CN115265470A - Fiber Bragg grating settlement sensor with high resolution - Google Patents
Fiber Bragg grating settlement sensor with high resolution Download PDFInfo
- Publication number
- CN115265470A CN115265470A CN202210823662.3A CN202210823662A CN115265470A CN 115265470 A CN115265470 A CN 115265470A CN 202210823662 A CN202210823662 A CN 202210823662A CN 115265470 A CN115265470 A CN 115265470A
- Authority
- CN
- China
- Prior art keywords
- bragg grating
- fiber
- fiber bragg
- ring
- sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000835 fiber Substances 0.000 claims abstract description 134
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 120
- 238000003860 storage Methods 0.000 claims abstract description 37
- 238000005538 encapsulation Methods 0.000 claims abstract description 16
- 239000013307 optical fiber Substances 0.000 claims abstract description 16
- 230000000903 blocking effect Effects 0.000 claims abstract description 13
- 238000009423 ventilation Methods 0.000 claims abstract description 10
- 238000004806 packaging method and process Methods 0.000 claims description 22
- 229910045601 alloy Inorganic materials 0.000 claims description 13
- 239000000956 alloy Substances 0.000 claims description 13
- 229910001374 Invar Inorganic materials 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 8
- 229910000619 316 stainless steel Inorganic materials 0.000 claims description 7
- 229910000851 Alloy steel Inorganic materials 0.000 claims description 7
- 239000007787 solid Substances 0.000 claims description 5
- 238000012545 processing Methods 0.000 claims description 3
- 230000005540 biological transmission Effects 0.000 abstract description 2
- 238000004062 sedimentation Methods 0.000 abstract description 2
- 238000012544 monitoring process Methods 0.000 description 25
- 230000008859 change Effects 0.000 description 19
- 239000007788 liquid Substances 0.000 description 15
- 238000000034 method Methods 0.000 description 9
- 230000035945 sensitivity Effects 0.000 description 8
- 238000005259 measurement Methods 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- 239000003292 glue Substances 0.000 description 6
- 238000006073 displacement reaction Methods 0.000 description 5
- 229920001296 polysiloxane Polymers 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 4
- 230000006835 compression Effects 0.000 description 4
- 238000007906 compression Methods 0.000 description 4
- 238000001704 evaporation Methods 0.000 description 4
- 230000008020 evaporation Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 230000032683 aging Effects 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 238000009530 blood pressure measurement Methods 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 239000011247 coating layer Substances 0.000 description 2
- 230000008602 contraction Effects 0.000 description 2
- 238000010219 correlation analysis Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000000556 factor analysis Methods 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 238000006424 Flood reaction Methods 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 230000006855 networking Effects 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C5/00—Measuring height; Measuring distances transverse to line of sight; Levelling between separated points; Surveyors' levels
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/16—Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F23/00—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
- G01F23/02—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by gauge glasses or other apparatus involving a window or transparent tube for directly observing the level to be measured or the level of a liquid column in free communication with the main body of the liquid
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F23/00—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
- G01F23/14—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measurement of pressure
- G01F23/16—Indicating, recording, or alarm devices being actuated by mechanical or fluid means, e.g. using gas, mercury, or a diaphragm as transmitting element, or by a column of liquid
- G01F23/164—Indicating, recording, or alarm devices being actuated by mechanical or fluid means, e.g. using gas, mercury, or a diaphragm as transmitting element, or by a column of liquid using a diaphragm, bellow as transmitting element
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Optical Transform (AREA)
Abstract
本发明公开了一种具有高分辨力的光纤布拉格光栅沉降传感器,包括储水壳体与封装壳体,储水壳体与封装壳体之间相隔设置有膜片;储水壳体顶部设置有出水阀门,储水壳体两侧设置有进水阀门与堵水阀门;封装壳体中设置有一圆环,圆环顶部设置有与膜片连接的第一传力杆,圆环底部设置有通过螺丝与封装壳体内侧底面固定的第二传力杆,圆环两侧设置有第一固纤槽与第二固纤槽,第一固纤槽与第二固纤槽中设置有光纤布拉格光栅,光纤布拉格光栅的突出封装壳体的部分套设有光纤护套;封装壳体底部设置有通气阀门。该传感器成本低,可靠性好。
The invention discloses a fiber Bragg grating sedimentation sensor with high resolution, comprising a water storage shell and an encapsulation shell, a diaphragm is arranged spaced apart between the water storage shell and the encapsulation shell; The water outlet valve, the water inlet valve and the water blocking valve are arranged on both sides of the water storage shell; a ring is arranged in the encapsulation housing, the top of the ring is arranged with a first force transmission rod connected with the diaphragm, and the bottom of the ring is arranged with a pass through A second dowel rod fixed by screws to the bottom surface of the inner side of the encapsulation shell, a first fiber fixing groove and a second fiber fixing groove are arranged on both sides of the ring, and fiber Bragg gratings are arranged in the first fiber fixing groove and the second fiber fixing groove , the part of the fiber Bragg grating protruding from the encapsulation shell is sheathed with an optical fiber sheath; the bottom of the encapsulation shell is provided with a ventilation valve. The sensor has low cost and good reliability.
Description
技术领域technical field
本发明涉及光纤传感器件技术领域,具体涉及一种具有高分辨力的光纤布拉格光栅沉降传感器。The invention relates to the technical field of optical fiber sensor devices, in particular to an optical fiber Bragg grating settlement sensor with high resolution.
背景技术Background technique
土木工程结构在软土地基、截水排水操作不当、荷载超限以及设计施工标准达不到规范要求等多种因素综合作用下,会诱发结构的沉降变形,若沉降变形过大超出国家标准规范设定的危险阈值,严重时会导致工程结构倒塌等毁灭性事故的发生。沉降的测量通过使用全站仪或水准仪对各个测点进行定期记录,但无法实现对结构的实时监测。为了对土木工程结构的安全运营保驾护航,推广动态采集、连续实时、抗干扰能力强、稳定性好的自动化变形监测技术势在必行。Civil engineering structures will induce settlement and deformation of the structure under the combined action of various factors such as soft soil foundation, improper operation of water interception and drainage, excessive load, and failure of design and construction standards to meet the specification requirements. If the settlement deformation is too large, it exceeds the national standard specification The set danger threshold will lead to the occurrence of devastating accidents such as the collapse of engineering structures in severe cases. The settlement is measured by using a total station or a level to regularly record each measuring point, but real-time monitoring of the structure cannot be realized. In order to protect the safe operation of civil engineering structures, it is imperative to promote dynamic acquisition, continuous real-time, strong anti-interference ability, and good stability automatic deformation monitoring technology.
光纤布拉格光栅在自动化变形监测中具有体积小、波长编码、准分布式测量、组网便捷以及可靠性良好等优点,另外相比于传统的光电式静力水准仪与电容式静力水准仪,光纤布拉格光栅的抗电磁干扰特点使其能长期服役于恶劣环境。Fiber Bragg grating has the advantages of small size, wavelength coding, quasi-distributed measurement, convenient networking and good reliability in automatic deformation monitoring. In addition, compared with traditional photoelectric static level and capacitive static level, fiber Bragg The anti-electromagnetic interference characteristics of the grating enable it to serve in harsh environments for a long time.
裸露的光纤布拉格光栅的径向压力灵敏度仅为-4.33pm/MPa,无法直接应用于水压力测量,因此需要设计相应的增敏结构与封装壳体,实现对测点水压力变化的高精度测量,进而根据连通管原理,在基准点与各个监测点布置所设计的光纤布拉格光栅沉降传感器,利用沉降变形所反映的水位压力变化,监测点相对于基准点产生水位压力变化时,沉降传感器可以敏感地识别其相应的水位变化,基于沉降传感器的测量系统可以广泛应用于桥梁挠度变形,铁路轨道沉降,隧道收敛变形,建筑物不均匀沉降与地下综合管廊隆起等工程领域中。The radial pressure sensitivity of the bare fiber Bragg grating is only -4.33pm/MPa, which cannot be directly applied to water pressure measurement. Therefore, it is necessary to design a corresponding sensitivity enhancement structure and packaging shell to achieve high-precision measurement of water pressure changes at the measurement point , and then according to the principle of the connecting pipe, the designed fiber Bragg grating settlement sensor is arranged at the reference point and each monitoring point, and the settlement sensor can be sensitive to the change of water level pressure reflected by the settlement deformation. To accurately identify the corresponding water level changes, the measurement system based on settlement sensors can be widely used in engineering fields such as bridge deflection deformation, railway track settlement, tunnel convergence deformation, uneven settlement of buildings and uplift of underground comprehensive pipe gallery.
发明内容Contents of the invention
本发明的目的在于提供一种具有高分辨力的光纤布拉格光栅沉降传感器,以实现对沉降现象的监测。The purpose of the present invention is to provide a fiber Bragg grating settlement sensor with high resolution to realize the monitoring of settlement phenomena.
为解决上述技术问题,本发明提供了一种技术方案:一种具有高分辨力的光纤布拉格光栅沉降传感器,包括储水壳体与封装壳体,储水壳体与封装壳体之间相隔设置有膜片;储水壳体顶部设置有出水阀门,储水壳体两侧设置有进水阀门与堵水阀门;封装壳体中设置有一圆环,圆环顶部设置有与膜片连接的第一传力杆,圆环底部设置有通过可拆卸方式与封装壳体内侧底面固定的第二传力杆,圆环两侧设置有第一固纤槽与第二固纤槽,第一固纤槽与第二固纤槽中设置有光纤布拉格光栅,光纤布拉格光栅的延伸出封装壳体的部分套设有光纤护套;封装壳体底部设置有通气阀门。In order to solve the above technical problems, the present invention provides a technical solution: a fiber Bragg grating subsidence sensor with high resolution, including a water storage shell and an encapsulation shell, and the water storage shell and the encapsulation shell are spaced apart There is a diaphragm; the top of the water storage shell is provided with a water outlet valve, and the two sides of the water storage shell are provided with a water inlet valve and a water blocking valve; a ring is provided in the packaging shell, and the top of the ring is provided with a first valve connected to the diaphragm. A dowel bar, the bottom of the ring is provided with a second dowel bar that is detachably fixed to the bottom surface of the inner side of the packaging case, and the first fiber fixing groove and the second fiber fixing groove are arranged on both sides of the ring, and the first fiber fixing groove Fiber Bragg gratings are arranged in the groove and the second fixed fiber groove, and the part of the fiber Bragg grating extending out of the packaging casing is covered with an optical fiber sheath; a vent valve is arranged at the bottom of the packaging casing.
按上述方案,第一传力杆和第二传力杆相对于圆环的圆心竖直对称分布,第一固纤槽与第二固纤槽相对于圆环的圆心水平对称分布。According to the above solution, the first dowel bar and the second dowel bar are distributed vertically and symmetrically with respect to the center of the ring, and the first fiber-fixing groove and the second fiber-fixing groove are horizontally symmetrically distributed relative to the center of the ring.
按上述方案,光纤布拉格光栅通过粘接方式固定于第一固纤槽和第二固纤槽中。According to the above scheme, the fiber Bragg grating is fixed in the first fiber-fixing groove and the second fiber-fixing groove by bonding.
按上述方案,第二传力杆底部为梯形凸台状,第二传力杆底面设置有螺纹孔,用于连接封装壳体与第二传力杆通过螺钉与封装壳体固定。According to the above solution, the bottom of the second dowel bar is in the shape of a trapezoidal boss, and the bottom surface of the second dowel bar is provided with a threaded hole for connecting the packaging shell and the second dowel bar to be fixed with the packaging shell by screws.
按上述方案,出水阀门、进水阀门以及堵水阀门均通过螺纹连接方式固定于储水壳体。According to the above scheme, the water outlet valve, the water inlet valve and the water blocking valve are all fixed to the water storage shell through threaded connection.
按上述方案,通气阀门通过螺纹连接方式固定于封装壳体。According to the above solution, the ventilation valve is fixed to the packaging shell through threaded connection.
按上述方案,光纤布拉格光栅的初始中心波长为1530~1560nm,光栅区域长度为10~15mm,其反射光强度不低于入射光强度的95%。According to the above scheme, the initial central wavelength of the fiber Bragg grating is 1530-1560 nm, the length of the grating area is 10-15 mm, and the intensity of reflected light is not lower than 95% of the intensity of incident light.
按上述方案,第一传力杆、第二传力杆、第一固纤槽、第二固纤槽以及圆环的材质均为均质的第一种类合金通过一体化机械加工而得;膜片、储水壳体以及封装壳体为均质的第二种类合金制成。According to the above scheme, the materials of the first dowel bar, the second dowel bar, the first fiber-fixing groove, the second fiber-fixing groove and the ring are obtained through integrated mechanical processing of the first kind of alloy which is homogeneous; The sheet, the water storage shell and the packaging shell are made of a homogeneous second type alloy.
按上述方案,第一种类合金为4J36因瓦合金钢,第二种类合金为316不锈钢。According to the above scheme, the first type of alloy is 4J36 Invar alloy steel, and the second type of alloy is 316 stainless steel.
按上述方案,圆环的结构尺寸满足以下关系,According to the above scheme, the structural size of the ring satisfies the following relationship,
其中Pe为光纤布拉格光栅的弹光系数,αΛ为光纤布拉格光栅的热膨胀系数,αn为光纤布拉格光栅的热光系数,r为圆环的半径,c为第一传力杆和第二传力杆的长度,α1和α2分别为第一种类合金与第二种类合金的热膨胀系数。Wherein Pe is the elasto-optic coefficient of the fiber Bragg grating, α Λ is the thermal expansion coefficient of the fiber Bragg grating, α n is the thermo-optic coefficient of the fiber Bragg grating, r is the radius of the ring, c is the first dowel and the second The length of the dowel bar, α 1 and α 2 are the thermal expansion coefficients of the first type alloy and the second type alloy, respectively.
本发明的有益效果是:传统的光纤布拉格光栅沉降传感器是采用浮筒式结构设计,必须敞开与大气连通,在实际应用中水分蒸发量较大,需要及时向连通管系统中补水,而本发明所设计的圆环与膜片式结构与大气的隔绝性较好,无需经常性补水,同时承受腔体内液体压力作用时,光纤布拉格光栅始终处于受拉状态,使得传感器具有高可靠性。The beneficial effects of the present invention are: the traditional optical fiber Bragg grating settlement sensor is designed with a buoy structure, and must be open to communicate with the atmosphere. The designed ring and diaphragm structure have good isolation from the atmosphere, and do not need to replenish water frequently. At the same time, when subjected to the liquid pressure in the cavity, the fiber Bragg grating is always in a state of tension, making the sensor highly reliable.
进一步地,该传感器仅使用了一段光纤布拉格光栅,同时利用了金属材料热膨胀系数的差异实现了传感器的温度自补偿,相较于传统的使用两顿光纤布拉格光栅进行测量和温度补偿的方案,降低了传感器的制造成本。Furthermore, the sensor only uses a section of fiber Bragg grating, and utilizes the difference in the thermal expansion coefficient of metal materials to realize the temperature self-compensation of the sensor. Compared with the traditional solution of using two fiber Bragg gratings for measurement and temperature compensation, it reduces the manufacturing cost of the sensor.
附图说明Description of drawings
图1是本发明一实施例的具有高分辨力的光纤布拉格光栅沉降传感器的剖视图。Fig. 1 is a cross-sectional view of a fiber Bragg grating settlement sensor with high resolution according to an embodiment of the present invention.
图2为图1的局部放大图;Figure 2 is a partially enlarged view of Figure 1;
图3为本发明一实施例的圆环剖视受力及尺寸示意图;Fig. 3 is a cross-sectional force and size schematic diagram of a circular ring according to an embodiment of the present invention;
图4本发明一实施例的具有高分辨力的光纤布拉格光栅沉降传感器的有效分辨力评价流程图;Fig. 4 is a flow chart of evaluating the effective resolution of a fiber Bragg grating settlement sensor with high resolution according to an embodiment of the present invention;
图5为本发明一实施例的具有高分辨力的光纤布拉格光栅沉降传感器的沉降监测应用示意图。Fig. 5 is a schematic diagram of an application of a fiber Bragg grating settlement sensor with high resolution in settlement monitoring according to an embodiment of the present invention.
图中:101-光纤布拉格光栅,102-圆环,103-第一传力杆,104-第二传力杆,105-第一固纤槽,106-第二固纤槽,107-光纤护套,108-膜片,109-储水壳体,110-封装壳体,111-出水阀门,112-进水阀门,113-堵水阀门,114-通气阀门115-螺丝,2-水位压力,3-储液罐,4-基准点的光纤布拉格光栅沉降传感器,5-位于监测点沉降前的光纤布拉格光栅沉降传感器,6-位于监测点沉降后的光纤布拉格光栅沉降传感器,7-信号传输多芯光缆,8-连通水管,9-终端信号采集分析表。In the figure: 101-fiber Bragg grating, 102-ring, 103-first dowel, 104-second dowel, 105-first fiber fixing groove, 106-second fiber fixing groove, 107-fiber protection Set, 108-diaphragm, 109-water storage shell, 110-encapsulation shell, 111-water outlet valve, 112-water inlet valve, 113-water blocking valve, 114-breather valve, 115-screw, 2-water level pressure, 3-Liquid storage tank, 4-Fiber Bragg grating settlement sensor at the reference point, 5-Fiber Bragg grating settlement sensor located before the settlement of the monitoring point, 6-Fiber Bragg grating settlement sensor located after the settlement of the monitoring point, 7-Signal transmission multiple Core optical cable, 8-connected water pipe, 9-terminal signal collection and analysis table.
具体实施方式Detailed ways
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。In order to make the purpose, technical solutions and advantages of the embodiments of the present disclosure clearer, the technical solutions of the embodiments of the present disclosure will be clearly and completely described below in conjunction with the accompanying drawings of the embodiments of the present disclosure. Apparently, the described embodiments are some of the embodiments of the present disclosure, not all of them. Based on the described embodiments of the present disclosure, all other embodiments obtained by persons of ordinary skill in the art without creative effort fall within the protection scope of the present disclosure.
参见图1、图2,一种具有高分辨力的光纤布拉格光栅沉降传感器,包括储水壳体109与封装壳体110,储水壳体109与封装壳体110之间相隔设置有膜片108;储水壳体109顶部设置有出水阀门111,储水壳体109两侧设置有进水阀门112与堵水阀门113;封装壳体110中设置有一圆环102,圆环102顶部设置有与膜片108连接的第一传力杆103,圆环102底部设置有通过螺丝115与封装壳体110内侧底面固定的第二传力杆104,圆环102两侧设置有第一固纤槽105与第二固纤槽106,第一固纤槽105与第二固纤槽106中设置有光纤布拉格光栅101,光纤布拉格光栅101的突出封装壳体110的部分套设有光纤护套107;封装壳体110底部设置有通气阀门114。Referring to Fig. 1 and Fig. 2, a fiber Bragg grating subsidence sensor with high resolution includes a
该传感器的制造和装配工艺如下:The fabrication and assembly process of the sensor is as follows:
第一传力杆103、第二传力杆104、第一固纤槽105、第二固纤槽106与圆环102等五者的材料为均质的4J36因瓦合金钢,膜片108、储水壳体109与封装壳体110的材料为均质的316不锈钢,光纤护套107、出水阀门111、进水阀门112、堵水阀门113、通气阀门114、螺丝115的材料的选取可参考国家或行业标准。The material of the
圆环102、第一传力杆103、第二传力杆104、第一固纤槽105、第二固纤槽106等五者采用一体化机械加工,必须采用慢走丝电火花线切割加工以保证其尺寸精度,第二传力杆104底部设置梯形凸台,凸台底部设置螺纹孔,用于与封装壳体110的连接,光纤护套107、膜片108、储水壳体109、封装壳体110、出水阀门111、进水阀门112、堵水阀门113、通气阀门114、螺丝115按常规方式加工,储水壳体109的下部攻丝内螺纹,封装壳体110的上攻丝外螺纹。The
首先使用0.1mol/L氢氧化钠溶液清除机械加工时零部件102~115表面的油污,再将10%稀硝酸溶液、圆环102、第一传力杆103、第二传力杆104、第一固纤槽105、第二固纤槽106、光纤护套107、膜片108、储水壳体109、封装壳体110、出水阀门111、进水阀门112、堵水阀门113、通气阀门114、螺丝115放置于烧杯中,清洗零部件表面的金属氧化物,清洗完成后用75%酒精溶液擦拭金属芯体,清洗完成后必须避免传感器受到污染。First use 0.1mol/L sodium hydroxide solution to remove the oil stains on the surface of parts 102-115 during machining, and then add 10% dilute nitric acid solution,
预先装配沉降传感器中除了一根光纤布拉格光栅101的所有零部件(包括圆环102、第一传力杆103、第二传力杆104、第一固纤槽105、第二固纤槽106、光纤护套107、膜片108、储水壳体109、封装壳体110、出水阀门111、进水阀门112、堵水阀门113、通气阀门114、螺丝115),观察上述零部件之间无明显的装配误差后,将膜片108与第一传力杆103采用激光焊接的方式进行连接。Pre-assemble all parts except a fiber Bragg
选用的光纤布拉格光栅101的初始中心波长数值在1530~1560nm之间,光栅区域长度为10~15mm,从而增大光栅的反射率,使反射光强度达到入射光强度的95%,粘贴光纤布拉格光栅101前应对其进行高温老化与循环老化工作,剥除光纤布拉格光栅101的涂覆层,仅保留光纤的包层与纤芯部分,涂覆层被剥除的长度数值等于圆环102的直径、第一固纤槽105长度的1/2与第二固纤槽106长度的1/2的和。The selected fiber Bragg
粘贴光纤布拉格光栅101前使用无水乙醇擦拭两侧的光纤,粘贴光纤布拉格光栅101时对其施加1000个微应变预拉伸量,对应波长漂移量约为1.2nm,将光纤布拉格光栅101放置于第一固纤槽105与第二固纤槽106,滴入353ND胶水,其中353ND胶水的A组分与B组分按10:1的比例均匀混合,粘贴过程中观察光纤布拉格光栅101的波长值。Before pasting the fiber Bragg grating 101, use absolute ethanol to wipe the optical fibers on both sides. When pasting the fiber Bragg grating 101, apply 1000 micro-strain pre-stretching to it, and the corresponding wavelength shift is about 1.2nm. Place the fiber Bragg
将粘贴完光纤布拉格光栅101的圆环102置于封装壳体110中,光纤布拉格光栅101两端的尾纤穿越封装壳体110的光纤护套107,使用卡夫特K-0243螺纹胶与内六角螺丝115以连接圆环102与封装壳体110,而后接入光纤导出套管与跳线等保护装置。Place the
将出水阀门111、进水阀门112与堵水阀门113采用卡夫特K-0243螺纹胶和尼龙垫片以螺纹连接方式安装于储水壳体109,出水阀门111的作用在于排尽图5连通器系统中的空气,使水能充盈每个沉降传感器的储水壳体109,将通气阀门114采用采用卡夫特K-0243螺纹胶以螺纹连接方式安装于封装壳体110底部,通气阀门114的作用是使得沉降传感器的膜片108以下部分与外界的大气压强保持一致。The
应用激光焊接方式连接膜片108与封装壳体110,储水壳体109采用卡夫特K-0243螺纹胶以螺纹连接方式安装于封装壳体110,注意操作过程中要尽量避免触碰膜片108区域,此时记录光纤布拉格光栅101中心波长,完成光纤布拉格光栅沉降传感器的制作,最后进行高低温循环老化工作,释放沉降传感器制作过程中产生的装配应力。The
参见图3,将圆环102安装于沉降传感器的封装壳体110内,则圆环受温度变化而变形时需与相互接触的第一传力杆103、第二传力杆104、膜片108以及封装壳体110进行变形协调。沉降传感器中的圆环102、第一传力杆103与第二传力杆104的材质为均质的4J36因瓦合金钢,封装壳体110与膜片108材料为均质的316不锈钢,4J36因瓦合金钢热膨胀系数小于316不锈钢热膨胀系数。Referring to Fig. 3, if the
温度自补偿原理如下:The temperature self-compensation principle is as follows:
当外界温度整体升高时,由于光纤布拉格光栅101对温度敏感会引起中心波长增大,同时圆环102水平方向在热胀冷缩效应下会伸长,由于光纤布拉格光栅101对应变敏感会使得粘贴于第一固纤槽105与第二固纤槽106的光纤布拉格光栅101中心波长增大,另外温度升高会使得沉降传感器整体受热膨胀变形,导致圆环102的竖向方向受拉伸,竖向方向受拉伸会引起圆环102水平方向的压缩,使光纤布拉格光栅101中心波长减小,通过设置合适的圆环102结构尺寸,即圆环102的温度自补偿模型,温度升高所导致的光纤布拉格光栅101中心波长变化量可以相互抵消,实现了沉降传感器的温度自补偿功能,外界温度整体降低时同理分析。When the overall external temperature rises, the central wavelength will increase because the fiber Bragg grating 101 is sensitive to temperature, and the
第一传力杆103与第二传力杆104的作用在于传递膜片108与封装壳体110底部对圆环102施加的强制位移变形,由于第一传力杆103与第二传力杆104的截面尺寸大于圆环102的截面尺寸,因此可认为上述的强制位移变形完全传递至圆环102上。The function of the
作用于光纤布拉格光栅101的应变变化Δε与温度变化ΔT会引起光纤布拉格光栅101中心波长λB线性偏移,其改变量关系可表示为:The strain change Δε and temperature change ΔT acting on the fiber Bragg grating 101 will cause the center wavelength λ B of the fiber Bragg grating 101 to linearly shift, and the change relationship can be expressed as:
ΔλB/λB=(1-Pe)Δε+(αΛ+αn)ΔTΔλ B /λ B =(1-P e )Δε+(α Λ +α n )ΔT
式中,ΔλB为光纤布拉格光栅101波长变化量,Pe、αΛ与αn分别为光纤布拉格光栅101的弹光系数、热膨胀系数与热光系数。In the formula, Δλ B is the wavelength variation of the fiber Bragg grating 101, and Pe, α Λ and α n are the elasto - optic coefficient, thermal expansion coefficient and thermo-optic coefficient of the fiber Bragg grating 101, respectively.
设圆环102的半径为r,4J36材质的圆环102的温度变化ΔT下膨胀或收缩变形量Δr′满足:Assuming that the radius of the
Δr′=α4J36·r·ΔTΔr'=α 4J36 ·r·ΔT
相应的,上式中对应的光纤布拉格光栅101的波长变化量ΔλB为:Correspondingly, the wavelength variation Δλ B of the fiber Bragg grating 101 corresponding to the above formula is:
ΔλB=(1-Pe)α4J36·λB·ΔTΔλ B =(1-P e )α 4J36 ·λ B ·ΔT
光纤布拉格光栅101在温度变化ΔT的中心波长偏移量:The central wavelength offset of the fiber Bragg grating 101 at the temperature change ΔT:
ΔλB=(αΛ+αn)·λB·ΔTΔλ B =(α Λ +α n )·λ B ·ΔT
相应的,温度变化ΔT时,沉降传感器的封装壳体110底部与膜片108之间的长度变化量Δl′满足:Correspondingly, when the temperature changes ΔT, the length change Δl′ between the bottom of the
Δl′=α316(2r+2c)·ΔTΔl'=α 316 (2r+2c)·ΔT
式中,r为圆环的半径,c为第一传力杆与第二传力杆的长度;In the formula, r is the radius of the ring, and c is the length of the first dowel bar and the second dowel bar;
由于4J36因瓦合金钢热膨胀系数α4J36小于316不锈钢热膨胀系数α316,因此上式与4J36因瓦合金自由膨胀变形量Δl=α4J36(2r+2c)ΔT的差值为:Since the thermal expansion coefficient α 4J36 of 4J36 Invar alloy steel is smaller than the thermal expansion coefficient α 316 of 316 stainless steel, the difference between the above formula and the free expansion deformation of 4J36 Invar alloy Δl=α 4J36 (2r+2c)ΔT is:
Δl′-Δl=(α316-α4J36)(2r+2c)·ΔTΔl'-Δl=(α 316 -α 4J36 )(2r+2c)·ΔT
可将上式理解为在第一传力杆103的顶部与第二传力杆104的底部两端施加强制拉伸位移的边界条件,致使圆环102的竖向方向拉伸,相应的,圆环102的水平方向受到压缩,设圆环102的水平方向的压缩量为Δl水平,由于圆环结构的对称性,圆环102的竖向方向拉伸数值上与水平方向的压缩量相等。因此圆环102的水平方向的压缩量为:The above formula can be understood as the boundary condition of forced tensile displacement applied at both ends of the top of the
Δl水平=(α316-α4J36)(2r+2c)·ΔTΔl level = (α 316 −α 4J36 )(2r+2c)·ΔT
相应的,上式中对应的光纤布拉格光栅101的波长变化量ΔλB为:Correspondingly, the wavelength variation Δλ B of the fiber Bragg grating 101 corresponding to the above formula is:
联立以下三式,Combining the following three formulas,
ΔλB=(1-Pe)α4J36·λB·ΔTΔλ B =(1-P e )α 4J36 ·λ B ·ΔT
ΔλB=(αΛ+αn)·λB·ΔTΔλ B =(α Λ +α n )·λ B ·ΔT
令上式中ΔλB=0,即得到光纤布拉格光栅沉降传感器中圆环102结构的温度自补偿模型,为了实现其的温度自补偿功能,圆环102结构尺寸需要满足:Let Δλ B = 0 in the above formula, that is, the temperature self-compensation model of the
温度自补偿模型中,Pe、αΛ与αn分别为光纤布拉格光栅101的弹光系数、热膨胀系数与热光系数,r为圆环102的半径,c为第一传力杆103与第二传力杆104的长度,α4J36与α316分别为4J36因瓦合金钢与316不锈钢的热膨胀系数。In the temperature self-compensation model, Pe, α Λ and α n are the elasto-optic coefficient, thermal expansion coefficient and thermo-optic coefficient of the fiber Bragg grating 101 respectively, r is the radius of the
光纤布拉格光栅沉降传感器的水位压力测量原理如下:The water level pressure measurement principle of the fiber Bragg grating subsidence sensor is as follows:
储水壳体109内充满水时,膜片108所受水位压力2由第一传力杆103传递至圆环102,圆环102的竖直方向受到压缩致使水平方向拉伸,进而导致粘贴于第一固纤槽105与第二固纤槽106上的光纤布拉格光栅101产生拉应变,使得光纤布拉格光栅101的中心波长发生偏移。When the
本实施例中定义沉降传感器的灵敏度系数为S,水位压力的变化量为ΔP,粘贴于第一固纤槽105与第二固纤槽106的光纤布拉格光栅101中心波长的变化量定义为Δλ上述三者之间的关系为:In this embodiment, the sensitivity coefficient of the subsidence sensor is defined as S, the variation of the water level pressure is ΔP, and the variation of the central wavelength of the fiber Bragg grating 101 pasted on the first fiber-fixing
为了得到所设计的光纤布拉格光栅沉降传感器,需要通过灵敏度测试,从而得到得光纤布拉格光栅101的中心波长偏移变化量与水位压力变化量之间的线性关系。In order to obtain the designed fiber Bragg grating subsidence sensor, it is necessary to pass a sensitivity test, so as to obtain a linear relationship between the variation of the central wavelength shift of the fiber Bragg grating 101 and the variation of water level pressure.
灵敏度测试方法说明如下:The sensitivity test method is described as follows:
将封装完成后的光纤布拉格光栅沉降传感器的进水阀门112接入直径为8mm的硅胶软管,进水阀门112端的硅胶软管接入至储液罐中,关闭堵水阀门113,往储液罐注入纯净水前打开沉降传感器的出水阀门111,直至出水阀门111涌水后,再晃动进水阀门112的硅胶软管的气泡位置,检查完成后关闭出水阀门111,再往储液罐内注入少量纯净水,直至光纤布拉格光栅101波长比测试系统安装前偏高约0.5nm。Connect the
光纤布拉格光栅沉降传感器的灵敏度测试在室温环境下进行,光纤光栅解调仪数据采样频率设置为5Hz,加载方式采用量筒或注射器量取一定体积的水注入储液罐中以加载水位压力,以10mm水位高度对应的压力为步长,水位压力加载-卸载试验循环进行3次,实时记录光纤布拉格光栅101的波长漂移量。The sensitivity test of the fiber Bragg grating settlement sensor is carried out at room temperature. The data sampling frequency of the fiber grating demodulator is set to 5Hz. The pressure corresponding to the height of the water level is the step length, and the water level pressure loading-unloading test cycle is carried out 3 times, and the wavelength drift of the fiber Bragg grating 101 is recorded in real time.
得到光纤布拉格光栅沉降传感器的3次加载-卸载波长实时曲线图,将3次重复实验中,每一个水位压力值所对应的波长漂移量,取平均值并进行最小二乘法拟合,从而得到光纤布拉格光栅沉降传感器的灵敏度S。Obtain the real-time curves of the loading-unloading wavelength of the fiber Bragg grating settlement sensor for 3 times, take the average value of the wavelength drift corresponding to each water level pressure value in the 3 repeated experiments, and perform the least squares method to fit, so as to obtain the optical fiber The sensitivity S of the Bragg grating settlement sensor.
沉降传感器是基于连通管原理对水位压力变化监测沉降,影响其分辨力的因素众多,为了证明光纤布拉格光栅沉降传感器具有高分辨力的性能,使用二分法、无重复双因素方差分析与相关性分析等统计方法对光纤布拉格光栅沉降传感器的测试数据进行分析,从而得到其有效分辨力。The settlement sensor is based on the principle of connecting pipes to monitor the change of water level and pressure. There are many factors that affect its resolution. In order to prove that the fiber Bragg grating settlement sensor has high resolution performance, dichotomy, non-repeated two-factor variance analysis and correlation analysis are used. Statistical methods are used to analyze the test data of the fiber Bragg grating settlement sensor, so as to obtain its effective resolution.
参见图4,对光纤布拉格光栅沉降传感器加载数值为n的水位压力,记录此时的光纤布拉格光栅101的波长数据,再对这段数据做平均值处理,以得到相较于初始状态的波长漂移量,上述过程连续进行8~10次加载,使用无重复双因素方差分析法,以检验水量的变化以及不同的传感器对其波长漂移量是否有显著影响,显著性水平α取0.01,若显著性水平满足要求再进行相关性分析,线性相关度阈值取0.9,如果传感器线性相关度大于阈值,证明光纤布拉格光栅沉降传感器能分辨数值为n的水位压力的微小变化,进而采用二分法,将输入水位压力调整为半数即n/2,重复上述判据,判断传感器是否仍能分辨。Referring to Fig. 4, load the water level pressure with a value of n to the fiber Bragg grating settlement sensor, record the wavelength data of the fiber Bragg grating 101 at this time, and then perform average value processing on this data to obtain the wavelength shift compared with the initial state The above process is loaded continuously for 8 to 10 times, and the non-repeated two-factor analysis of variance is used to test whether the change of water volume and different sensors have a significant impact on the wavelength drift. The significance level α is set to 0.01. The level meets the requirements and then conducts correlation analysis. The linear correlation threshold is 0.9. If the sensor linear correlation is greater than the threshold, it proves that the fiber Bragg grating subsidence sensor can distinguish the small change of the water level pressure with a value of n, and then adopts the dichotomy method to input the water level Adjust the pressure to half or n/2, repeat the above criteria, and judge whether the sensor can still distinguish.
相应的,如果传感器不能分辨数值为n的水位压力的微小变化,将输入水位压力调整为倍数即2n,重复上述判据,判断传感器是否仍能分辨,重复上述判据,如此循环。Correspondingly, if the sensor cannot distinguish the slight change of the water level pressure with value n, adjust the input water level pressure to a multiple of 2n, repeat the above criterion, judge whether the sensor can still distinguish, repeat the above criterion, and so on.
以一具体案例进一步说明光纤布拉格光栅沉降传感器的有效分辨力方法:A specific case is used to further illustrate the effective resolution method of the fiber Bragg grating settlement sensor:
光纤布拉格光栅沉降传感器的分辨力测试实验在室温条件下进行,直径为8mm的硅胶软管,一端接入至4个封装完成后的光纤布拉格光栅沉降传感器的进水阀门112,另一端接入至三通接头,再使用直径为8mm的硅胶软管连接各个三通接头与储液罐3,从而组成了一套完整的连通器系统,加载试验前按照上文所述的方式排出硅胶软管内所有空气气泡。The resolution test experiment of the fiber Bragg grating settlement sensor was carried out at room temperature. One end of the silicone hose with a diameter of 8mm was connected to the
选用的储液罐横截面面积为8000mm2,因此8mL的水量对应的水位高度为1mm,使用量筒或注射器往储液罐3中连续8次输入8mL的水量,合计加载水量共64mL,记录4个光纤布拉格光栅沉降传感器的中心波长,对中心波长数据做平均值处理,无重复双因素方差分析结果显示F值为190.45,显著性水平α取0.01时Fα值为3.36,线性相关度高达0.99,大于线性相关度阈值0.9,说明传感器可以有效分辨1mm的水位高度变化,再对上述系统加载4mL水量,对应的水位高度为0.5mm,重复上述实验步骤,无重复双因素方差分析结果显示F值为10.46,大于显著性水平α取0.01时的Fα值,但是线性相关度仅为0.68,低于线性相关度阈值0.9,说明传感器无法有效分辨0.5mm的水位高度变化。The selected liquid storage tank has a cross-sectional area of 8000mm2, so 8mL of water corresponds to a water level of 1mm. Use a graduated cylinder or syringe to continuously input 8mL of water into the
本实施例的具有高分辨力的光纤布拉格光栅沉降传感器中,测量结构多点沉降变形的依据是半封闭式连通管原理,沉降传感器测量各个测点沉降变化引起的水位压力变化,再根据水压-位移关系可得到各个测点的沉降值。In the fiber Bragg grating settlement sensor with high resolution of this embodiment, the basis for measuring the multi-point settlement deformation of the structure is the principle of semi-closed connecting pipes. The settlement sensor measures the water level pressure change caused by the settlement change of each measuring point, and then according to the water pressure - The displacement relationship can get the settlement value of each measuring point.
连通管原理的表述为:在几组底部互相连通的容器中注入均质液体后,当液体不流动时,即使各容器水位高度发生小幅度变化,连通管系统内各容器的液面也总是保持在同一水平面上,如图5所示,半封闭式连通管是将连通的容器直接与各光纤布拉格光栅沉降传感器(包括基准点的光纤布拉格光栅沉降传感器4、位于监测点沉降前的光纤布拉格光栅沉降传感器5、位于监测点沉降后的光纤布拉格光栅沉降传感器6)的膜片108部分相连接,测量各个测点沉降变化引起的液体压力变化,再根据液压-位移关系可得到各个测点的沉降值。The expression of the connecting pipe principle is: After injecting homogeneous liquid into several groups of containers with interconnected bottoms, when the liquid is not flowing, even if the water level of each container changes slightly, the liquid level of each container in the connecting pipe system will always remain the same. Keep on the same level, as shown in Figure 5, the semi-closed connecting pipe is to directly connect the connected container with each fiber Bragg grating settlement sensor (comprising the fiber Bragg grating
如图5所示,实际沉降测量的应用过程中,一套完整的沉降变形监测系统由储液罐3、i(i≥2)台光纤布拉格光栅沉降传感器(包括基准点的光纤布拉格光栅沉降传感器4、位于监测点沉降前的光纤布拉格光栅沉降传感器5、位于监测点沉降后的光纤布拉格光栅沉降传感器6)、信号传输多芯光缆7、连通水管8、以及终端信号采集分析仪表9组成,若沉降测量的现场风速较大或各个沉降测点气压不稳定,还应增设连通气管(例如对峡谷高空架设的桥梁挠度监测时,必须设置连通气管使各个沉降传感器膜片以下的部分气压保持一致)。As shown in Figure 5, in the application process of actual settlement measurement, a complete set of settlement deformation monitoring system consists of a
由于储液罐3的液面需要与大气连通从而保持气压一致,因此不可避免地会出现水分蒸发的现象,使得沉降变形监测系统内所有光纤布拉格光栅沉降传感器的膜片108所承受的水压力变小,各个测点均表现为隆起变形的趋势。因此在实际应用中监测各个桥墩的沉降量时,如图5所示,必须选择1个沉降基准点布置沉降传感器(即基准点的光纤布拉格光栅沉降传感器4),其余光纤布拉格光栅沉降传感器(包括位于监测点沉降前的光纤布拉格光栅沉降传感器5、位于监测点沉降后的光纤布拉格光栅沉降传感器6)的监测数值须减去基准点的数值,从而避免了水分蒸发引起的沉降数据变化。Since the liquid level of the
监测点(包括位于监测点沉降前的光纤布拉格光栅沉降传感器5、位于监测点沉降后的光纤布拉格光栅沉降传感器6)相对于基准点(即基准点的光纤布拉格光栅沉降传感器4)的相对沉降量Δui为:The relative settlement of the monitoring point (including the
式中:λ1′与λ1分别为基准点处光纤布拉格光栅101的中心波长实时值与初始值,λi′与λi分别为监测点处光纤布拉格光栅101的中心波长实时值与初始值,S1与Si分别为基准点与监测点光纤布拉格光栅沉降传感器灵敏度系数。In the formula: λ 1 ' and λ 1 are the real-time and initial values of the central wavelength of the fiber Bragg grating 101 at the reference point, respectively, and λ i ' and λ i are the real-time and initial values of the central wavelength of the fiber Bragg grating 101 at the monitoring point , S 1 and S i are the sensitivity coefficients of the fiber Bragg grating settlement sensor at the reference point and the monitoring point, respectively.
本实施例的具有高分辨力的光纤布拉格光栅沉降传感器中的圆环102可实现单根光纤布拉格光栅的温度自补偿功能,因此无需再设置温度补偿光栅。传统的浮筒式结构沉降传感器必须敞开与大气连通,在实际应用中水分蒸发量较大,本发明与之相比较,本发明与大气的隔绝性较好,应用时关闭光纤布拉格光栅沉降传感器的出水阀门111与堵水阀门113后水分蒸发量极少,无需经常性补水,可实现结构的长期沉降监测。The
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其它相关的技术领域,均同理包括在本发明的专利保护范围内。The above is only an embodiment of the present invention, and does not limit the patent scope of the present invention. Any equivalent structure or equivalent process conversion made by using the description of the present invention and the contents of the accompanying drawings, or directly or indirectly used in other related technologies fields, all of which are equally included in the scope of patent protection of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210823662.3A CN115265470B (en) | 2022-07-13 | 2022-07-13 | Optical fiber Bragg grating sedimentation sensor with high resolution |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210823662.3A CN115265470B (en) | 2022-07-13 | 2022-07-13 | Optical fiber Bragg grating sedimentation sensor with high resolution |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115265470A true CN115265470A (en) | 2022-11-01 |
CN115265470B CN115265470B (en) | 2024-09-10 |
Family
ID=83764422
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210823662.3A Active CN115265470B (en) | 2022-07-13 | 2022-07-13 | Optical fiber Bragg grating sedimentation sensor with high resolution |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115265470B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115615395A (en) * | 2022-11-18 | 2023-01-17 | 山东科技大学 | An optical fiber grating inclinometer and its measurement method for the overlying strata in the goaf |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6175108B1 (en) * | 1998-01-30 | 2001-01-16 | Cidra Corporation | Accelerometer featuring fiber optic bragg grating sensor for providing multiplexed multi-axis acceleration sensing |
CN102116692A (en) * | 2011-01-30 | 2011-07-06 | 宁波杉工结构监测与控制工程中心有限公司 | Fiber bragg grating pressure sensor and corresponding measuring method thereof |
KR101529610B1 (en) * | 2014-07-04 | 2015-06-30 | 한국표준과학연구원 | Apparatus and Sensing System for Fiber Bragg Grating Probes Having Controlled Sensitivity and Method for Sensing and Manufacturing thereof |
CN106092043A (en) * | 2016-07-26 | 2016-11-09 | 上海电力学院 | A kind of fiber-optic grating sensor based on transformer station's settlement measurement |
US20170146417A1 (en) * | 2014-03-20 | 2017-05-25 | Halliburton Energy Services, Inc. | Temperature-Compensated Strain-Based Transducer Operating on Differential Measurements |
-
2022
- 2022-07-13 CN CN202210823662.3A patent/CN115265470B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6175108B1 (en) * | 1998-01-30 | 2001-01-16 | Cidra Corporation | Accelerometer featuring fiber optic bragg grating sensor for providing multiplexed multi-axis acceleration sensing |
CN102116692A (en) * | 2011-01-30 | 2011-07-06 | 宁波杉工结构监测与控制工程中心有限公司 | Fiber bragg grating pressure sensor and corresponding measuring method thereof |
US20170146417A1 (en) * | 2014-03-20 | 2017-05-25 | Halliburton Energy Services, Inc. | Temperature-Compensated Strain-Based Transducer Operating on Differential Measurements |
KR101529610B1 (en) * | 2014-07-04 | 2015-06-30 | 한국표준과학연구원 | Apparatus and Sensing System for Fiber Bragg Grating Probes Having Controlled Sensitivity and Method for Sensing and Manufacturing thereof |
CN106092043A (en) * | 2016-07-26 | 2016-11-09 | 上海电力学院 | A kind of fiber-optic grating sensor based on transformer station's settlement measurement |
Non-Patent Citations (1)
Title |
---|
郭明金;姜德生;袁宏才;: "基于膜片的光纤布拉格光栅压力传感器的研究", 量子电子学报, no. 02, 30 April 2006 (2006-04-30) * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115615395A (en) * | 2022-11-18 | 2023-01-17 | 山东科技大学 | An optical fiber grating inclinometer and its measurement method for the overlying strata in the goaf |
CN115615395B (en) * | 2022-11-18 | 2023-03-28 | 山东科技大学 | Fiber grating goaf overlying strata inclinometer and measurement method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN115265470B (en) | 2024-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8849073B2 (en) | Pressure and measurement by means of an optical fiber | |
CN102865900B (en) | Fiber Grating Liquid Depth Sensor and preparation method thereof | |
CN105783866B (en) | A kind of tank gage and sedimentation monitoring system based on low coherence interference technology | |
CN201780103U (en) | Long-gauge optical fiber sensor for bending deformation measurement | |
CN101625230A (en) | Distributed optical fiber large-deformation measuring sensor | |
CN115265470B (en) | Optical fiber Bragg grating sedimentation sensor with high resolution | |
CN202066479U (en) | Linear fiber bragg grating displacement meter | |
CN202483561U (en) | Coal-bed gas well liquid level monitoring system based on optical fiber sensing | |
KR101059466B1 (en) | Water level optical fiber displacement meter using optical fiber strain sensor and displacement measurement method of structure using same | |
CN209432073U (en) | Fiber Bragg Grating Sensor Packaged in Long Gauge Coaxial Multiple Sleeves for Measuring Tension and Compression Strain | |
CN201155966Y (en) | Optical fibre grating displacement meter | |
CN103968784A (en) | Liquid level type strain sensor | |
CN103528733A (en) | Spindle-shaped sensor for monitoring load and temperature of flexible rope in real time | |
CN102562034A (en) | System for monitoring liquid level of coal-bed gas well based on optical fiber sensing | |
CN104977031A (en) | Fiber grating sensor packaging structure and packaging method | |
CN202166459U (en) | Oil tank liquid level sensor and device based on fiber bragg grating (FBG) | |
CN113108979A (en) | Fiber grating osmometer with temperature compensation | |
Zhu et al. | Soil nail monitoring using Fiber Bragg Grating sensors during pullout tests | |
CN101221043A (en) | Strain measurement method at low temperature using fiber grating sensor | |
CN207717277U (en) | A kind of hydraulic pressure optical fiber sensing system | |
Yang et al. | Research on a fiber Bragg grating hydrostatic level based on elliptical ring for settlement deformation monitoring | |
CN211200494U (en) | Cofferdam supporting stress monitoring device based on fiber bragg grating | |
CN206710014U (en) | FBG pressure sensors based on all-metalization encapsulation | |
CN204831682U (en) | Measure cantilever beam type optic fibre bragg grating sensor of defeated oil pipe oil pressure | |
CN103528734B (en) | Based on flexible rope load and the temperature simultaneously measuring sensor of FBG |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |