拟风电机组对应扇区的机舱湍流强度代表值分布矩阵TIA0(V,deg)求差值,得到该目标风电机组的附加湍流强度代表值分布矩阵TIadd,i(V,deg);
S7、基于历史完整年测风塔风数据,计算若干个等分扇区不同风速段下的环境湍流强度代表值分布矩阵TIfree(V,deg);
S8、目标风电机组的附加湍流强度TIadd,i(V,deg)与环境湍流强度TIfree(V,deg)进行叠加,得到该目标风电机组的实际局地有效湍流强度分布矩阵TIi(V,deg),进一步基于同期风速-风向频率进行加权平均,得到全扇区下的各风速段的局地有效湍流强度值。
进一步的:所述步骤S3中,风电机组的自由流与非自由流扇区计算采用的公式为:
Figure BDA0003743793250000021
其中,Dn/Ln为风电机组相对距离;α为影响扇区,单位为°。
进一步的:所述步骤S4中,机舱湍流强度代表值的计算公式为:
TIN.W=TIav+1.28*σN.W
其中,TIav=σN.W/VN.W
Figure BDA0003743793250000031
式中,TIN.W—机舱湍流强度代表值;TIav—机舱平均湍流强度;σN.W—机舱湍流标准偏差的标准差;VN.W—机舱风速;σi—湍流标准偏差;
Figure BDA0003743793250000032
—样本平均湍流标准偏差;n—样本内数据个数。
进一步的:所述步骤S6中,附加湍流强度代表值的计算公式为:
TIadd,i=TIN.Wi-TIA0
其中,TIadd,i为目标机组的附加湍流强度代表值,TIN.Wi和TIA0分别为目标风电机组和虚拟风电机组的机舱湍流强度代表值。
进一步的:所述步骤S7中,环境湍流强度代表值的计算公式为:
TIfree=TIav+1.28*σ
其中,TIfree为环境湍流强度代表值,TIav为测风塔处的平均湍流强度,σ测风塔风速标准偏差值。
进一步的:所述步骤S8中,风电机组局地有效湍流强度的计算公式为:
TIi=TIfree+TIadd,i
其中,TIi为目标风电机组的局地有效湍流强度,TIfree为环境湍流强度代表值,TIadd,i为目标机组的附加湍流强度值。
进一步的:所述步骤S8中,基于同期风速-风向频率进行加权平均,得到全扇区各风速段的局地有效湍流强度值,加权平均公式如下:
Figure BDA0003743793250000033
其中,TIi为目标风电机组的局地有效湍流强度,fi为各扇区风速频率值。
根据本发明目的的第二个方面,本发明提供了一种非暂态计算机可读存储介质,其上存储有计算机程序,其特征在于,该计算机程序被处理器执行时实现如上所述的基于海上风电场SCADA运行数据的风电机组局地有效湍流强度计算方法的步骤。
根据本发明目的的第三个方面,本发明一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述程序时实现如上所述的基于海上风电场SCADA运行数据的风电机组局地有效湍流强度计算方法的步骤。
本发明与现有技术相比,具有以下优点及有益效果:
本发明通过已建成的风电场实际运行的SCADA风数据、历史测风塔风数据,计算实际运行海上风电场任一目标风电机组的实际局地有效湍流强度值,以解决软件仿真模拟湍流强度的偏差带来的机组载荷安全的不确定性和对机组发电能力的优化提升。
附图说明
图1为本发明的整体流程图。
图2为本发明实施例中目标风电机组与附近风电机组的位置关系示意图。
图3为本发明实施例中目标风电机组局地有效湍流强度与仿真结果对比图。
具体实施方式
为了使本领域的技术人员更好地理解本发明的技术方案,下面结合具体实施例对本发明的优选实施方案进行描述,但是应当理解,附图仅用于示例性说明,不能理解为对本发明的限制;为了更好说明本实施例,附图某些部件会有省略、放大或缩小,并不代表实际产品的尺寸;对于本领域技术人员来说,附图中某些公知结构及其说明可能省略是可以理解的。附图中描述位置关系仅用于示例性说明,不能理解为对本发明的限制。
下面结合附图和实施例对本发明作进一步的说明,但并不作为对本发明限制的依据。
如图1-图2所示,一种基于海上风电场SCADA运行数据的风电机组局地有效湍流强度计算方法,包括如下步骤:
S1:获取风电场场区周边处于自由流的历史(可以是历史中的同期)完整年测风塔风数据、风电场中各风电机组SCADA实际运行风数据及风电机组坐标信息、机组型号,SCADA实际运行风数据包括风速、风速标准差、风向,SCADA实际运行风数据用于计算各扇区对应的机舱湍流强度代表值;
S2、对风电场中风电机组SCADA实际运行风数据、测风塔风数据进行数据筛选,剔除异常、无效数据;
S3、根据风电场风电机组的坐标信息,综合周边风电机组影响,确定各个风电机组间的距离和方位角,进一步计算各个目标风电机组的自由流和非自由流扇区范围;
所述步骤S3中,风电机组的自由流与非自由流扇区计算采用的公式为:
Figure BDA0003743793250000051
其中,Dn/Ln为风电机组相对距离;α为影响扇区,单位为°。
列表1如下:
Figure BDA0003743793250000052
S4:选取风电场处于边缘的多个风电机组(本实施例中,风电场边缘的A1、A12、A42风电机组分别位于目标机组A39的西北、东北、正东方位),并分别计算所述边缘的多个风电机组的若干个等分扇区(本实施例中,为12扇区)在不同风速段下的机舱湍流强度代表值分布矩阵TIN.W(V,deg);全角度划分若干个等分扇区;
基于上表1的自由流与非自由流扇区统计信息,选取处于风电场边缘受周边机组影响较小的代表机组,并分别计算多个风电机组的12扇区在不同风速段下的机舱湍流强度代表值分布矩阵TIN.W(V,deg)。在本实施例中,处于风电场边缘的A1、A12、A42风电机组,自由流与非自由流扇区分布统计如下表2:
Figure BDA0003743793250000053
Figure BDA0003743793250000061
计算各边缘风电机组A1、A12、A42,12扇区下的机舱湍流强度代表值TIN.W,公式如下:
TIN.W=TIav+1.28*σN.W
其中,TIav=σN.W/VN.W
Figure BDA0003743793250000062
式中,TIN.W—机舱湍流强度代表值;TIav—机舱平均湍流强度;σN.W—机舱湍流标准偏差的标准差;VN.W—机舱风速;σi—湍流标准偏差;
Figure BDA0003743793250000063
—样本平均湍流标准偏差;n—样本内数据个数。
每间隔1m/s风速段的12扇区条件下的机舱湍流强度代表值分布矩阵TIN.W(V,deg),如本实施例A12风电机组机舱湍流强度代表值分布矩阵,如下表3所示:
Figure BDA0003743793250000064
S5、剔除受影响非自由流扇区,分别从步骤S4计算的A1、A12、A42风电机组机舱湍流强度代表值分布矩阵中提取各自由流扇区的湍流强度值进行12扇区重组(重合扇区选择数据有效性更高的其中一台风电机组为代表),得到一个全扇区范围均处于自由流的虚拟风电机组A0(周边无影响)的机舱湍流强度代表值分布矩阵TIA0(V,deg);
如本实施例,虚拟风电机组A0的机舱湍流强度代表值分布矩阵,如下表4所示:
Figure BDA0003743793250000071
S6、基于SCADA实际运行风数据,计算任一目标风电机组的机舱湍流强度代表值分布矩阵TIN.Wi(V,deg),并与步骤S5得到的虚拟风电机组对应扇区的机舱湍流强度代表值分布矩阵TIA0(V,deg)求差值,得到该目标风电机组的附加湍流强度代表值分布矩阵TIadd,i(V,deg);
自由流扇区附加湍流强度默认为0,计算公式为:
TIadd,i=TIN.Wi-TIA0
其中,TIadd,i为目标机组的附加湍流强度代表值,TIN.Wi和TIA0分别为目标风电机组和虚拟风电机组A0的机舱湍流强度代表值。
如本实施例,目标机组A39的附加湍流强度代表值分布矩阵,如下表5所示:
Figure BDA0003743793250000081
S7、基于历史或同期完整年测风塔风数据,计算12扇区不同风速段下的环境湍流强度代表值分布矩阵TIfree(V,deg);
计算公式为:
TIfree=TIav+1.28*σ
其中,TIfree为环境湍流强度代表值,TIav为测风塔处的平均湍流强度,σ测风塔风速标准偏差值。
在本实施例中,测风塔实测环境湍流强度代表值分布矩阵,如下表6所示:
Figure BDA0003743793250000082
Figure BDA0003743793250000091
S8、目标风电机组的附加湍流强度TIadd,i(V,deg)与环境湍流强度TIfree(V,deg)进行叠加,得到该目标风电机组的实际局地有效湍流强度分布矩阵TIi(V,deg),进一步基于同期风速-风向频率进行加权平均,得到全扇区下的各风速段的局地有效湍流强度值。
目标机组的局地有效湍流强度的计算公式为:
TIi=TIfree+TIadd,i
其中,TIi为目标风电机组的局地有效湍流强度,TIfree为环境湍流强度代表值,TIadd,i为目标机组的附加湍流强度值。
本实施例中,目标机组A39的局地有效湍流强度分布矩阵,如下表6所示:
Figure BDA0003743793250000092
基于同期风速-风向频率进行加权平均,得到全扇区各风速段的局地有效湍流强度值,加权平均公式如下:
Figure BDA0003743793250000101
其中,TIi为目标风电机组的局地有效湍流强度,fi为各扇区风速频率值。
本实施例的风速-风向频率,如下表7所示:
Figure BDA0003743793250000102
基于风速-风向频率加权平均,本实施例A39的全扇区局地有效湍流强度,如下表8所示:
Figure BDA0003743793250000103
Figure BDA0003743793250000111
在本实施例中,将目标机组A39的局地有效湍流强度和软件仿真的有效湍流强度进行对比,如下图3,与仿真结果存在差异,本发明计算结果,额定风速前风速段有效湍流强度较软件仿真结果要大一些,软件仿真结果较保守。
本发明通过实际运行风电场坐标位置信息,确认各风电机组受周边风电机组影响的自由流与非自由流扇区分布信息,通过处于风电场边缘的风电机组剔除受周边影响扇区,重组得到全扇区均自由流的虚拟机组的机舱湍流强度分布矩阵,之后基于目标机组的实际机舱湍流强度值,进一步计算得到目标机组非自由流扇区的附加机舱湍流强度值,并与基于测风塔风数据计算得到的环境湍流强度值进行叠加求和,最终得到了该目标机组的实际运行的局地有效湍流强度分布矩阵。该计算方法能够解决软件仿真模拟湍流强度的偏差带来的机组载荷安全的不确定性和对机组发电能力的优化提升,为海上风电场风资源评估、后评估工作及风发电机组研发提供参考依据。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到本发明的设施可借助软件加必需的通用硬件平台的方式来实现。本发明的实施例可以使用现有的处理器来实现,或者由被用于此目的或其他目的用于适当系统的专用处理器来实现,或者由硬接线系统来实现。本发明的实施例还包括非暂态计算机可读存储介质,其包括用于承载或具有存储在其上的机器可执行指令或数据结构的机器可读介质;这种机器可读介质可以是可由通用或专用计算机或具有处理器的其他机器访问的任何可用介质。举例来说,这种机器可读介质可以包括RAM、ROM、EPROM、EEPROM、CD-ROM或其他光盘存储器、磁盘存储器或其他磁存储设备,或任何其他可用于以机器可执行指令或数据结构的形式携带或存储所需的程序代码,并可被由通用或专用计算机或其它带有处理器的机器访问的介质。当信息通过网络或其他通信连接(硬接线、无线或硬接线或无线的组合)传输或提供给机器时,该连接也被视为机器可读介质。
依据本发明的描述及附图,本领域技术人员很容易制造或使用本发明的一种基于海上风电场SCADA运行数据的风电机组局地有效湍流强度计算方法,并且能够产生本发明所记载的积极效果。
以上所述,仅是本发明的较佳实施例,并非对本发明做任何形式上的限制,凡是依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化,均落入本发明的保护范围之内。

Claims (9)

1.一种基于海上风电场SCADA运行数据的风电机组局地有效湍流强度计算方法,其特征在于:包括如下步骤:
S1、获取风电场场区周边处于自由流的历史完整年测风塔风数据、风电场中各风电机组SCADA实际运行风数据及风电机组坐标信息、机组型号;
S2、对风电场中风电机组SCADA实际运行风数据、测风塔风数据进行数据筛选,剔除异常、无效数据;
S3、根据风电场风电机组的坐标信息,确定各个风电机组间的距离和方位角,进一步计算各个目标风电机组的自由流和非自由流扇区范围;
S4、选取风电场处于边缘的多个风电机组,所述边缘的多个风电机组位于目标风电机组的不同方位,并分别计算所述边缘的多个风电机组的若干个等分扇区在不同风速段下的机舱湍流强度代表值分布矩阵TIN.W(V,deg);
S5、剔除受影响非自由流扇区,分别从步骤S4计算的各个风电机组机舱湍流强度代表值分布矩阵中提取各自由流扇区的湍流强度值进行若干个等分扇区重组,得到一个全扇区范围均处于自由流的虚拟风电机组A0的机舱湍流强度代表值分布矩阵TIA0(V,deg);
S6、基于SCADA实际运行风数据,计算任一目标风电机组的机舱湍流强度代表值分布矩阵TIN.Wi(V,deg),并与步骤S5得到的虚拟风电机组A0对应扇区的机舱湍流强度代表值分布矩阵TIA0(V,deg)求差值,得到该目标风电机组的附加湍流强度代表值分布矩阵TIadd,i(V,deg);
S7、基于历史完整年测风塔风数据,计算若干个等分扇区不同风速段下的环境湍流强度代表值分布矩阵TIfree(V,deg);
S8、目标风电机组的附加湍流强度TIadd,i(V,deg)与环境湍流强度TIfree(V,deg)进行叠加,得到该目标风电机组的实际局地有效湍流强度分布矩阵TIi(V,deg),进一步基于同期风速-风向频率进行加权平均,得到全扇区下的各风速段的局地有效湍流强度值。
2.根据权利要求1所述的一种基于海上风电场SCADA运行数据的风电机组局地有效湍流强度计算方法,其特征在于:所述步骤S3中,风电机组的自由流与非自由流扇区计算采用的公式为:
Figure FDA0003743793240000021
其中,Dn/Ln为风电机组相对距离;α为影响扇区,单位为°。
3.根据权利要求1所述的一种基于海上风电场SCADA运行数据的风电机组局地有效湍流强度计算方法,其特征在于:所述步骤S4中,机舱湍流强度代表值的计算公式为:
TIN.W=TIav+1.28*σN.W
其中,TIav=σN.W/VN.W
Figure FDA0003743793240000022
式中,TIN.W—机舱湍流强度代表值;TIav—机舱平均湍流强度;σN.W—机舱湍流标准偏差的标准差;VN.W—机舱风速;σi—湍流标准偏差;
Figure FDA0003743793240000023
—样本平均湍流标准偏差;n—样本内数据个数。
4.根据权利要求1所述的一种基于海上风电场SCADA运行数据的风电机组局地有效湍流强度计算方法,其特征在于:所述步骤S6中,附加湍流强度代表值的计算公式为:
TIadd,i=TIN.Wi-TIA0
其中,TIadd,i为目标机组的附加湍流强度代表值,TIN.Wi和TIA0分别为目标风电机组和虚拟风电机组A0的机舱湍流强度代表值。
5.根据权利要求1所述的一种基于海上风电场SCADA运行数据的风电机组局地有效湍流强度计算方法,其特征在于:所述步骤S7中,环境湍流强度代表值的计算公式为:
TIfree=TIav+1.28*σ
其中,TIfree为环境湍流强度代表值,TIav为测风塔处的平均湍流强度,σ测风塔风速标准偏差值。
6.根据权利要求1所述的一种基于海上风电场SCADA运行数据的风电机组局地有效湍流强度计算方法的施工方法,其特征在于:所述步骤S8中,风电机组局地有效湍流强度的计算公式为:
TIi=TIfree+TIadd,i
其中,TIi为目标风电机组的局地有效湍流强度,TIfree为环境湍流强度代表值,TIadd,i为目标机组的附加湍流强度值。
7.根据权利要求1所述的一种基于海上风电场SCADA运行数据的风电机组局地有效湍流强度计算方法,其特征在于:所述步骤S8中,基于同期风速-风向频率进行加权平均,得到全扇区各风速段的局地有效湍流强度值,加权平均公式如下:
Figure FDA0003743793240000031
其中,TIi为目标风电机组的局地有效湍流强度,fi为各扇区风速频率值。
8.一种非暂态计算机可读存储介质,其上存储有计算机程序,其特征在于,该计算机程序被处理器执行时实现如权利要求1至7任一项所述的基于海上风电场SCADA运行数据的风电机组局地有效湍流强度计算方法的步骤。
9.一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述程序时实现如权利要求1至7任一项所述的基于海上风电场SCADA运行数据的风电机组局地有效湍流强度计算方法的步骤。
CN202210825429.9A 2022-07-13 2022-07-13 一种基于海上风电场scada运行数据的风电机组局地有效湍流强度计算方法 Pending CN115270065A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210825429.9A CN115270065A (zh) 2022-07-13 2022-07-13 一种基于海上风电场scada运行数据的风电机组局地有效湍流强度计算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210825429.9A CN115270065A (zh) 2022-07-13 2022-07-13 一种基于海上风电场scada运行数据的风电机组局地有效湍流强度计算方法

Publications (1)

Publication Number Publication Date
CN115270065A true CN115270065A (zh) 2022-11-01

Family

ID=83764968

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210825429.9A Pending CN115270065A (zh) 2022-07-13 2022-07-13 一种基于海上风电场scada运行数据的风电机组局地有效湍流强度计算方法

Country Status (1)

Country Link
CN (1) CN115270065A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116502558A (zh) * 2023-05-05 2023-07-28 中国电建集团重庆工程有限公司 一种风能资源模拟方法、装置、设备及介质
CN118148857A (zh) * 2024-05-11 2024-06-07 国电联合动力技术有限公司 基于测风塔湍流传递的风机监测方法、装置及终端设备

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116502558A (zh) * 2023-05-05 2023-07-28 中国电建集团重庆工程有限公司 一种风能资源模拟方法、装置、设备及介质
CN118148857A (zh) * 2024-05-11 2024-06-07 国电联合动力技术有限公司 基于测风塔湍流传递的风机监测方法、装置及终端设备
CN118148857B (zh) * 2024-05-11 2024-07-02 国电联合动力技术有限公司 基于测风塔湍流传递的风机监测方法、装置及终端设备

Similar Documents

Publication Publication Date Title
US11408399B2 (en) Forecasting output power of wind turbine in wind farm
CN115270065A (zh) 一种基于海上风电场scada运行数据的风电机组局地有效湍流强度计算方法
CN110533347B (zh) 一种风电场风资源计算方法、装置、设备及可读介质
EP3545193B1 (en) Improving annual energy production of wind turbine sites
CN109376389A (zh) 一种基于2D_k Jensen模型的三维尾流数值模拟方法
Li et al. A physical approach of the short-term wind power prediction based on CFD pre-calculated flow fields
CN115358606B (zh) 一种平缓地形下在役风电场能效评估方法及系统
CN113205210B (zh) 复杂地形风电场风速与功率预测方法、系统、设备及存储介质
CN112348292A (zh) 一种基于深度学习网络的短期风电功率预测方法和系统
Reed Wind power climatology of the United States: supplement
JP2009167848A (ja) 風力発電量予測システム、方法及びプログラム
CN113657662A (zh) 一种基于数据融合的降尺度风电功率预测方法
EP3841301A1 (en) Method for determining a wind turbine layout
CN113030516A (zh) 风速仪故障检测方法、装置、设备和存储介质
CN111340307A (zh) 预测风机风力发电功率的方法以及相关装置
CN106951977B (zh) 一种基于尾流效应的风速预测模型的构建方法
CN113642884B (zh) 一种电网失电情况下风电场发电量损失统计方法及系统
CN108062722A (zh) 基于风速变异系数的山地风电场模型风机机械功率计算方法
CN113051845B (zh) 在役山地风电场实时风资源可视化评估方法、系统、设备及存储介质
CN113344252A (zh) 一种基于虚拟气象技术的风功率预测方法
CN110765640B (zh) 一种转子有效风速的计算方法、系统及设备
CN110188939B (zh) 风电场的风功率的预测方法、系统、设备和存储介质
CN114186407A (zh) 一种参数可自适应调整的风电场尾流速度场计算方法及系统
CN116245039A (zh) 海上风力发电场群的尾流评估方法及系统
CN114398842A (zh) 一种在运行风电场发电量评估方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination