CN115254091B - Indium oxyhydroxide/biomass porous carbon composite photocatalyst, and preparation method and application thereof - Google Patents
Indium oxyhydroxide/biomass porous carbon composite photocatalyst, and preparation method and application thereof Download PDFInfo
- Publication number
- CN115254091B CN115254091B CN202210936238.XA CN202210936238A CN115254091B CN 115254091 B CN115254091 B CN 115254091B CN 202210936238 A CN202210936238 A CN 202210936238A CN 115254091 B CN115254091 B CN 115254091B
- Authority
- CN
- China
- Prior art keywords
- porous carbon
- inooh
- bpc
- biomass porous
- composite photocatalyst
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 51
- 229910052799 carbon Inorganic materials 0.000 title claims abstract description 51
- 239000002028 Biomass Substances 0.000 title claims abstract description 40
- 239000002131 composite material Substances 0.000 title claims abstract description 32
- 239000011941 photocatalyst Substances 0.000 title claims abstract description 32
- -1 Indium oxyhydroxide Chemical compound 0.000 title claims abstract description 26
- 238000002360 preparation method Methods 0.000 title claims abstract description 14
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims abstract description 26
- 230000001699 photocatalysis Effects 0.000 claims abstract description 20
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims abstract description 18
- 229910002092 carbon dioxide Inorganic materials 0.000 claims abstract description 9
- 239000002245 particle Substances 0.000 claims abstract description 9
- 239000001569 carbon dioxide Substances 0.000 claims abstract description 6
- 239000002159 nanocrystal Substances 0.000 claims description 20
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 18
- 238000006243 chemical reaction Methods 0.000 claims description 17
- 239000012153 distilled water Substances 0.000 claims description 14
- 238000006722 reduction reaction Methods 0.000 claims description 12
- 238000003756 stirring Methods 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 9
- 239000000843 powder Substances 0.000 claims description 7
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 claims description 6
- 238000005406 washing Methods 0.000 claims description 6
- 238000001354 calcination Methods 0.000 claims description 5
- 239000003054 catalyst Substances 0.000 claims description 5
- 238000001035 drying Methods 0.000 claims description 5
- 239000007789 gas Substances 0.000 claims description 5
- 238000010438 heat treatment Methods 0.000 claims description 4
- 235000019270 ammonium chloride Nutrition 0.000 claims description 3
- 239000011521 glass Substances 0.000 claims description 3
- 238000013032 photocatalytic reaction Methods 0.000 claims description 3
- 239000012298 atmosphere Substances 0.000 claims description 2
- 239000008367 deionised water Substances 0.000 claims description 2
- 229910021641 deionized water Inorganic materials 0.000 claims description 2
- 239000002135 nanosheet Substances 0.000 claims description 2
- 239000012495 reaction gas Substances 0.000 claims description 2
- 229910052724 xenon Inorganic materials 0.000 claims description 2
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims 3
- 238000001816 cooling Methods 0.000 claims 1
- 238000001914 filtration Methods 0.000 claims 1
- 238000004817 gas chromatography Methods 0.000 claims 1
- 238000000227 grinding Methods 0.000 claims 1
- 238000004321 preservation Methods 0.000 claims 1
- 238000007873 sieving Methods 0.000 claims 1
- 238000001132 ultrasonic dispersion Methods 0.000 claims 1
- 238000002604 ultrasonography Methods 0.000 claims 1
- 238000005303 weighing Methods 0.000 claims 1
- 230000009467 reduction Effects 0.000 abstract description 11
- 238000001027 hydrothermal synthesis Methods 0.000 abstract description 5
- 230000000694 effects Effects 0.000 abstract description 4
- 238000000926 separation method Methods 0.000 abstract description 3
- 230000004913 activation Effects 0.000 abstract description 2
- 239000000969 carrier Substances 0.000 abstract description 2
- 238000003837 high-temperature calcination Methods 0.000 abstract description 2
- 230000002349 favourable effect Effects 0.000 abstract 1
- IGUXCTSQIGAGSV-UHFFFAOYSA-K indium(iii) hydroxide Chemical compound [OH-].[OH-].[OH-].[In+3] IGUXCTSQIGAGSV-UHFFFAOYSA-K 0.000 abstract 1
- 238000007146 photocatalysis Methods 0.000 abstract 1
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 7
- 239000000243 solution Substances 0.000 description 6
- 238000002441 X-ray diffraction Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 230000003595 spectral effect Effects 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 238000007792 addition Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 239000003575 carbonaceous material Substances 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 238000000634 powder X-ray diffraction Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000004729 solvothermal method Methods 0.000 description 2
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- XURCIPRUUASYLR-UHFFFAOYSA-N Omeprazole sulfide Chemical compound N=1C2=CC(OC)=CC=C2NC=1SCC1=NC=C(C)C(OC)=C1C XURCIPRUUASYLR-UHFFFAOYSA-N 0.000 description 1
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 1
- 230000010757 Reduction Activity Effects 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 239000002154 agricultural waste Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000010531 catalytic reduction reaction Methods 0.000 description 1
- 238000009388 chemical precipitation Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000003090 exacerbative effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000005431 greenhouse gas Substances 0.000 description 1
- 238000009998 heat setting Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910021518 metal oxyhydroxide Inorganic materials 0.000 description 1
- 238000000593 microemulsion method Methods 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000013033 photocatalytic degradation reaction Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/08—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of gallium, indium or thallium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/39—Photocatalytic properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/391—Physical properties of the active metal ingredient
- B01J35/393—Metal or metal oxide crystallite size
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/50—Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
- B01J35/56—Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C1/00—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
- C07C1/02—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Catalysts (AREA)
Abstract
Description
技术领域Technical field
本发明涉及复合材料制备及光催化应用技术领域,具体涉及一种羟基氧化铟/生物质多孔碳复合光催化剂及其制备方法以及在光催化二氧化碳还原反应制备甲烷中的应用。The invention relates to the technical field of composite material preparation and photocatalytic application, and specifically relates to an indium oxyhydroxide/biomass porous carbon composite photocatalyst and its preparation method and its application in the production of methane through photocatalytic carbon dioxide reduction reaction.
背景技术Background technique
高度的工业化加速了人类对化石能源的消耗,石油和天然气等化石能源的大量燃烧造成大气中CO2为主的温室气体急剧增加,加剧了能源危机和温室效应。通过光催化还原技术,可直接利用太阳能,将CO2转化为可再生的化学燃料,如CO、CH4以及CxHyOz,实现对CO2高附加值转化的同时解决能源危机和减轻温室效应带来的环境问题。虽然TiO2作为一种常用的光催化剂,但在光催化还原CO2的转化效率在实际应用中仍然很低。因此,在太阳光的照射下将CO2高效地转化为碳氢化合物的技术备受关注。High degree of industrialization has accelerated human consumption of fossil energy. The massive burning of fossil energy such as oil and natural gas has caused a sharp increase in greenhouse gases, mainly CO2 , in the atmosphere, exacerbating the energy crisis and the greenhouse effect. Through photocatalytic reduction technology, solar energy can be directly used to convert CO 2 into renewable chemical fuels, such as CO, CH 4 and C x H y O z , achieving high value-added conversion of CO 2 while solving the energy crisis and mitigating the Environmental problems caused by the greenhouse effect. Although TiO 2 is used as a commonly used photocatalyst, the conversion efficiency in photocatalytic reduction of CO 2 is still low in practical applications. Therefore, technology that efficiently converts CO 2 into hydrocarbons under sunlight has attracted much attention.
InOOH是一种宽带隙n型半导体材料,可通过溶剂热法、化学沉淀法、溶胶凝胶法和微乳液法等方法合成出不同结构的InOOH。在过去的研究中InOOH通常被用作In2O3的前驱体而大多应用于气敏研究,而对其本身的性质以及光催化性能应用方面的研究较少。Li等通过简便的溶剂热法由硝酸铟和乙二胺合成了颗粒直径约为20nm的InOOH纳米晶体,并利用所制备的InOOH在300nm紫外光辐射下对苯蒸汽进行了光催化降解,结果发现InOOH具有与P25相当的催化活性,还具有更高的矿化度,且在长时间的运行时比P25更稳定,展现了对苯优异的光催化降解性能。(Li Z,Xie Z,Zhang Y,et al.Wide band gap p-block metaloxyhydroxide InOOH:Anew durable photocatalyst for benzene degradation.Journalof Physical Chemistry C,2007,111(49):18348-18352.)。InOOH is a wide bandgap n-type semiconductor material. InOOH with different structures can be synthesized through solvothermal method, chemical precipitation method, sol-gel method and microemulsion method. In past research, InOOH was usually used as the precursor of In 2 O 3 and was mostly used in gas sensing research. However, there has been less research on its own properties and photocatalytic performance applications. Li et al. synthesized InOOH nanocrystals with a particle diameter of approximately 20 nm from indium nitrate and ethylenediamine through a simple solvothermal method, and used the prepared InOOH to photocatalytically degrade benzene vapor under 300 nm ultraviolet radiation. The results found that InOOH has comparable catalytic activity to P25, has higher salinity, and is more stable than P25 during long-term operation, demonstrating excellent photocatalytic degradation performance for benzene. (Li Z, Xie Z, Zhang Y, et al. Wide band gap p-block metaloxyhydroxide InOOH: A new durable photocatalyst for benzene degradation. Journal of Physical Chemistry C, 2007, 111(49): 18348-18352.).
本发明引入了农业废弃物为原料,将其处理为多孔碳材料。多孔碳材料比表面较大,其独特的多孔结构不仅会使光能利用率增加,且具有优异的电导率有利于光生电子的传导。利用一步微波液相合成反应制备出羟基氧化铟/生物质多孔碳复合光催化剂,制得的光催化剂微观结构新颖,羟基氧化铟纳米晶均匀生长在呈三维蜂窝状的多孔碳表面上,该复合光催化剂具有高的光催化活性,可显著提高CO2光催化还原为甲烷的效率,目前尚未有羟基氧化铟与生物质多孔碳复合实验对二氧化碳的光催化还原制甲烷的报道。The invention introduces agricultural waste as raw material and processes it into porous carbon materials. Porous carbon materials have a large specific surface area, and their unique porous structure not only increases the utilization of light energy, but also has excellent electrical conductivity, which is beneficial to the conduction of photogenerated electrons. An indium oxyhydroxide/biomass porous carbon composite photocatalyst was prepared using a one-step microwave liquid phase synthesis reaction. The obtained photocatalyst has a novel microstructure. Indium oxyhydroxide nanocrystals grow uniformly on the surface of the three-dimensional honeycomb porous carbon. The composite Photocatalysts have high photocatalytic activity and can significantly improve the efficiency of photocatalytic reduction of CO2 to methane. There are currently no reports on the photocatalytic reduction of carbon dioxide to methane in composite experiments of indium oxyhydroxide and biomass porous carbon.
发明内容Contents of the invention
本发明的目的是针对现有技术催化还原二氧化碳生成甲烷的反应存在反应效率较低等技术问题,提供一种催化活性高的羟基氧化铟/生物质多孔碳(InOOH/BPC)复合光催化剂,同时,本发明还提供了一种简便快捷高效的制备方法。The purpose of this invention is to provide an indium oxyhydroxide/biomass porous carbon (InOOH/BPC) composite photocatalyst with high catalytic activity in view of the technical problems such as low reaction efficiency in the reaction of catalytic reduction of carbon dioxide to generate methane in the existing technology. , the invention also provides a simple, fast and efficient preparation method.
为了实现上述目的,本发明所采用的技术方案为:In order to achieve the above objects, the technical solutions adopted by the present invention are:
一种羟基氧化铟/生物质多孔碳复合光催化剂,其结构中,羟基氧化铟(InOOH)纳米晶均匀地生长在生物质多孔碳(BPC)的表面上,生物质多孔碳(BPC)呈现三维蜂窝状结构,生长在生物质多孔碳(BPC)上的羟基氧化铟(InOOH)纳米晶的粒子大小介于10-20nm。An indium oxyhydroxide/biomass porous carbon composite photocatalyst. In its structure, indium oxyhydroxide (InOOH) nanocrystals grow uniformly on the surface of biomass porous carbon (BPC), and the biomass porous carbon (BPC) appears three-dimensional. Honeycomb structure, the particle size of indium oxyhydroxide (InOOH) nanocrystals grown on biomass porous carbon (BPC) is between 10-20nm.
一种羟基氧化铟/生物质多孔碳复合光催化剂的制备方法,首先利用橘子皮经过水热反应和KOH活化及高温煅烧处理制备出生物质多孔碳(BPC),然后在生物质多孔碳(BPC)上反应生成羟基氧化铟(InOOH)纳米晶,具体制备步骤如下:A method for preparing indium oxyhydroxide/biomass porous carbon composite photocatalyst. First, orange peels are used to prepare biomass porous carbon (BPC) through hydrothermal reaction, KOH activation and high-temperature calcination, and then in the biomass porous carbon (BPC) The above reaction generates indium oxyhydroxide (InOOH) nanocrystals. The specific preparation steps are as follows:
①、制备生物质多孔碳①. Preparation of biomass porous carbon
首先将干燥的橘子皮用粉碎机进行研磨、过筛,然后加入适量的蒸馏水和助孔剂搅拌均匀后进行水热反应,反应完全后洗涤干燥得到产物A;向产物A中加入适量的KOH和蒸馏水,搅拌均匀后放入烘箱中烘干得到产物B;将产物B置于管式炉中进行煅烧,冷却至室温后洗涤,干燥,所得的样品即为生物质多孔碳(BPC);First, grind and sieve the dried orange peel with a grinder, then add an appropriate amount of distilled water and pore aid, stir evenly, and then perform a hydrothermal reaction. After the reaction is complete, wash and dry to obtain product A; add an appropriate amount of KOH and pore aid to product A. Distilled water, stir evenly and put it into an oven to dry to obtain product B; place product B in a tube furnace for calcination, cool to room temperature, wash and dry, and the resulting sample is biomass porous carbon (BPC);
②、在生物质多孔碳上反应生成羟基氧化铟(InOOH)纳米晶②. React on biomass porous carbon to generate indium oxyhydroxide (InOOH) nanocrystals
将50-100mg多孔碳用适量蒸馏水和DMF超声分散,接着加入0.1-0.5mmol的InNO3·4H2O,搅拌溶解;然后将反应液置于微波炉中微波加热使其反应,反应完成后冷却静置过夜,最后经过固液分离、洗涤、干燥,获得羟基氧化铟/生物质多孔碳(InOOH/BPC)复合光催化剂。Ultrasonically disperse 50-100 mg of porous carbon with an appropriate amount of distilled water and DMF, then add 0.1-0.5 mmol of InNO 3 ·4H 2 O, stir and dissolve; then place the reaction solution in a microwave oven and heat it under microwave to react, and cool it down after the reaction is completed. Leave it overnight, and finally undergo solid-liquid separation, washing, and drying to obtain the indium oxyhydroxide/biomass porous carbon (InOOH/BPC) composite photocatalyst.
作为上述制备方法的优选技术方案,步骤①中水热过程利用氯化铵作为助孔剂,其添加量为过筛后橘子皮粉重量的3-8%。水热过程反应温度为140-180℃,反应时间为3-8h。加入KOH和蒸馏水搅拌均匀后放入90-110℃烘箱烘干3-5h。将产物B置于管式炉中在N2氛围下进行煅烧,升温速率为4~6℃/min,煅烧温度为600~800℃,煅烧时间为50~100min。As a preferred technical solution for the above preparation method, ammonium chloride is used as a pore aid in the hydrothermal process in step ①, and its addition amount is 3-8% of the weight of the sieved orange peel powder. The reaction temperature of the hydrothermal process is 140-180°C, and the reaction time is 3-8h. Add KOH and distilled water, stir evenly, and then place it in an oven at 90-110°C to dry for 3-5 hours. Product B is placed in a tube furnace for calcination under N2 atmosphere, the temperature rise rate is 4~6°C/min, the calcination temperature is 600~800°C, and the calcination time is 50~100min.
作为上述制备方法的优选技术方案,步骤②中混合溶液置于800W家用微波炉中,用低火档加热20-40min。As the preferred technical solution of the above preparation method, the mixed solution in step ② is placed in an 800W household microwave oven and heated at low heat for 20-40 minutes.
与现有技术相比,本发明的有益效果表现在:Compared with the prior art, the beneficial effects of the present invention are as follows:
1)、本发明制备的羟基氧化铟/生物质多孔碳复合光催化剂,微观结构为InOOH纳米晶均匀生长在呈三维蜂窝状的BPC表面上,生长在BPC上的InOOH纳米晶的粒子大小介于10-20nm。这种InOOH/BPC复合光催化剂具有丰富的活性位点,大比表面积,有利于光生载流子的分离,增强了光催化活性,在光催化还原二氧化碳制甲烷方面效果优异。1). The microstructure of the indium oxyhydroxide/biomass porous carbon composite photocatalyst prepared by the present invention is that InOOH nanocrystals grow uniformly on the surface of BPC in a three-dimensional honeycomb shape. The particle size of the InOOH nanocrystals grown on BPC is between 10-20nm. This InOOH/BPC composite photocatalyst has abundant active sites and a large specific surface area, which is conducive to the separation of photogenerated carriers, enhances photocatalytic activity, and has excellent effects in photocatalytic reduction of carbon dioxide to methane.
2)、本发明的羟基氧化铟/生物质多孔碳复合光催化剂的制备方法,工艺设备简单,操作简便,重复性好,原料价廉易得,适合产业化生产。2). The preparation method of the indium oxyhydroxide/biomass porous carbon composite photocatalyst of the present invention has simple process equipment, easy operation, good repeatability, cheap and easily available raw materials, and is suitable for industrial production.
3)、本发明采用了廉价易得的生物质橘子皮作为碳源,实现了废物合理利用,节省资源。3). The present invention uses cheap and easy-to-obtain biomass orange peels as the carbon source, achieving rational utilization of waste and saving resources.
附图说明Description of the drawings
图1是实施例1中步骤②制备的纯羟基氧化铟和实施例1、2、3制备的羟基氧化铟/生物质多孔碳复合光催化剂的X射线衍射分析(XRD)谱图。Figure 1 is an X-ray diffraction analysis (XRD) spectrum of pure indium oxyhydroxide prepared in step ② in Example 1 and the indium oxyhydroxide/biomass porous carbon composite photocatalyst prepared in Examples 1, 2, and 3.
图2实施例1中步骤①制备的多孔碳的场发射扫描电子显微镜(FE-SEM)照片。Figure 2 is a field emission scanning electron microscope (FE-SEM) photo of the porous carbon prepared in step ① in Example 1.
图3、4、5分别是实施例1、2、3制备的羟基氧化铟/生物质多孔碳复合光催化剂的场发射扫描电子显微镜(FE-SEM)照片。Figures 3, 4, and 5 are field emission scanning electron microscope (FE-SEM) photos of the indium oxyhydroxide/biomass porous carbon composite photocatalyst prepared in Examples 1, 2, and 3 respectively.
图6是实施列4中的纯羟基氧化铟和羟基氧化铟/生物质多孔碳复合光催化剂的光催化CO2还原的甲烷产量图(a)和相应的甲烷产率图(b)。Figure 6 is a methane production diagram (a) and the corresponding methane production rate diagram (b) of the photocatalytic CO reduction of pure indium oxyhydroxide and indium oxyhydroxide/biomass porous carbon composite photocatalyst in Example 4.
具体实施方式Detailed ways
下面结合附图和具体实施例对本发明进行详细说明。The present invention will be described in detail below with reference to the accompanying drawings and specific embodiments.
实施例1Example 1
①、制备多孔碳①. Preparation of porous carbon
首先将干燥的橘子皮用粉碎机进行研磨,得到的粉末过100目筛,称取5g橘子皮粉加入45mL蒸馏水和0.25g氯化铵搅拌均匀,接着于160℃下保温反应5h,待冷却至室温经过洗涤干燥得到产物A;在产物A加入其两倍质量的KOH,再加入粉体等体积的蒸馏水,搅拌,随后放入100℃烘箱中进行3h干燥得到产物B;将产物B置于管式炉中,在N2氛围下以5℃/min升温速率升温至700℃,煅烧1h,待反应结束降至室温后取出,用去离子水洗涤,烘干,所得的样品即为生物质多孔碳(BPC)。First, grind the dried orange peel with a grinder, and pass the resulting powder through a 100-mesh sieve. Weigh 5g of orange peel powder, add 45 mL of distilled water and 0.25 g of ammonium chloride, stir evenly, and then incubate the reaction at 160°C for 5 hours, and wait until it is cooled to After washing and drying at room temperature, product A is obtained; add twice the mass of KOH to product A, then add an equal volume of distilled water to the powder, stir, and then place it in a 100°C oven for 3 hours to dry to obtain product B; place product B in a tube In a furnace, heat up to 700°C at a heating rate of 5°C/min under N2 atmosphere, calcine for 1 hour, take it out after the reaction is completed and return to room temperature, wash with deionized water, and dry. The resulting sample is biomass porous Carbon(BPC).
参见附图2,制得的生物质多孔碳主要呈现三维蜂窝状结构,表面光滑,无其它颗粒存在。Referring to Figure 2, the prepared biomass porous carbon mainly presents a three-dimensional honeycomb structure with a smooth surface and no other particles.
②、在生物质多孔碳上反应生成InOOH纳米晶②. React on biomass porous carbon to generate InOOH nanocrystals
取一锥形瓶,加入50mg多孔碳、1mL蒸馏水和29mLDMF,超声分散15min,接着加入0.1mmol的InNO3·4H2O,在室温下搅拌4h;将反应液转移到家用微波炉(800W)中,用低火档(功率18%)微波加热30min,然后趁热抽滤,洗涤、干燥、收集样品即为InOOH/BPC复合光催化剂,标记为InOOH/BPC-1;Take an Erlenmeyer flask, add 50 mg porous carbon, 1 mL distilled water and 29 mL DMF, disperse ultrasonically for 15 min, then add 0.1 mmol InNO 3 ·4H 2 O, stir at room temperature for 4 h; transfer the reaction solution to a household microwave oven (800W). Use low heat setting (power 18%) to microwave for 30 minutes, then filter while hot, wash, dry, and collect the sample to form the InOOH/BPC composite photocatalyst, labeled InOOH/BPC-1;
采用相同的方法,在不添加多孔碳的条件下制备出纯InOOH样品。Using the same method, pure InOOH samples were prepared without adding porous carbon.
参见附图1,图中谱线峰位均与JCPDF标准卡片(71-2277)的所有衍射晶面一一对应,均指示为正交相的InOOH晶体,空间群P21/nmm,晶格常数 Refer to Figure 1. The peak positions of the spectral lines in the figure correspond one-to-one with all the diffraction crystal planes of the JCPDF standard card (71-2277), indicating orthorhombic phase InOOH crystal, space group P2 1 /nmm, lattice constant
参见附图3,可以清晰地看出:原本光滑的生物质多孔碳表面上生长出了大量的InOOH纳米晶,InOOH纳米晶的粒径约为10-20nm。InOOH纳米晶基本上均匀的生长在纳米片表面上,但表面局部有所暴露,没有被InOOH纳米晶覆盖。Referring to Figure 3, it can be clearly seen that a large number of InOOH nanocrystals have grown on the originally smooth surface of the biomass porous carbon, and the particle size of the InOOH nanocrystals is about 10-20 nm. InOOH nanocrystals grow basically uniformly on the surface of the nanosheet, but the surface is partially exposed and not covered by InOOH nanocrystals.
实施例2Example 2
取一锥形瓶,加入实施例1步骤①方法制备的50mg多孔碳、1mL蒸馏水和29mLDMF,超声分散15min,接着加入0.3mmol的InNO3·4H2O,在室温下搅拌4h;将反应液转移到家用微波炉(800W)中,用低火档(功率18%)微波加热30min,然后趁热抽滤,洗涤、干燥、收集样品即为InOOH/BPC复合光催化剂,标记为InOOH/BPC-2。Take an Erlenmeyer flask, add 50 mg porous carbon prepared by the method in step ① of Example 1, 1 mL distilled water and 29 mL DMF, disperse with ultrasonic for 15 min, then add 0.3 mmol InNO 3 ·4H 2 O, stir at room temperature for 4 h; transfer the reaction solution In a household microwave oven (800W), microwave at low heat (power 18%) for 30 minutes, then filter while hot, wash, dry, and collect the sample to become the InOOH/BPC composite photocatalyst, labeled InOOH/BPC-2.
参见附图1,图中可见所有谱线峰也与按实施例1中步骤所述的方法制得的纯InOOH和InOOH/BPC-1复合光催化剂的X-射线粉末衍射分析(XRD)谱完全一致。Referring to Figure 1, it can be seen that all spectral peaks are also consistent with the X-ray powder diffraction analysis (XRD) spectra of pure InOOH and InOOH/BPC-1 composite photocatalysts prepared according to the steps described in Example 1. consistent.
参见附图4,可以清晰地看出:原本光滑的生物质多孔碳的表面上完全生长出了大量的InOOH纳米晶,InOOH纳米晶粒生长的更加均匀,几乎完全均匀的生长在多孔碳表面上。Referring to Figure 4, it can be clearly seen that a large number of InOOH nanocrystals have completely grown on the surface of the originally smooth biomass porous carbon. The InOOH nanocrystals have grown more uniformly and almost completely uniformly on the surface of the porous carbon. .
实施例3Example 3
取一锥形瓶,加入实施例1步骤①方法制备的50mg多孔碳、1mL蒸馏水和29mL DMF,超声分散15min,接着加入0.5mmol的InNO3·4H2O,在室温下搅拌4h;将反应液转移到家用微波炉(800W)中,用低火档(功率18%)微波加热30min,然后趁热抽滤,洗涤、干燥、收集样品即为InOOH/BPC复合光催化剂,标记为InOOH/BPC-3。Take an Erlenmeyer flask, add 50 mg of porous carbon prepared by the method in step ① of Example 1, 1 mL of distilled water and 29 mL of DMF, disperse with ultrasonic for 15 min, then add 0.5 mmol of InNO 3 ·4H 2 O, and stir at room temperature for 4 h; Transfer to a household microwave oven (800W), microwave at low heat (power 18%) for 30 minutes, then filter while hot, wash, dry, and collect the sample to form the InOOH/BPC composite photocatalyst, labeled InOOH/BPC-3 .
参见附图1,图中可见所有谱线峰也与按实施例1中步骤所述的方法制得的纯InOOH和InOOH/BPC-1复合光催化剂的X-射线粉末衍射分析(XRD)谱完全一致。Referring to Figure 1, it can be seen that all spectral peaks are also consistent with the X-ray powder diffraction analysis (XRD) spectra of pure InOOH and InOOH/BPC-1 composite photocatalysts prepared according to the steps described in Example 1. consistent.
参见附图5,可以清晰地看出:原本光滑的多孔碳的表面上完全生长出了大量的InOOH纳米晶,但InOOH纳米晶粒径有所增大,且存在聚集堆积现象。Referring to Figure 5, it can be clearly seen that a large number of InOOH nanocrystals have completely grown on the surface of the originally smooth porous carbon, but the particle size of the InOOH nanocrystals has increased, and there is aggregation and accumulation.
实施例4(羟基氧化铟/生物质多孔碳复合光催化剂光催化CO2还原)Example 4 (Indium oxyhydroxide/biomass porous carbon composite photocatalyst photocatalytic CO2 reduction)
在北京镁瑞臣公司设计的在线光催化反应系统(MC-SPB10-AG)中测试了上述制备的催化剂的光催化CO2还原活性。将10mg催化剂和1mL蒸馏水加入到离心管中,并持续超声15min直至催化剂完全分散均匀。然后将其均匀滴加在筛板上,置于玻璃反应器连接到光催化反应系统中,通入高纯CO2(99.999%)作为反应气体,至气压表示数为15kpa时停止通入CO2,重复洗气三次,直至系统压力稳定。用300W氙灯(MC-XF300)作为光源。在整个光反应阶段,由循环冷凝水装置控制反应器温度在6℃左右,每隔1h通过在线气相色谱仪(GC9790Ⅱ)配有FID检测器和TCD检测器来分析还原气体产物的产生量。The photocatalytic CO reduction activity of the catalyst prepared above was tested in an online photocatalytic reaction system (MC-SPB10-AG) designed by Beijing Meridian Company. Add 10 mg of catalyst and 1 mL of distilled water into the centrifuge tube, and continue ultrasonic for 15 min until the catalyst is completely dispersed and evenly distributed. Then drop it evenly on the sieve plate, place it in a glass reactor and connect it to the photocatalytic reaction system, and feed high-purity CO 2 (99.999%) as the reaction gas. Stop feeding CO 2 when the air pressure indicates 15kpa. , repeat air purging three times until the system pressure stabilizes. Use a 300W xenon lamp (MC-XF300) as the light source. During the entire photoreaction stage, the reactor temperature is controlled at about 6°C by a circulating condensate water device, and the production of reducing gas products is analyzed every 1 hour by an online gas chromatograph (GC9790II) equipped with an FID detector and a TCD detector.
参见附图6,3个实施例制备的InOOH/BPC复合光催化剂都比纯InOOH的光催化CO2还原制取甲烷的产量得到很大地提高(图6a所示),尤其是添加0.3mmol的InNO3·4H2O(实施例2)制备的InOOH/BPC-2复合光催化剂的光催化CO2还原性能最优。同时,实施例2制备的InOOH/BPC-2复合光催化剂甲烷的产生速率最高(图6b所示),达到94.68μmol·g-1·h-1,约为纯InOOH的122.9倍。Referring to Figure 6, the InOOH/BPC composite photocatalysts prepared in the three examples have greatly improved the production of methane through photocatalytic CO 2 reduction compared to pure InOOH (shown in Figure 6a), especially when 0.3 mmol of InNO is added. The InOOH/BPC-2 composite photocatalyst prepared with 3 ·4H 2 O (Example 2) has the best photocatalytic CO 2 reduction performance. At the same time, the InOOH/BPC-2 composite photocatalyst prepared in Example 2 has the highest methane production rate (shown in Figure 6b), reaching 94.68 μmol·g -1 ·h -1 , which is approximately 122.9 times that of pure InOOH.
通过上述实施例证实,本发明通过微波辅助液相合成法制备出羟基氧化铟/生物质多孔碳复合光催化剂,具有优异的光催化CO2还原制取甲烷性能,且制作工艺简捷,具备大量合成的可能性。It is confirmed by the above examples that the present invention prepares indium oxyhydroxide/biomass porous carbon composite photocatalyst through microwave-assisted liquid phase synthesis method, which has excellent photocatalytic CO 2 reduction to produce methane performance, and the production process is simple and has the ability to synthesize in large quantities. possibility.
以上内容仅仅是对本发明的构思所作的举例和说明,所属本技术领域的技术人员对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,只要不偏离发明的构思或者超越本权利要求书所定义的范围,均应属于本发明的保护范围。The above contents are only examples and explanations of the concept of the invention. Those skilled in the art may make various modifications or additions to the described specific embodiments or substitute them in similar ways, as long as they do not deviate from the concept of the invention. or beyond the scope defined by the claims, shall belong to the protection scope of the present invention.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210936238.XA CN115254091B (en) | 2022-08-05 | 2022-08-05 | Indium oxyhydroxide/biomass porous carbon composite photocatalyst, and preparation method and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210936238.XA CN115254091B (en) | 2022-08-05 | 2022-08-05 | Indium oxyhydroxide/biomass porous carbon composite photocatalyst, and preparation method and application thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115254091A CN115254091A (en) | 2022-11-01 |
CN115254091B true CN115254091B (en) | 2024-01-09 |
Family
ID=83748525
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210936238.XA Active CN115254091B (en) | 2022-08-05 | 2022-08-05 | Indium oxyhydroxide/biomass porous carbon composite photocatalyst, and preparation method and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115254091B (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011025276A2 (en) * | 2009-08-31 | 2011-03-03 | 서울대학교 산학협력단 | Preparation method of metal oxide-carbon nanocomposite |
CN103230790A (en) * | 2013-04-10 | 2013-08-07 | 武汉理工大学 | A visible light catalyst of compound carbon sphere / indium oxyhydroxide and a preparation method thereof |
CN106179372A (en) * | 2016-07-29 | 2016-12-07 | 江苏大学 | A preparation method and application of C@Fe3O4@Bi composite photocatalyst based on biomass porous carbon |
CN109516457A (en) * | 2018-12-05 | 2019-03-26 | 华南师范大学 | A kind of chitosan-based porous carbon ball and preparation method thereof |
CN111554515A (en) * | 2020-05-11 | 2020-08-18 | 周小飞 | MnO (MnO)2Supercapacitor electrode material for modifying biomass porous carbon and preparation method thereof |
CN113845115A (en) * | 2021-10-12 | 2021-12-28 | 西安理工大学 | A kind of preparation method and application of heteroatom self-doping biomass porous carbon |
CN113877556A (en) * | 2021-10-18 | 2022-01-04 | 常州大学 | Indium oxyhydroxide/modified attapulgite photocatalytic composite material and preparation method and application thereof |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110180548B (en) * | 2019-05-09 | 2020-09-08 | 苏州大学 | One-dimensional indium oxide hollow nanotube/two-dimensional zinc ferrite nanosheet heterojunction composite material and application thereof in removing water pollutants |
-
2022
- 2022-08-05 CN CN202210936238.XA patent/CN115254091B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011025276A2 (en) * | 2009-08-31 | 2011-03-03 | 서울대학교 산학협력단 | Preparation method of metal oxide-carbon nanocomposite |
CN103230790A (en) * | 2013-04-10 | 2013-08-07 | 武汉理工大学 | A visible light catalyst of compound carbon sphere / indium oxyhydroxide and a preparation method thereof |
CN106179372A (en) * | 2016-07-29 | 2016-12-07 | 江苏大学 | A preparation method and application of C@Fe3O4@Bi composite photocatalyst based on biomass porous carbon |
CN109516457A (en) * | 2018-12-05 | 2019-03-26 | 华南师范大学 | A kind of chitosan-based porous carbon ball and preparation method thereof |
CN111554515A (en) * | 2020-05-11 | 2020-08-18 | 周小飞 | MnO (MnO)2Supercapacitor electrode material for modifying biomass porous carbon and preparation method thereof |
CN113845115A (en) * | 2021-10-12 | 2021-12-28 | 西安理工大学 | A kind of preparation method and application of heteroatom self-doping biomass porous carbon |
CN113877556A (en) * | 2021-10-18 | 2022-01-04 | 常州大学 | Indium oxyhydroxide/modified attapulgite photocatalytic composite material and preparation method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
CN115254091A (en) | 2022-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102500388B (en) | Copper and bismuth co-doped nano titanium dioxide photocatalyst and preparation and application thereof | |
CN104549500A (en) | A kind of method for preparing B-doped g-C3N4 photocatalyst by non-metallic liquid phase doping | |
CN108380230A (en) | The preparation method and application of ultra-thin graphite phase carbon nitride | |
CN112604690B (en) | Method for preparing rare earth perovskite/biochar composite material by utilizing agricultural and forestry waste and application thereof | |
CN110385146A (en) | A kind of Ni0.85Se/PDA/g-C3N4Composite photo-catalyst and its application | |
CN112774692B (en) | A kind of Ru@Ni2V2O7 efficient photothermal synergistic catalyst and its preparation method and application | |
CN110605126A (en) | Preparation method and application of a hollow BiOCl@CeO2 nanocomposite material | |
CN111250094A (en) | Double Z type Co3O4/NiCo2O4/NiO photocatalyst and preparation method and application thereof | |
CN107519903A (en) | Bismuth oxybromide-cadmium sulfide nano composite photocatalyst and preparation method thereof | |
CN107537520A (en) | A kind of bismuth oxybromide cupric oxide nano composite photo-catalyst and preparation method thereof | |
CN110124696A (en) | A kind of preparation method of cadmium sulfide and cobalt disulfide heterojunction photocatalyst | |
CN115254091B (en) | Indium oxyhydroxide/biomass porous carbon composite photocatalyst, and preparation method and application thereof | |
CN106111100A (en) | A kind of preparation method of hollow activated carbon fiber/titanic oxide nano compound photocatalyst | |
CN106964388B (en) | A kind of preparation method of stannous tungstate doped two-dimensional graphite phase carbon nitride composite photocatalyst | |
CN113117672A (en) | Branched alkane reforming photo-thermal catalyst and preparation method and application thereof | |
CN111393663B (en) | A kind of peryleneimide-based coordination polymer, preparation method and application thereof | |
CN115178277B (en) | A doped Co3O4 nanomaterial and its application | |
CN113877556B (en) | Indium oxyhydroxide/modified attapulgite photocatalytic composite material and its preparation method and application | |
CN113697783B (en) | Porous g-C 3 N 4 Preparation method and application of nano-sheet | |
CN108421555A (en) | A kind of preparation method of cobalt/carboritride hydridization photochemical catalyst | |
CN110124734A (en) | A kind of method of polymer with nitrogen modified titanic oxide preparation photolytic hydrogen production catalyst | |
CN117772261B (en) | g-C3N4Application of supported PtCo diatomic photocatalyst as ammonia borane hydrolysis hydrogen production catalyst | |
CN115487850B (en) | A kind of photothermal catalytic composite material and its preparation method and application | |
CN119034713A (en) | Solar fuel photocatalytic composite material for high-selectivity methane, preparation method and application | |
CN117884165A (en) | A Zn-Ni2P/g-C3N4Ⅱ heterojunction photocatalyst and its preparation method and application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |