CN115251853A - Method, device and system for detecting position of microvascular and storage medium - Google Patents
Method, device and system for detecting position of microvascular and storage medium Download PDFInfo
- Publication number
- CN115251853A CN115251853A CN202210883703.8A CN202210883703A CN115251853A CN 115251853 A CN115251853 A CN 115251853A CN 202210883703 A CN202210883703 A CN 202210883703A CN 115251853 A CN115251853 A CN 115251853A
- Authority
- CN
- China
- Prior art keywords
- signal
- photodetector
- reflected light
- light source
- blood vessel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 50
- 238000001514 detection method Methods 0.000 claims abstract description 92
- 210000004088 microvessel Anatomy 0.000 claims abstract description 78
- 210000004204 blood vessel Anatomy 0.000 claims abstract description 56
- 230000000737 periodic effect Effects 0.000 claims abstract description 24
- 230000004044 response Effects 0.000 claims abstract description 11
- 230000010349 pulsation Effects 0.000 claims description 28
- 230000017531 blood circulation Effects 0.000 claims description 23
- 238000012545 processing Methods 0.000 claims description 17
- 239000008280 blood Substances 0.000 claims description 15
- 210000004369 blood Anatomy 0.000 claims description 15
- 230000008859 change Effects 0.000 claims description 13
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 10
- 238000004590 computer program Methods 0.000 claims description 10
- 239000013307 optical fiber Substances 0.000 claims description 10
- 229910052760 oxygen Inorganic materials 0.000 claims description 10
- 239000001301 oxygen Substances 0.000 claims description 10
- 230000035515 penetration Effects 0.000 claims description 10
- 108010054147 Hemoglobins Proteins 0.000 claims description 7
- 102000001554 Hemoglobins Human genes 0.000 claims description 7
- 238000004891 communication Methods 0.000 claims description 6
- 239000000835 fiber Substances 0.000 claims description 5
- 238000004088 simulation Methods 0.000 claims description 5
- 230000000642 iatrogenic effect Effects 0.000 abstract description 9
- 230000006378 damage Effects 0.000 abstract description 4
- 208000027418 Wounds and injury Diseases 0.000 abstract description 3
- 208000014674 injury Diseases 0.000 abstract description 3
- 238000010586 diagram Methods 0.000 description 16
- 208000024248 Vascular System injury Diseases 0.000 description 10
- 208000012339 Vascular injury Diseases 0.000 description 10
- 210000001519 tissue Anatomy 0.000 description 8
- 230000008901 benefit Effects 0.000 description 7
- 230000003287 optical effect Effects 0.000 description 5
- 230000008569 process Effects 0.000 description 4
- 238000000342 Monte Carlo simulation Methods 0.000 description 3
- 230000031700 light absorption Effects 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- 230000035559 beat frequency Effects 0.000 description 2
- 238000013145 classification model Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 210000005036 nerve Anatomy 0.000 description 2
- INGWEZCOABYORO-UHFFFAOYSA-N 2-(furan-2-yl)-7-methyl-1h-1,8-naphthyridin-4-one Chemical compound N=1C2=NC(C)=CC=C2C(O)=CC=1C1=CC=CO1 INGWEZCOABYORO-UHFFFAOYSA-N 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 238000010009 beating Methods 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000036770 blood supply Effects 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000006392 deoxygenation reaction Methods 0.000 description 1
- 108010002255 deoxyhemoglobin Proteins 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000009760 functional impairment Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 210000003463 organelle Anatomy 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000007631 vascular surgery Methods 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0093—Detecting, measuring or recording by applying one single type of energy and measuring its conversion into another type of energy
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/02—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- General Physics & Mathematics (AREA)
- Surgery (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Cardiology (AREA)
- Physiology (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
本发明公开了一种微血管的位置检测方法、装置、系统及存储介质,该方法包括:响应于检测到触发指令,基于第一预设波长,控制信号采集阵列中的光源照射被测对象,并获取信号采集阵列中的至少两个光电探测器分别采集到的第一反射光信号;其中,信号采集阵列中的光源与各光电探测器线性排列;针对每个光电探测器,在光电探测器采集到的第一反射光信号为周期性信号的情况下,将光电探测器与光源之间的组件距离作为目标组件距离;基于目标组件距离以及光电探测器对应的探测深度,确定微血管的血管位置。本发明实施例解决了传统的血管检测方法无法探明微血管位置的问题,为医疗操作提供了准确的微血管的位置信息,进而可以降低医源性血管损伤的发生率。
The invention discloses a method, device, system and storage medium for detecting the position of microvessels. The method includes: in response to detecting a trigger instruction, based on a first preset wavelength, controlling a light source in a signal acquisition array to irradiate a measured object, and Acquiring first reflected light signals respectively collected by at least two photodetectors in the signal collection array; wherein the light sources in the signal collection array are linearly arranged with each photodetector; for each photodetector, When the obtained first reflected light signal is a periodic signal, the component distance between the photodetector and the light source is used as the target component distance; based on the target component distance and the detection depth corresponding to the photodetector, the blood vessel position of the microvessel is determined. The embodiment of the present invention solves the problem that the traditional blood vessel detection method cannot detect the position of the micro blood vessel, provides accurate position information of the micro blood vessel for medical operations, and further reduces the incidence of iatrogenic blood vessel injury.
Description
技术领域technical field
本发明涉及医疗器械技术领域,尤其涉及一种微血管的位置检测方法、装置、系统及存储介质。The invention relates to the technical field of medical devices, in particular to a method, device, system and storage medium for detecting the position of microvessels.
背景技术Background technique
医源性血管损伤是指医疗操作过程中意外发生的血管损伤,尽管随着血管外科知识的普及和提高,大血管损伤大为减少,但误操作导致的微血管损伤仍难以避免。而微血管对末梢组织的供血起重要作用,如供应神经的微血管损伤可能导致该神经的功能损伤。因此,在医疗操作过程中判断是否存在微血管以及探明微血管的具体位置,对降低医源性血管损伤的发生率尤为重要。Iatrogenic vascular injury refers to accidental vascular injury during medical operations. Although large vessel injury has been greatly reduced with the popularization and improvement of vascular surgery knowledge, microvascular injury caused by misoperation is still unavoidable. Microvessels play an important role in blood supply to peripheral tissues. For example, damage to microvessels supplying nerves may lead to functional impairment of the nerves. Therefore, it is particularly important to determine whether there are microvessels and find out the specific location of microvessels during medical operations to reduce the incidence of iatrogenic vascular injury.
传统的血管检测方法通常用于检测血管的形态,无法得到微血管的位置信息。Traditional blood vessel detection methods are usually used to detect the shape of blood vessels, and the location information of microvessels cannot be obtained.
发明内容Contents of the invention
本发明实施例提供了一种微血管的位置检测方法、装置、系统及存储介质,以解决传统的血管检测方法无法探明微血管位置的问题,为医疗操作提供准确的微血管的位置信息,进而降低医源性血管损伤的发生率。Embodiments of the present invention provide a method, device, system, and storage medium for detecting the position of microvessels, so as to solve the problem that traditional blood vessel detection methods cannot ascertain the position of microvessels, provide accurate position information of microvessels for medical operations, and further reduce medical costs. incidence of vascular injury.
根据本发明一个实施例提供了一种微血管的位置检测方法,该方法包括:According to one embodiment of the present invention, a method for detecting the position of microvessels is provided, the method comprising:
响应于检测到触发指令,基于第一预设波长,控制信号采集阵列中的光源照射被测对象,并获取信号采集阵列中的至少两个光电探测器分别采集到的第一反射光信号;其中,所述信号采集阵列中的光源与各所述光电探测器线性排列;In response to detecting the trigger instruction, based on the first preset wavelength, control the light source in the signal collection array to irradiate the measured object, and obtain first reflected light signals respectively collected by at least two photodetectors in the signal collection array; wherein , the light source in the signal acquisition array is arranged linearly with each of the photodetectors;
针对每个光电探测器,在所述光电探测器采集到的第一反射光信号为周期性信号的情况下,将所述光电探测器与所述光源之间的组件距离作为目标组件距离;For each photodetector, when the first reflected light signal collected by the photodetector is a periodic signal, the component distance between the photodetector and the light source is used as the target component distance;
基于所述目标组件距离以及所述光电探测器对应的探测深度,确定微血管的血管位置;其中,所述探测深度表征信号采集阵列相对于所述被测对象方向上的深度位置。Based on the target component distance and the detection depth corresponding to the photodetector, the blood vessel position of the microvessel is determined; wherein the detection depth represents the depth position of the signal acquisition array relative to the measured object.
根据本发明另一个实施例提供了一种微血管的位置检测装置,该装置包括:According to another embodiment of the present invention, a device for detecting the position of microvessels is provided, the device comprising:
第一反射光信号获取模块,用于响应于检测到触发指令,基于第一预设波长,控制信号采集阵列中的光源照射被测对象,并获取信号采集阵列中的至少两个光电探测器分别采集到的第一反射光信号;其中,所述信号采集阵列中的光源与各所述光电探测器线性排列;The first reflected light signal acquisition module is configured to control the light source in the signal acquisition array to irradiate the measured object based on the first preset wavelength in response to the detection of the trigger instruction, and acquire at least two photodetectors in the signal acquisition array respectively The collected first reflected light signal; wherein, the light source in the signal collection array is arranged linearly with each of the photodetectors;
目标组件距离确定模块,用于针对每个光电探测器,在所述光电探测器采集到的第一反射光信号为周期性信号的情况下,将所述光电探测器与所述光源之间的组件距离作为目标组件距离;The target component distance determining module is used for each photodetector, when the first reflected light signal collected by the photodetector is a periodic signal, the distance between the photodetector and the light source component distance as target component distance;
血管位置确定模块,用于基于所述目标组件距离以及所述光电探测器对应的探测深度,确定微血管的血管位置;其中,所述探测深度表征信号采集阵列相对于所述被测对象方向上的深度位置。A blood vessel position determining module, configured to determine the blood vessel position of the microvessel based on the distance of the target component and the detection depth corresponding to the photodetector; wherein, the detection depth represents the position of the signal acquisition array relative to the direction of the measured object depth position.
根据本发明另一个实施例提供了一种微血管的位置检测系统,所述系统包括:信号采集阵列和控制器;According to another embodiment of the present invention, a microvessel position detection system is provided, and the system includes: a signal acquisition array and a controller;
其中,所述信号采集阵列上设置有光源和至少两个光电探测器,所述光源与各所述光电探测器线性排列;Wherein, the signal acquisition array is provided with a light source and at least two photodetectors, and the light source is arranged linearly with each of the photodetectors;
所述控制器中包含至少一个处理器;以及与所述至少一个处理器通信连接的存储器,所述存储器存储有可被所述至少一个处理器执行的计算机程序,所述计算机程序被所述至少一个处理器执行,以使所述至少一个处理器能够执行本发明任一实施例所述的微血管的位置检测方法。The controller includes at least one processor; and a memory connected to the at least one processor in communication, the memory stores a computer program that can be executed by the at least one processor, and the computer program is executed by the at least one processor. Executed by a processor, so that the at least one processor can execute the method for detecting the position of a microvessel according to any embodiment of the present invention.
根据本发明另一个实施例,提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机指令,所述计算机指令用于使处理器执行时实现本发明任一实施例所述的微血管的位置检测方法。According to another embodiment of the present invention, a computer-readable storage medium is provided, the computer-readable storage medium stores computer instructions, and the computer instructions are used to enable a processor to implement any of the embodiments of the present invention when executed. A method for detecting the position of microvessels.
本发明实施例的技术方案,通过响应于检测到触发指令,基于第一预设波长,控制信号采集阵列中的光源照射被测对象,并获取信号采集阵列中的至少两个光电探测器分别采集到的第一反射光信号,其中,信号采集阵列中的光源与各光电探测器线性排列,针对每个光电探测器,在光电探测器采集到的第一反射光信号为周期性信号的情况下,将光电探测器与光源之间的组件距离作为目标组件距离,基于目标组件距离以及光电探测器对应的探测深度,确定微血管的血管位置,解决了传统的血管检测方法无法探明微血管位置的问题,为医疗操作提供了准确的微血管的位置信息,进而可以降低医源性血管损伤的发生率。In the technical solution of the embodiment of the present invention, by responding to the detection of the trigger instruction, based on the first preset wavelength, the light source in the signal acquisition array is controlled to irradiate the measured object, and at least two photodetectors in the signal acquisition array are respectively acquired The first reflected light signal received, wherein, the light source in the signal acquisition array is arranged linearly with each photodetector, for each photodetector, when the first reflected light signal collected by the photodetector is a periodic signal , using the component distance between the photodetector and the light source as the target component distance, and based on the target component distance and the detection depth corresponding to the photodetector, determine the blood vessel position of the microvessel, which solves the problem that the traditional blood vessel detection method cannot ascertain the position of the microvessel , which provides accurate microvascular location information for medical operations, thereby reducing the incidence of iatrogenic vascular injury.
应当理解,本部分所描述的内容并非旨在标识本发明的实施例的关键或重要特征,也不用于限制本发明的范围。本发明的其它特征将通过以下的说明书而变得容易理解。It should be understood that the content described in this section is not intended to identify key or important features of the embodiments of the present invention, nor is it intended to limit the scope of the present invention. Other features of the present invention will be easily understood from the following description.
附图说明Description of drawings
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention, the drawings that need to be used in the description of the embodiments will be briefly introduced below. Obviously, the drawings in the following description are only some embodiments of the present invention. For those skilled in the art, other drawings can also be obtained based on these drawings without creative effort.
图1为本发明实施例一所提供的一种微血管的位置检测方法的流程图;FIG. 1 is a flow chart of a method for detecting the position of microvessels provided by Embodiment 1 of the present invention;
图2为本发明实施例一所提供的一种信号采集阵列的结构示意图;FIG. 2 is a schematic structural diagram of a signal acquisition array provided by
图3A为本发明实施例一所提供的一种血流搏动信号的可视化示意图;FIG. 3A is a visual schematic diagram of a blood flow pulsation signal provided by
图3B为本发明实施例一所提供的一种空间坐标系中的血管位置的示意图;FIG. 3B is a schematic diagram of blood vessel positions in a space coordinate system provided by
图4为本发明实施例二所提供的一种微血管的位置检测方法的流程图;FIG. 4 is a flow chart of a method for detecting the position of microvessels provided by Embodiment 2 of the present invention;
图5为本发明实施例二所提供的一种光源探测器距离与平均最大穿透深度之间关系的示意图;Fig. 5 is a schematic diagram of the relationship between a light source detector distance and the average maximum penetration depth provided by
图6为本发明实施例三所提供的一种微血管的位置检测装置的结构示意图;6 is a schematic structural diagram of a microvessel position detection device provided by Embodiment 3 of the present invention;
图7为本发明实施例四所提供的一种微血管的位置检测系统的结构示意图;7 is a schematic structural diagram of a microvessel position detection system provided by
图8为本发明实施例四所提供的一种微血管的位置检测系统的具体实例的结构示意图。FIG. 8 is a schematic structural diagram of a specific example of a microvessel position detection system provided by
具体实施方式Detailed ways
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。In order to enable those skilled in the art to better understand the solutions of the present invention, the following will clearly and completely describe the technical solutions in the embodiments of the present invention in conjunction with the drawings in the embodiments of the present invention. Obviously, the described embodiments are only It is an embodiment of a part of the present invention, but not all embodiments. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts shall fall within the protection scope of the present invention.
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。It should be noted that the terms "first" and "second" in the description and claims of the present invention and the above drawings are used to distinguish similar objects, but not necessarily used to describe a specific sequence or sequence. It is to be understood that the data so used are interchangeable under appropriate circumstances such that the embodiments of the invention described herein can be practiced in sequences other than those illustrated or described herein. Furthermore, the terms "comprising" and "having", as well as any variations thereof, are intended to cover a non-exclusive inclusion, for example, a process, method, system, product or device comprising a sequence of steps or elements is not necessarily limited to the expressly listed instead, may include other steps or elements not explicitly listed or inherent to the process, method, product or apparatus.
实施例一Embodiment one
图1为本发明实施例一所提供的一种微血管的位置检测方法的流程图,本实施例可适用于在医疗操作场景中,探明被测对象内血管的具体位置的情况,该方法可以由微血管的位置检测装置来执行,该微血管的位置检测装置可以采用硬件和/或软件的形式实现,该微血管的位置检测装置可配置于微血管的位置检测系统中。如图1所示,该方法包括:Fig. 1 is a flow chart of a method for detecting the position of microvessels provided by Embodiment 1 of the present invention. This embodiment is applicable to the situation of finding out the specific position of the blood vessels in the subject in the medical operation scene, and the method can be It is performed by a microvessel position detection device, which may be implemented in the form of hardware and/or software, and the microvessel position detection device may be configured in a microvessel position detection system. As shown in Figure 1, the method includes:
S110、响应于检测到触发指令,基于第一预设波长,控制信号采集阵列中的光源照射被测对象,并获取信号采集阵列中的至少两个光电探测器分别采集到的第一反射光信号。S110. In response to detecting the trigger instruction, based on the first preset wavelength, control the light source in the signal collection array to irradiate the measured object, and obtain the first reflected light signals respectively collected by at least two photodetectors in the signal collection array .
在一个可选实施例中,响应于检测到用户输入的手动操作指令,生成触发指令,和/或,在当前时刻与上一检测时刻之间的时间长度满足预设检测周期的情况下,生成触发指令。示例性的,预设检测周期可以是5秒钟或1分钟。In an optional embodiment, a trigger instruction is generated in response to detecting a manual operation instruction input by a user, and/or, when the time length between the current moment and the last detected moment satisfies a preset detection period, a trigger instruction is generated. Trigger command. Exemplarily, the preset detection period may be 5 seconds or 1 minute.
其中,具体的,第一预设波长可用于表征光源发出的电磁波的波长。示例性的,第一预设波长可以为650nm、1064nm、700nm、900nm、473nm或532nm等等。此处对第一预设波长不作限定。在一个可选实施例中,第一预设波长为650nm或1064nm。这样设置的好处在于,650nm和1064nm分别表示红光和近红外光,这两种光在组织中的衰减小,能够有效提高信号采集阵列对应的最大探测深度,进而可以扩宽微血管位置检测的适用检测范围。Wherein, specifically, the first preset wavelength may be used to characterize the wavelength of the electromagnetic wave emitted by the light source. Exemplarily, the first preset wavelength may be 650nm, 1064nm, 700nm, 900nm, 473nm or 532nm and so on. The first preset wavelength is not limited here. In an optional embodiment, the first preset wavelength is 650nm or 1064nm. The advantage of this setting is that 650nm and 1064nm represent red light and near-infrared light respectively. The attenuation of these two kinds of light in the tissue is small, which can effectively improve the maximum detection depth corresponding to the signal acquisition array, and thus broaden the application of microvascular position detection. scope of test.
在本实施例中,信号采集阵列中的光源与各光电探测器线性排列。其中,具体的,信号采集阵列中包含安装板,至少两个光电探测器可以均安装在光源的一侧,也可以安装在光源的两侧。其中,信号采集阵列中两个组件之间的距离可以相同,也可以不同。两个组件可以为光源与光电探测器,或者光电探测器与光电探测器。In this embodiment, the light source in the signal collection array is arranged linearly with each photodetector. Specifically, the signal collection array includes a mounting board, and at least two photodetectors can be installed on one side of the light source, or on both sides of the light source. Wherein, the distance between two components in the signal collection array may be the same or different. The two components can be a light source and a photodetector, or a photodetector and a photodetector.
图2为本发明实施例一所提供的一种信号采集阵列的结构示意图。图2中的A图表示至少两个光电探测器均安装在光源一侧的情况,图2中的B图表示至少两个光电探测器安装在光源两侧的情况。当然,光源两侧的光电探测器的数量可以相同也可以不同。FIG. 2 is a schematic structural diagram of a signal acquisition array provided by
被测对象的组织成分复杂,细胞和细胞之间,以及细胞器之间的折射率不匹配,导致入射光进入组织后,并非按直线传播,而是多次回弹形成漫反射。入射光经过近似弧形的光学路径,在距离入射点一定距离的位置反射出来。当入射光穿过血管时,由于血管搏动,光电探测器采集到的第一反射光信号可以反映入射光穿过组织的搏动信息,可用于判断入射光是否经过血管。The tissue composition of the object to be measured is complex, and the refractive index mismatch between cells and organelles causes the incident light to enter the tissue, instead of propagating in a straight line, but rebounding multiple times to form diffuse reflection. The incident light passes through an approximately arc-shaped optical path and is reflected at a certain distance from the incident point. When the incident light passes through the blood vessel, due to the pulsation of the blood vessel, the first reflected light signal collected by the photodetector can reflect the pulsation information of the incident light passing through the tissue, and can be used to judge whether the incident light passes through the blood vessel.
S120、针对每个光电探测器,在光电探测器采集到的第一反射光信号为周期性信号的情况下,将光电探测器与光源之间的组件距离作为目标组件距离。S120. For each photodetector, if the first reflected light signal collected by the photodetector is a periodic signal, use the component distance between the photodetector and the light source as the target component distance.
在一个可选实施例中,该方法还包括:针对每个光电探测器,将光电探测器采集到的第一反射光信号输入到前置放大器中,并将输出的放大反射光信号输入到模数转换器中;将模数转换器输出的数字反射光信号输入到数据处理模块中,得到输出的血流搏动信号,并在血流搏动信号具备周期性的情况下,将第一反射光信号设置为周期性信号。In an optional embodiment, the method further includes: for each photodetector, inputting the first reflected light signal collected by the photodetector into the preamplifier, and inputting the output amplified reflected light signal into the analog In the digital converter; the digital reflected light signal output by the analog-to-digital converter is input into the data processing module to obtain the output blood flow pulsation signal, and when the blood flow pulsation signal is periodic, the first reflected light signal Set to periodic signal.
其中,示例性的,数据处理模块可以对数字反射光信号执行滤波处理和/或平均处理。Wherein, for example, the data processing module may perform filtering processing and/or averaging processing on the digital reflected light signal.
在一个可选实施例中,该方法还包括:将各光电探测器分别对应的血流搏动信号在可视化界面中进行展示。图3A为本发明实施例一所提供的一种血流搏动信号的可视化示意图。具体的,图3A示出了5个光电探测器分别对应的血流搏动信号。其中,图3A中的坐标系的横坐标为时间,纵坐标为血流搏动信号的信号强度。In an optional embodiment, the method further includes: displaying blood pulse signals corresponding to each photodetector on a visual interface. FIG. 3A is a schematic diagram of visualization of a blood flow pulsation signal provided by
这样设置的好处在于,方便医疗操作人员可以直观的观察到血流搏动信号,对微血管可能存在的大致位置有一定的预判,以提高医疗操作过程中的对微血管的位置信息获取的实时性。The advantage of this setting is that it is convenient for medical operators to observe the blood flow pulsation signal intuitively, and to have a certain prediction of the approximate location of the possible microvessels, so as to improve the real-time performance of obtaining the position information of the microvessels during the medical operation.
在一个可选实施例中,该方法还包括:将血流搏动信号与标准搏动信号进行相似度匹配,如果匹配率超过预设匹配率阈值,则认为血流搏动信号具备周期性。In an optional embodiment, the method further includes: matching the similarity between the blood flow pulsation signal and the standard pulsation signal, and if the matching rate exceeds a preset matching rate threshold, the blood flow pulsation signal is considered to be periodic.
在另一个可选实施例中,该方法还包括:将血流搏动信号输入到预先训练完成的分类模型中,基于输出结果,确定血流搏动信号是否具备周期性。示例性的,输出结果为是或1,用于表征血流搏动信号具备周期性,输出结果为否或0,用于表征血流搏动信号不具备周期性。In another optional embodiment, the method further includes: inputting the blood pulsation signal into a pre-trained classification model, and based on the output result, determining whether the blood pulsation signal has periodicity. Exemplarily, the output result is yes or 1, which is used to indicate that the blood flow pulsation signal has periodicity, and the output result is no or 0, which is used to indicate that the blood flow pulsation signal has no periodicity.
在另一个可选实施例中,该方法还包括:基于预设统计时长,确定血流搏动信号中的极值个数,基于极值个数,确定血流搏动信号对应的搏动频率,如果搏动频率满足预设频率范围,则认为血流搏动信号具备周期性。其中,极值个数可以为极大值和个数也可以为极小值的个数,示例性的,预设频率范围为每分钟60-100个。In another optional embodiment, the method further includes: determining the number of extreme values in the blood flow pulsation signal based on the preset statistical duration, and determining the beat frequency corresponding to the blood flow pulsation signal based on the number of extreme values, if the beat If the frequency satisfies the preset frequency range, the blood pulse signal is considered to be periodic. Wherein, the number of extreme values may be the number of maximum values or the number of minimum values. Exemplarily, the preset frequency range is 60-100 per minute.
在另一个可选实施例中,该方法还包括:如果获取到的参数数据满足预设参数条件,则认为血流搏动信号具备周期性。其中,参数数据包括匹配率、分类模型的输出结果和搏动频率中至少两个,预设参数条件包括匹配率超过预设匹配率阈值、输出结果为表征血流搏动信号具备周期性的标识结果以及搏动频率满足预设频率范围。In another optional embodiment, the method further includes: if the acquired parameter data satisfies a preset parameter condition, determining that the blood flow pulsation signal is periodic. Wherein, the parameter data includes at least two of the matching rate, the output result of the classification model, and the beating frequency, and the preset parameter conditions include that the matching rate exceeds the preset matching rate threshold, the output result is an identification result representing the periodicity of the blood flow pulsation signal, and The beat frequency satisfies the preset frequency range.
其中,具体的,当光电探测器采集到的第一反射光信号为周期性信号时,说明与该当前光电探测器对应的探测位置存在微血管。Wherein, specifically, when the first reflected light signal collected by the photodetector is a periodic signal, it indicates that there is a microvessel at the detection position corresponding to the current photodetector.
S130、基于目标组件距离以及光电探测器对应的探测深度,确定微血管的血管位置。S130. Based on the target component distance and the detection depth corresponding to the photodetector, determine the vessel position of the microvessel.
在一个可选实施例中,基于目标组件距离以及光电探测器对应的探测深度,确定微血管的血管位置,包括:基于信号采集阵列中的光源对应的光源位置,构建空间坐标系;基于目标组件距离以及光电探测器对应的探测深度,确定微血管在空间坐标系中的血管位置。In an optional embodiment, determining the blood vessel position of the microvessel based on the target component distance and the corresponding detection depth of the photodetector includes: constructing a space coordinate system based on the light source position corresponding to the light source in the signal collection array; And the detection depth corresponding to the photodetector determines the blood vessel position of the microvessel in the space coordinate system.
其中,具体的,将信号采集阵列中的光源对应的光源位置作为空间坐标系的原点,示例性的,空间坐标系的横坐标表示光源与各光电探测器之间的组件距离,纵坐标表示各光电探测器分别对应的探测深度。Wherein, specifically, the position of the light source corresponding to the light source in the signal collection array is taken as the origin of the space coordinate system. Exemplarily, the abscissa of the space coordinate system represents the component distance between the light source and each photodetector, and the ordinate represents the distance between each photodetector. The detection depths of the photodetectors are respectively corresponding.
在一个可选实施例中,基于目标组件距离和探测深度,确定微血管在空间坐标系中的血管位置,包括:将目标组件距离作为血管位置中的横坐标位置,将探测深度作为血管位置中的纵坐标位置。In an optional embodiment, determining the blood vessel position of the microvessel in the spatial coordinate system based on the target component distance and the detection depth includes: taking the target component distance as the abscissa position in the blood vessel position, and taking the detection depth as the blood vessel position Ordinate position.
图3B为本发明实施例一所提供的一种空间坐标系中的血管位置的示意图。具体的,图3B示出了5个光电探测器,其中,光电探测器1与光源之间的组件距离为d1,当前光电探测器与前一光电探测器或后一光电探测器之间的组件距离均为d2,相应的,5个光电探测器与光源之间的组件距离分别为d1、d1+d2、d1+2*d2、d1+3*d2和d1+4*d2。其中,以光电探测器1为例,光电探测器1对应的探测深度可以为最小探测深度(图3B中的a点)、中间探测深度(图3B中的b点)或最大探测深度(图3B中的c点)。图3B以探测深度为最大探测深度为例,假设光电探测器3和采集到的第一反射光信号为周期性信号,则在空间坐标系中,微血管的血管位置包括(d1+2*d2,M3)。FIG. 3B is a schematic diagram of blood vessel positions in a space coordinate system provided by
本实施例的技术方案,通过响应于检测到触发指令,基于第一预设波长,控制信号采集阵列中的光源照射被测对象,并获取信号采集阵列中的至少两个光电探测器分别采集到的第一反射光信号,其中,信号采集阵列中的光源与各光电探测器线性排列,针对每个光电探测器,在光电探测器采集到的第一反射光信号为周期性信号的情况下,将光电探测器与光源之间的组件距离作为目标组件距离,基于目标组件距离以及光电探测器对应的探测深度,确定微血管的血管位置,解决了传统的血管检测方法无法探明微血管位置的问题,为医疗操作提供了准确的微血管的位置信息,进而可以降低医源性血管损伤的发生率。In the technical solution of this embodiment, by responding to the detection of the trigger instruction, based on the first preset wavelength, the light source in the signal collection array is controlled to irradiate the measured object, and at least two photodetectors in the signal collection array are respectively collected The first reflected light signal of , wherein, the light source in the signal acquisition array is arranged linearly with each photodetector, for each photodetector, when the first reflected light signal collected by the photodetector is a periodic signal, The component distance between the photodetector and the light source is used as the target component distance, and the position of the microvessel is determined based on the target component distance and the corresponding detection depth of the photodetector, which solves the problem that the traditional blood vessel detection method cannot ascertain the position of the microvessel. Accurate microvascular location information is provided for medical operations, thereby reducing the incidence of iatrogenic vascular injury.
实施例二Embodiment two
图4为本发明实施例二所提供的一种微血管的位置检测方法的流程图,本实施例对上述实施例进行进一步细化。如图4所示,该方法包括:FIG. 4 is a flow chart of a method for detecting the position of a microvessel provided by
S210、响应于检测到触发指令,基于第一预设波长,控制信号采集阵列中的光源照射被测对象,并获取信号采集阵列中的至少两个光电探测器分别采集到的第一反射光信号。S210. In response to detecting the trigger instruction, based on the first preset wavelength, control the light source in the signal collection array to irradiate the measured object, and obtain the first reflected light signals respectively collected by at least two photodetectors in the signal collection array .
S220、基于第二预设波长,控制信号采集信号中的光源照射被测对象,并获取信号采集阵列中至少两个光电探测器分别采集到的第二反射光信号。S220. Based on the second preset wavelength, control the light source in the signal collection signal to irradiate the measured object, and acquire second reflected light signals respectively collected by at least two photodetectors in the signal collection array.
其中,具体的,第二预设波长与第一预设波长不同。Wherein, specifically, the second preset wavelength is different from the first preset wavelength.
S230、针对每个光电探测器,在光电探测器采集到的第一反射光信号为周期性信号的情况下,将光电探测器与光源之间的组件距离作为目标组件距离。S230. For each photodetector, if the first reflected light signal collected by the photodetector is a periodic signal, use the component distance between the photodetector and the light source as the target component distance.
S240、基于目标组件距离以及光电探测器对应的探测深度,确定微血管的血管位置。S240. Based on the target component distance and the detection depth corresponding to the photodetector, determine the vessel position of the microvessel.
在上述实施例的基础上,该方法还包括:针对信号采集阵列中的每个光电探测器,将光源与光电探测器对应的组件距离输入到模拟仿真系统中;将输出的最大平均穿透深度作为光电探测器对应的探测深度。On the basis of the above embodiments, the method further includes: for each photodetector in the signal acquisition array, inputting the component distance corresponding to the light source and the photodetector into the simulation system; outputting the maximum average penetration depth As the detection depth corresponding to the photodetector.
光电探测器与光源之间的组件距离越近,光电探测器对应的探测深度越浅,但采集到的第一反射光信号的第一反射光强度越强,相反,光电探测器与光源之间的组件距离越远,光电探测器对应的探测深度越深,但采集到的第一反射光信号的第一反射光强度越弱。The closer the component distance between the photodetector and the light source is, the shallower the corresponding detection depth of the photodetector is, but the stronger the first reflected light intensity of the collected first reflected light signal is, on the contrary, the distance between the photodetector and the light source is The farther the distance between the components is, the deeper the corresponding detection depth of the photodetector is, but the weaker the first reflected light intensity of the collected first reflected light signal is.
在一个可选实施例中,模拟仿真系统可以是蒙特卡罗模拟系统。蒙特卡罗模拟将光辐射处理成粒子形式的光子流,其中,每个入射光子在组织体内按照与其物理行为一致的规律与组织发生随机作用,如行走、散射和吸收等,通过对这些随机事件的追踪和统计,可以获得大量入射光子在统计平均意义上的迁移规律及其有关参数。可以使用蒙特卡罗模拟的方法得到不同的光源和光电探测器之间的组件距离下,入射光的平均最大穿透深度。In an optional embodiment, the simulation system may be a Monte Carlo simulation system. Monte Carlo simulation processes optical radiation into photon flow in the form of particles, in which each incident photon randomly interacts with the tissue in accordance with the law consistent with its physical behavior, such as walking, scattering and absorption, etc., through the analysis of these random events The tracking and statistics of a large number of incident photons can obtain the migration law and related parameters in the statistical average sense. The average maximum penetration depth of incident light at different component distances between the light source and photodetector can be obtained using Monte Carlo simulation.
图5为本发明实施例二所提供的一种光源探测器距离与平均最大穿透深度之间关系的示意图。从图5可以看出,随着光源和光电探测器之间组件距离的增加,光电探测器的平均最大穿透深度线性增加。当光源和光电探测器距离大于40mm时,光电探测器的平均最大穿透深度不再增加,最大的平均最大穿透深度大约为16mm。根据仿真实验的结果,可以指导信号采集阵列的设计,如光源和光电探测器之间的最大组件距离不超过40mm,在40mm距离范围内,平均分配光电探测器,线性对应不同的平均最大穿透深度。FIG. 5 is a schematic diagram of a relationship between a light source detector distance and an average maximum penetration depth provided by
在一个可选实施例中,基于目标组件距离和探测深度,确定微血管在空间坐标系中的血管位置,包括:将目标组件距离的一半作为血管位置中的横坐标位置,将探测深度作为血管位置中的纵坐标位置。以上述举例为例,在本实施例中,微血管的血管位置包括 In an optional embodiment, based on the target component distance and the detection depth, determining the blood vessel position of the microvessel in the spatial coordinate system includes: taking half of the target component distance as the abscissa position in the blood vessel position, and taking the detection depth as the blood vessel position The vertical coordinate position in . Taking the above example as an example, in this embodiment, the blood vessel positions of microvessels include
这样设置的好处在于,可以提高微血管的血管位置的准确度。The advantage of such setting is that the accuracy of the blood vessel position of the microvessel can be improved.
在另一个可选实施例中,基于目标组件距离和探测深度,确定微血管在空间坐标系中的血管位置,包括:基于预设比例范围和目标组件距离,确定横向位置范围,基于探测深度中的最小探测深度和最大探测深度,确定纵向位置范围,基于横向位置范围和纵向位置范围,确定血管在空间坐标系中的血管位置。In another optional embodiment, determining the blood vessel position of the microvessel in the spatial coordinate system based on the target component distance and the detection depth includes: determining the lateral position range based on the preset ratio range and the target component distance, based on the detection depth The minimum detection depth and the maximum detection depth determine the longitudinal position range, and determine the blood vessel position of the blood vessel in the spatial coordinate system based on the lateral position range and the longitudinal position range.
在本实施例中,光电探测器对应的探测深度包括最小探测深度和最大探测深度,血管位置用于表征微血管的分布位置区域。其中,示例性的,预设比例范围可以为此处对预设比例范围不作限定。In this embodiment, the detection depth corresponding to the photodetector includes a minimum detection depth and a maximum detection depth, and the blood vessel position is used to characterize the distribution position area of the microvessel. Wherein, for example, the preset ratio range can be The range of the preset ratio is not limited here.
以上述举例为例,在本实施例中,微血管的血管位置包括其中,M3a表示光电探测器3对应的最小探测深度,M3c表示光电探测器3对应的最大探测深度。Taking the above example as an example, in this embodiment, the blood vessel positions of microvessels include Wherein, M3a represents the minimum detection depth corresponding to the photodetector 3 , and M3c represents the maximum detection depth corresponding to the photodetector 3 .
这样设置的好处在于,可以提供具体的微血管的分布位置区域,避免医疗操作人员需要基于单坐标点的血管位置进行分布位置区域的估计,从而进一步提高微血管的血管位置的准确度及实用性。The advantage of this setting is that it can provide a specific distribution location area of microvessels, avoiding the need for medical operators to estimate the distribution location area based on the location of blood vessels at a single coordinate point, thereby further improving the accuracy and practicability of the location of microvessels.
在上述实施例的基础上,当至少两个光电探测器分别采集到第一反射光信号均为周期性信号时,判断至少两个光电探测器分别对应到的血管位置是否存在重叠区域,如果是,则将重叠区域对应的坐标位置范围作为优先级最高的微血管的血管位置。On the basis of the above embodiments, when the first reflected light signals collected by at least two photodetectors are all periodic signals, it is determined whether there is an overlapping area at the blood vessel positions corresponding to the at least two photodetectors, and if so , the coordinate position range corresponding to the overlapping area is taken as the vessel position of the microvessel with the highest priority.
这样设置的好处在于,重叠区域对应的坐标位置范围内存在血管的概率最高,因此,将重叠区域对应的坐标位置范围作为优先级最高的微血管的血管位置,可以为医疗操作提供更精确的微血管的位置信息,进而可以进一步降低医源性血管损伤的发生率。The advantage of this setting is that the probability of blood vessels in the coordinate position range corresponding to the overlapping area is the highest. Therefore, taking the coordinate position range corresponding to the overlapping area as the blood vessel position of the highest priority microvessel can provide more accurate microvessel location for medical operations. Location information can further reduce the incidence of iatrogenic vascular injury.
S250、针对每个光电探测器,获取光电探测器采集到的第一反射光信号和第二反射光信号分别对应的第一反射光强度和第二反射光强度。S250. For each photodetector, acquire a first reflected light intensity and a second reflected light intensity respectively corresponding to the first reflected light signal and the second reflected light signal collected by the photodetector.
其中,示例性的,第一反射光强度可以用I'λ1表示,第二反射光强度可以用I'λ2表示,其中,λ1和λ2分别表示第一预设波长和第二预设波长。Wherein, for example, the first reflected light intensity can be represented by I'λ1 , and the second reflected light intensity can be represented by I'λ2, wherein, λ1 and λ2 represent the first preset wavelength and the second preset wavelength respectively.
S260、基于第一反射光强度和第二反射光强度,确定被测对象在与光电探测器对应的探测深度下的血氧浓度变化量。S260. Based on the first reflected light intensity and the second reflected light intensity, determine the change amount of the blood oxygen concentration of the measured object at the detection depth corresponding to the photodetector.
在本实施例中,血氧浓度变化量包括含氧血红蛋白(HbO2)浓度变化量和脱氧血红蛋白(HHb)浓度变化量。In this embodiment, the change in blood oxygen concentration includes the change in oxygenated hemoglobin (HbO 2 ) concentration and the change in deoxygenated hemoglobin (HHb) concentration.
其中,示例性的,第一反射光强度和第一入射光强度之间满足公式:Wherein, exemplary, the first reflected light intensity and the first incident light intensity satisfy the formula:
其中,示例性的,第二反射光强度和第二入射光强度之间满足公式:Wherein, for example, the formula between the second reflected light intensity and the second incident light intensity is satisfied:
其中,Iλ1(t)和Iλ2(t)分别表示t时刻的第一入射光强度和第二入射光强度,和分别表示在第一预设波长λ1的第一入射光下HbO2和HHb分别对应的光吸收系数,和分别表示在第二预设波长λ2的第二入射光下HbO2和HHb分别对应的光吸收系数,和分别表示t时刻的HbO2浓度和HHb浓度,r表示光源与光电探测器之间的组件距离,DPF表示组件距离r的权重系数,称为差分路径因子,Gλ1表示在第一预设波长λ1的第一入射光下,被测对象中除了HbO2和HHb的组织光吸收,Gλ2表示在第二预设波长λ2的第二入射光下,被测对象中除了HbO2和HHb的组织光吸收。Among them, I λ1 (t) and I λ2 (t) respectively represent the first incident light intensity and the second incident light intensity at time t, and denote the light absorption coefficients corresponding to HbO2 and HHb respectively under the first incident light of the first preset wavelength λ1, and represent the light absorption coefficients corresponding to HbO2 and HHb respectively under the second incident light of the second preset wavelength λ2, and respectively represent the HbO2 concentration and the HHb concentration at time t, r represents the component distance between the light source and the photodetector, DPF represents the weight coefficient of the component distance r, which is called the differential path factor, G λ1 represents that at the first preset wavelength λ1 Under the first incident light of , the tissue light absorption except HbO 2 and HHb in the measured object, G λ2 represents the tissue light except HbO 2 and HHb in the measured object under the second incident light of the second preset wavelength λ2 absorb.
其中,Gλ1和Gλ2为未知的参数,通常假设Gλ1和Gλ2不随时间变化,因此,基于上一时刻(t-1)的第一反射光强度和第二反射光强度构建公式:Among them, G λ1 and G λ2 are unknown parameters, and it is usually assumed that G λ1 and G λ2 do not change with time. Therefore, the formula is constructed based on the first reflected light intensity and the second reflected light intensity at the previous moment (t-1):
通过对上述4个公式进行求解,可以得到含氧血红蛋白浓度变化量和脱氧血红蛋白浓度变化量 By solving the above four formulas, the change in oxygenated hemoglobin concentration can be obtained and deoxyhemoglobin concentration changes
本实施例的技术方案,通过基于第二预设波长,控制信号采集信号中的光源照射被测对象,并获取信号采集阵列中至少两个光电探测器分别采集到的第二反射光信号,针对每个光电探测器,获取光电探测器采集到的第一反射光信号和第二反射光信号分别对应的第一反射光强度和第二反射光强度,基于第一反射光强度和第二反射光强度,确定被测对象在与光电探测器对应的探测深度下的血氧浓度变化量,解决了传统的血管检测方法无法分析血氧浓度变化的问题,为医疗操作提供了准确的血氧浓度变化量信息,丰富了医疗操作的辅助信息的维度,为进一步降低医源性血管损伤的发生率提供帮助。In the technical solution of this embodiment, based on the second preset wavelength, the light source in the signal collection signal is controlled to irradiate the measured object, and the second reflected light signals respectively collected by at least two photodetectors in the signal collection array are obtained, aiming at Each photodetector obtains the first reflected light intensity and the second reflected light intensity respectively corresponding to the first reflected light signal and the second reflected light signal collected by the photodetector, based on the first reflected light intensity and the second reflected light Intensity, to determine the change in blood oxygen concentration of the measured object at the detection depth corresponding to the photodetector, which solves the problem that the traditional blood vessel detection method cannot analyze the change of blood oxygen concentration, and provides accurate blood oxygen concentration changes for medical operations Quantitative information enriches the dimensions of auxiliary information for medical operations and helps further reduce the incidence of iatrogenic vascular injury.
实施例三Embodiment Three
图6为本发明实施例三所提供的一种微血管的位置检测装置的结构示意图。如图6所示,该装置包括:第一反射光信号获取模块310、目标组件距离确定模块320和血管位置确定模块330。FIG. 6 is a schematic structural diagram of a microvessel position detection device provided by Embodiment 3 of the present invention. As shown in FIG. 6 , the device includes: a first reflected light
其中,第一反射光信号获取模块310,用于响应于检测到触发指令,基于第一预设波长,控制信号采集阵列中的光源照射被测对象,并获取信号采集阵列中的至少两个光电探测器分别采集到的第一反射光信号;其中,信号采集阵列中的光源与各光电探测器线性排列;Wherein, the first reflected light
目标组件距离确定模块320,用于针对每个光电探测器,在光电探测器采集到的第一反射光信号为周期性信号的情况下,将光电探测器与光源之间的组件距离作为目标组件距离;Target component
血管位置确定模块330,用于基于目标组件距离以及光电探测器对应的探测深度,确定微血管的血管位置;其中,探测深度表征信号采集阵列相对于被测对象方向上的深度位置。The blood vessel
本实施例的技术方案,通过响应于检测到触发指令,基于第一预设波长,控制信号采集阵列中的光源照射被测对象,并获取信号采集阵列中的至少两个光电探测器分别采集到的第一反射光信号,其中,信号采集阵列中的光源与各光电探测器线性排列,针对每个光电探测器,在光电探测器采集到的第一反射光信号为周期性信号的情况下,将光电探测器与光源之间的组件距离作为目标组件距离,基于目标组件距离以及光电探测器对应的探测深度,确定微血管的血管位置,解决了传统的血管检测方法无法探明微血管位置的问题,为医疗操作提供了准确的微血管的位置信息,进而可以降低医源性血管损伤的发生率。In the technical solution of this embodiment, by responding to the detection of the trigger instruction, based on the first preset wavelength, the light source in the signal collection array is controlled to irradiate the measured object, and at least two photodetectors in the signal collection array are respectively collected The first reflected light signal of , wherein, the light source in the signal acquisition array is arranged linearly with each photodetector, for each photodetector, when the first reflected light signal collected by the photodetector is a periodic signal, The component distance between the photodetector and the light source is used as the target component distance, and the position of the microvessel is determined based on the target component distance and the corresponding detection depth of the photodetector, which solves the problem that the traditional blood vessel detection method cannot ascertain the position of the microvessel. Accurate microvascular location information is provided for medical operations, thereby reducing the incidence of iatrogenic vascular injury.
在上述实施例的基础上,可选的,该装置还包括:On the basis of the foregoing embodiments, optionally, the device further includes:
血流搏动信号确定模块,用于针对每个光电探测器,将光电探测器采集到的第一反射光信号输入到前置放大器中,并将输出的放大反射光信号输入到模数转换器中;The blood flow pulsation signal determination module is used for inputting the first reflected light signal collected by the photodetector into the preamplifier for each photodetector, and inputting the output amplified reflected light signal into the analog-to-digital converter ;
将模数转换器输出的数字反射光信号输入到数据处理模块中,得到输出的血流搏动信号,并在血流搏动信号具备周期性的情况下,将第一反射光信号设置为周期性信号。Input the digital reflected light signal output by the analog-to-digital converter into the data processing module to obtain the output blood flow pulsation signal, and set the first reflected light signal as a periodic signal when the blood flow pulsation signal is periodic .
在上述实施例的基础上,可选的,血管位置确定模块330,具体用于:On the basis of the above embodiments, optionally, the blood vessel
基于信号采集阵列中的光源对应的光源位置,构建空间坐标系;Constructing a space coordinate system based on the position of the light source corresponding to the light source in the signal acquisition array;
基于目标组件距离以及光电探测器对应的探测深度,确定微血管在空间坐标系中的血管位置。Based on the target component distance and the detection depth corresponding to the photodetector, the vessel position of the microvessel in the space coordinate system is determined.
在上述实施例的基础上,可选的,该装置还包括:On the basis of the foregoing embodiments, optionally, the device further includes:
探测深度确定模块,用于针对信号采集阵列中的每个光电探测器,将光源与光电探测器对应的组件距离输入到模拟仿真系统中;The detection depth determination module is used for inputting the component distance corresponding to the light source and the photodetector into the simulation system for each photodetector in the signal acquisition array;
将输出的最大平均穿透深度作为光电探测器对应的探测深度。The output maximum average penetration depth is taken as the detection depth corresponding to the photodetector.
在上述实施例的基础上,可选的,该装置还包括:On the basis of the foregoing embodiments, optionally, the device further includes:
血氧浓度变化量确定模块,用于基于第二预设波长,控制信号采集信号中的光源照射被测对象,并获取信号采集阵列中至少两个光电探测器分别采集到的第二反射光信号;The blood oxygen concentration variation determination module is configured to control the light source in the signal collection signal to irradiate the measured object based on the second preset wavelength, and obtain the second reflected light signals respectively collected by at least two photodetectors in the signal collection array ;
针对每个光电探测器,获取光电探测器采集到的第一反射光信号和第二反射光信号分别对应的第一反射光强度和第二反射光强度;For each photodetector, obtain the first reflected light intensity and the second reflected light intensity respectively corresponding to the first reflected light signal and the second reflected light signal collected by the photodetector;
基于第一反射光强度和第二反射光强度,确定被测对象在与光电探测器对应的探测深度下的血氧浓度变化量;其中,血氧浓度变化量包括含氧血红蛋白浓度变化量和脱氧血红蛋白浓度变化量。Based on the first reflected light intensity and the second reflected light intensity, determine the blood oxygen concentration variation of the measured object at the detection depth corresponding to the photodetector; wherein, the blood oxygen concentration variation includes oxygenated hemoglobin concentration variation and deoxygenation Change in hemoglobin concentration.
本发明实施例所提供的微血管的位置检测装置可执行本发明任意实施例所提供的微血管的位置检测方法,具备执行方法相应的功能模块和有益效果。The microvessel position detection device provided in the embodiments of the present invention can execute the microvessel position detection method provided in any embodiment of the present invention, and has corresponding functional modules and beneficial effects for executing the method.
实施例四Embodiment Four
图7为本发明实施例四所提供的一种微血管的位置检测系统的结构示意图。该系统可以为上述实施例提供的微血管的位置检测方法提供服务,可以配置上述实施例提供的微血管的位置检测装置。本发明实施例所示的微血管的位置检测系统中的部件、它们的连接和关系、以及它们的功能仅仅作为示例,并且不意在限制本文中描述的和/或者要求的本发明的实现。FIG. 7 is a schematic structural diagram of a microvessel position detection system provided by
如图7所示,该系统包括:信号采集阵列410和控制器420;其中,信号采集阵列410上设置有光源411和至少两个光电探测器412,光源411与各光电探测器412线性排列;控制器中包含至少一个处理器421以及与至少一个处理器421通信连接的存储器422。As shown in Figure 7, the system includes: a
其中,具体的,信号采集阵列410中包含安装板,至少两个光电探测器412可以均安装在光源411的一侧,也可以安装在光源411的两侧。其中,信号采集阵列410中两个组件之间的距离可以相同,也可以不同。两个组件可以为光源411与光电探测器412,或者光电探测器412与光电探测器412。Specifically, the
在一个可选实施例中,不同探测器与光源411之间的组件距离为d的整数倍。其中,用户可根据实际需求自定义d的参数值。这样设置的好处在于,规律的组件距离可以降低提供给医疗操作人员的血管位置的复杂度,从而使得医疗操作人员及时且准确的掌握微血管的血管位置。In an optional embodiment, the component distance between different detectors and the
在一个可选实施例中,信号采集阵列410中的光源411为光电二极管或激光光源411,当光源411为激光光源411时,系统还包括:激光器、光纤耦合器和光纤,激光器用于发射激光,光纤耦合器用于将接收到的激光输送到光纤中,光纤用于将激光传输到激光光源411中。In an optional embodiment, the
在一个可选实施例中,光纤的芯径不超过250μm,光电探测器412的感光面积小于0.25m2。示例性的,将光纤、光源411和光电探测器412封装在一起,构成前端的传感器。这样设置的好处在于,在医疗操作场景中,能够放置信号采集阵列410的空间范围通常会比较小,所以对信号采集阵列的体积要求比较高。本实施例在保证血管位置的准确性的同时,尽可能的缩小了信号采集阵列410的体积,可以满足医疗操作场景对信号采集阵列410的体积大小的要求。In an optional embodiment, the core diameter of the optical fiber is no more than 250 μm, and the photosensitive area of the
在一个可选实施例中,该系统还包括:前置放大器、模数转换器和数据处理模块,其中,前置放大器用于基于输入的第一反射光信号输出放大反射光信号,模数转换器用于基于输入的放大反射光信号输出数字反射光信号,数据处理模块用于基于输入的数字反射光信号输出血流搏动信号。In an optional embodiment, the system further includes: a preamplifier, an analog-to-digital converter, and a data processing module, wherein the preamplifier is used to output amplified reflected light signals based on the input first reflected light signal, and the analog-to-digital conversion The device is used to output a digital reflected light signal based on the input amplified reflected light signal, and the data processing module is used to output a blood flow pulsation signal based on the input digital reflected light signal.
其中,存储器422存储有可被至少一个处理器421执行的计算机程序,处理器421可以根据存储在只读存储器(ROM)中的计算机程序或者从存储单元加载到随机访问存储器(RAM)中的计算机程序,来执行各种适当的动作和处理。在RAM中,还可存储控制器420操作所需的各种程序和数据。处理器421、ROM以及RAM通过总线彼此相连。Wherein, the
处理器421可以是各种具有处理和计算能力的通用和/或专用处理组件。处理器421的一些示例包括但不限于中央处理单元(CPU)、图形处理单元(GPU)、各种专用的人工智能(AI)计算芯片、各种运行机器学习模型算法的处理器、数字信号处理器(DSP)、以及任何适当的处理器、控制器、微控制器等。处理器421执行上文所描述的各个方法和处理,例如微血管的位置检测方法。Processor 421 may be various general and/or special purpose processing components having processing and computing capabilities. Some examples of processor 421 include, but are not limited to, central processing units (CPUs), graphics processing units (GPUs), various specialized artificial intelligence (AI) computing chips, various processors that run machine learning model algorithms, digital signal processing processor (DSP), and any suitable processor, controller, microcontroller, etc. The processor 421 executes various methods and processes described above, for example, a method for detecting the position of microvessels.
本文中以上描述的系统和技术的各种实施方式可以在数字电子电路系统、集成电路系统、场可编程门阵列(FPGA)、专用集成电路(ASIC)、专用标准产品(ASSP)、芯片上系统的系统(SOC)、负载可编程逻辑设备(CPLD)、计算机硬件、固件、软件、和/或它们的组合中实现。这些各种实施方式可以包括:实施在一个或者多个计算机程序中,该一个或者多个计算机程序可在包括至少一个可编程处理器的可编程系统上执行和/或解释,该可编程处理器可以是专用或者通用可编程处理器,可以从存储系统、至少一个输入装置、和至少一个输出装置接收数据和指令,并且将数据和指令传输至该存储系统、该至少一个输入装置、和该至少一个输出装置。Various implementations of the systems and techniques described above herein can be implemented in digital electronic circuit systems, integrated circuit systems, field programmable gate arrays (FPGAs), application specific integrated circuits (ASICs), application specific standard products (ASSPs), systems on chips Implemented in a system of systems (SOC), load programmable logic device (CPLD), computer hardware, firmware, software, and/or combinations thereof. These various embodiments may include being implemented in one or more computer programs executable and/or interpreted on a programmable system including at least one programmable processor, the programmable processor Can be special-purpose or general-purpose programmable processor, can receive data and instruction from storage system, at least one input device, and at least one output device, and transmit data and instruction to this storage system, this at least one input device, and this at least one output device an output device.
图8为本发明实施例四所提供的一种微血管的位置检测系统的具体实例的结构示意图。具体的,图8示出的微血管的位置检测系统包括用于发射650nm波长激光的激光器、用于发射1064nm波长激光的激光器、发射镜、信号采集阵列、光纤耦合器、控制器、前置放大器、模数转换器、数据处理器和显示器。FIG. 8 is a schematic structural diagram of a specific example of a microvessel position detection system provided by
控制器可用于控制任一激光器的快门的开合。具体的,控制器响应于检测到触发指令,选择任一入射光波长的激光器器并控制该激光器的快门打开。激光经过两个反射镜的反射进入光线耦合器,而后的光纤中进行传播进入信号采集阵列中的激光光源,激光光源发出入射光照射被测对象。信号采集阵列中的至少两个光电探测器分别采集第一反射光信号,各第一反射光信号依次经过前置放大器、模数转换器和数据处理模块后,得到数据处理模块输出的至少两个血流搏动信号,并将各血流搏动信号在显示器上分别进行实时显示。The controller can be used to control the opening and closing of the shutter of any laser. Specifically, in response to detecting the trigger instruction, the controller selects a laser with any incident light wavelength and controls the shutter of the laser to open. The laser light enters the optical coupler after being reflected by two mirrors, and then propagates through the optical fiber and enters the laser light source in the signal acquisition array, and the laser light source emits incident light to irradiate the measured object. At least two photodetectors in the signal collection array collect the first reflected light signals respectively, and after each first reflected light signal passes through the preamplifier, the analog-to-digital converter and the data processing module in sequence, at least two output signals from the data processing module are obtained. blood flow pulsation signal, and each blood flow pulsation signal is displayed on the monitor in real time.
本实施例提供的微血管的位置检测系统,解决了传统的血管检测方法无法探明微血管位置的问题,为医疗操作提供了准确的微血管的位置信息,进而可以降低医源性血管损伤的发生率。The microvessel position detection system provided in this embodiment solves the problem that the traditional blood vessel detection method cannot ascertain the position of the microvessel, provides accurate microvessel position information for medical operations, and can reduce the incidence of iatrogenic vascular injury.
实施例五Embodiment five
本发明实施例五还提供了一种计算机可读存储介质,计算机可读存储介质存储有计算机指令,计算机指令用于使处理器执行一种微血管的位置检测方法,该方法包括:
响应于检测到触发指令,基于第一预设波长,控制信号采集阵列中的光源照射被测对象,并获取信号采集阵列中的至少两个光电探测器分别采集到的第一反射光信号;其中,信号采集阵列中的光源与各光电探测器线性排列;In response to detecting the trigger instruction, based on the first preset wavelength, control the light source in the signal collection array to irradiate the measured object, and obtain first reflected light signals respectively collected by at least two photodetectors in the signal collection array; wherein , the light source in the signal acquisition array is arranged linearly with each photodetector;
针对每个光电探测器,在光电探测器采集到的第一反射光信号为周期性信号的情况下,将光电探测器与光源之间的组件距离作为目标组件距离;For each photodetector, when the first reflected light signal collected by the photodetector is a periodic signal, the component distance between the photodetector and the light source is used as the target component distance;
基于目标组件距离以及光电探测器对应的探测深度,确定微血管的血管位置;其中,探测深度表征信号采集阵列相对于被测对象方向上的深度位置。Based on the distance of the target component and the detection depth corresponding to the photodetector, the blood vessel position of the microvessel is determined; wherein, the detection depth represents the depth position of the signal acquisition array relative to the direction of the measured object.
在本发明的上下文中,计算机可读存储介质可以是有形的介质,其可以包含或存储以供指令执行系统、装置或设备使用或与指令执行系统、装置或设备结合地使用的计算机程序。计算机可读存储介质可以包括但不限于电子的、磁性的、光学的、电磁的、红外的、或半导体系统、装置或设备,或者上述内容的任何合适组合。备选地,计算机可读存储介质可以是机器可读信号介质。机器可读存储介质的更具体示例会包括基于一个或多个线的电气连接、便携式计算机盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦除可编程只读存储器(EPROM或快闪存储器)、光纤、便捷式紧凑盘只读存储器(CD-ROM)、光学储存设备、磁储存设备、或上述内容的任何合适组合。In the context of the present invention, a computer readable storage medium may be a tangible medium that may contain or store a computer program for use by or in conjunction with an instruction execution system, apparatus or device. A computer readable storage medium may include, but is not limited to, electronic, magnetic, optical, electromagnetic, infrared, or semiconductor systems, apparatus, or devices, or any suitable combination of the foregoing. Alternatively, a computer readable storage medium may be a machine readable signal medium. More specific examples of machine-readable storage media would include one or more wire-based electrical connections, portable computer disks, hard disks, Random Access Memory (RAM), Read Only Memory (ROM), Erasable Programmable Read Only Memory (EPROM or flash memory), optical fiber, compact disk read only memory (CD-ROM), optical storage, magnetic storage, or any suitable combination of the foregoing.
为了提供与用户的交互,可以在电子设备上实施此处描述的系统和技术,该电子设备具有:用于向用户显示信息的显示装置(例如,CRT(阴极射线管)或者LCD(液晶显示器)监视器);以及键盘和指向装置(例如,鼠标或者轨迹球),用户可以通过该键盘和该指向装置来将输入提供给电子设备。其它种类的装置还可以用于提供与用户的交互;例如,提供给用户的反馈可以是任何形式的传感反馈(例如,视觉反馈、听觉反馈、或者触觉反馈);并且可以用任何形式(包括声输入、语音输入或者、触觉输入)来接收来自用户的输入。In order to provide interaction with the user, the systems and techniques described herein can be implemented on an electronic device having a display device (e.g., a CRT (cathode ray tube) or LCD (liquid crystal display)) for displaying information to the user. monitor); and a keyboard and pointing device (eg, a mouse or a trackball) through which the user can provide input to the electronic device. Other kinds of devices can also be used to provide interaction with the user; for example, the feedback provided to the user can be any form of sensory feedback (e.g., visual feedback, auditory feedback, or tactile feedback); and can be in any form (including Acoustic input, speech input or, tactile input) to receive input from the user.
可以将此处描述的系统和技术实施在包括后台部件的计算系统(例如,作为数据服务器)、或者包括中间件部件的计算系统(例如,应用服务器)、或者包括前端部件的计算系统(例如,具有图形用户界面或者网络浏览器的用户计算机,用户可以通过该图形用户界面或者该网络浏览器来与此处描述的系统和技术的实施方式交互)、或者包括这种后台部件、中间件部件、或者前端部件的任何组合的计算系统中。可以通过任何形式或者介质的数字数据通信(例如,通信网络)来将系统的部件相互连接。通信网络的示例包括:局域网(LAN)、广域网(WAN)、区块链网络和互联网。The systems and techniques described herein can be implemented in a computing system that includes back-end components (e.g., as a data server), or a computing system that includes middleware components (e.g., an application server), or a computing system that includes front-end components (e.g., as a a user computer having a graphical user interface or web browser through which a user can interact with embodiments of the systems and techniques described herein), or including such backend components, middleware components, Or any combination of front-end components in a computing system. The components of the system can be interconnected by any form or medium of digital data communication, eg, a communication network. Examples of communication networks include: local area networks (LANs), wide area networks (WANs), blockchain networks, and the Internet.
计算系统可以包括客户端和服务器。客户端和服务器一般远离彼此并且通常通过通信网络进行交互。通过在相应的计算机上运行并且彼此具有客户端-服务器关系的计算机程序来产生客户端和服务器的关系。服务器可以是云服务器,又称为云计算服务器或云主机,是云计算服务体系中的一项主机产品,以解决了传统物理主机与VPS服务中,存在的管理难度大,业务扩展性弱的缺陷。A computing system can include clients and servers. Clients and servers are generally remote from each other and typically interact through a communication network. The relationship of client and server arises by computer programs running on the respective computers and having a client-server relationship to each other. The server can be a cloud server, also known as a cloud computing server or a cloud host. It is a host product in the cloud computing service system to solve the problems of difficult management and weak business expansion in traditional physical hosts and VPS services. defect.
应该理解,可以使用上面所示的各种形式的流程,重新排序、增加或删除步骤。例如,本发明中记载的各步骤可以并行地执行也可以顺序地执行也可以不同的次序执行,只要能够实现本发明的技术方案所期望的结果,本文在此不进行限制。It should be understood that steps may be reordered, added or deleted using the various forms of flow shown above. For example, each step described in the present invention may be executed in parallel, sequentially, or in a different order, as long as the desired result of the technical solution of the present invention can be achieved, there is no limitation herein.
上述具体实施方式,并不构成对本发明保护范围的限制。本领域技术人员应该明白的是,根据设计要求和其他因素,可以进行各种修改、组合、子组合和替代。任何在本发明的精神和原则之内所作的修改、等同替换和改进等,均应包含在本发明保护范围之内。The above specific implementation methods do not constitute a limitation to the protection scope of the present invention. It should be apparent to those skilled in the art that various modifications, combinations, sub-combinations and substitutions may be made depending on design requirements and other factors. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present invention shall be included within the protection scope of the present invention.
Claims (10)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210883703.8A CN115251853A (en) | 2022-07-26 | 2022-07-26 | Method, device and system for detecting position of microvascular and storage medium |
PCT/CN2022/132432 WO2024021373A1 (en) | 2022-07-26 | 2022-11-17 | Microvascular position detection method, apparatus and system, and storage medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210883703.8A CN115251853A (en) | 2022-07-26 | 2022-07-26 | Method, device and system for detecting position of microvascular and storage medium |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115251853A true CN115251853A (en) | 2022-11-01 |
Family
ID=83770457
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210883703.8A Pending CN115251853A (en) | 2022-07-26 | 2022-07-26 | Method, device and system for detecting position of microvascular and storage medium |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115251853A (en) |
WO (1) | WO2024021373A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024021373A1 (en) * | 2022-07-26 | 2024-02-01 | 中国科学院深圳先进技术研究院 | Microvascular position detection method, apparatus and system, and storage medium |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060184050A1 (en) * | 2005-01-18 | 2006-08-17 | Kabushiki Kaisha Toshiba | Biomedical optical device and biomedical optical measuring method |
US20120277559A1 (en) * | 2009-12-08 | 2012-11-01 | Matthias Kohl-Bareis | Apparatus for Measuring Blood Parameters |
CN105120750A (en) * | 2013-03-14 | 2015-12-02 | 普罗菲尤萨股份有限公司 | Method and device for correcting optical signals |
CN109700436A (en) * | 2019-01-28 | 2019-05-03 | 广东唯仁医疗科技有限公司 | A kind of Dermal microvessel form and blood flow detection device |
CN109984727A (en) * | 2017-12-29 | 2019-07-09 | 三星电子株式会社 | Biotic component measuring device and biotic component measurement method |
WO2021153490A1 (en) * | 2020-01-28 | 2021-08-05 | メディカルフォトニクス株式会社 | Blood vessel detection device and method therefor |
CN114504315A (en) * | 2022-01-26 | 2022-05-17 | 中国科学院深圳先进技术研究院 | Muscle oxygen detection method, muscle oxygen recovery method and system |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106442406A (en) * | 2016-11-25 | 2017-02-22 | 佛山科学技术学院 | Device and method for detecting blood oxygen saturation based on dual-wavelength lasers |
EP3342337B1 (en) * | 2016-12-29 | 2020-11-04 | Nokia Technologies Oy | Sensor arrangement for a physiological measurement sensor |
CN109620134B (en) * | 2019-01-21 | 2020-05-22 | 浙江大学 | Microangiography method and system based on fiber array multi-channel parallel detection |
CN115251853A (en) * | 2022-07-26 | 2022-11-01 | 中国科学院深圳先进技术研究院 | Method, device and system for detecting position of microvascular and storage medium |
-
2022
- 2022-07-26 CN CN202210883703.8A patent/CN115251853A/en active Pending
- 2022-11-17 WO PCT/CN2022/132432 patent/WO2024021373A1/en unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060184050A1 (en) * | 2005-01-18 | 2006-08-17 | Kabushiki Kaisha Toshiba | Biomedical optical device and biomedical optical measuring method |
US20120277559A1 (en) * | 2009-12-08 | 2012-11-01 | Matthias Kohl-Bareis | Apparatus for Measuring Blood Parameters |
CN105120750A (en) * | 2013-03-14 | 2015-12-02 | 普罗菲尤萨股份有限公司 | Method and device for correcting optical signals |
CN109984727A (en) * | 2017-12-29 | 2019-07-09 | 三星电子株式会社 | Biotic component measuring device and biotic component measurement method |
CN109700436A (en) * | 2019-01-28 | 2019-05-03 | 广东唯仁医疗科技有限公司 | A kind of Dermal microvessel form and blood flow detection device |
WO2021153490A1 (en) * | 2020-01-28 | 2021-08-05 | メディカルフォトニクス株式会社 | Blood vessel detection device and method therefor |
CN114504315A (en) * | 2022-01-26 | 2022-05-17 | 中国科学院深圳先进技术研究院 | Muscle oxygen detection method, muscle oxygen recovery method and system |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024021373A1 (en) * | 2022-07-26 | 2024-02-01 | 中国科学院深圳先进技术研究院 | Microvascular position detection method, apparatus and system, and storage medium |
Also Published As
Publication number | Publication date |
---|---|
WO2024021373A1 (en) | 2024-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8199322B2 (en) | Apparatus and method for determining analyte concentrations | |
CN107788950B (en) | Blood flow imaging method and system based on self-adaptive threshold segmentation | |
WO2013005635A1 (en) | Biometric apparatus and image-generating method | |
US10405785B2 (en) | Determination of a concentration of an analyte in a subject | |
JP5527658B2 (en) | Scattering absorber measurement method and apparatus | |
WO2022262221A1 (en) | Method for measuring hematocrit, apparatus, terminal, and readable storage medium | |
WO2024021373A1 (en) | Microvascular position detection method, apparatus and system, and storage medium | |
JP3950243B2 (en) | Method and apparatus for measuring internal information of scattering medium | |
CN103393425B (en) | Real-time signal quality evaluation algorithm for near-infrared brain functional imaging system | |
JP5924658B2 (en) | Concentration determination apparatus, light absorption coefficient calculation method, equivalent scattering coefficient calculation method, concentration determination method, program for calculating light absorption coefficient, and program for calculating concentration | |
JP6358573B2 (en) | Operation method of breast measurement apparatus and breast measurement apparatus | |
US20190142277A1 (en) | Photoacoustic apparatus and object information acquiring method | |
JP2018122045A (en) | Information processing device and information processing method | |
JPWO2015129025A1 (en) | Measuring device, pulse oximeter, measuring method, computer program, and recording medium | |
CN108604377A (en) | Handle optical coherence tomography scanning figure | |
JP2005118076A (en) | Corneal opacity analysis apparatus | |
CN116584970A (en) | Ultrasonic imaging method, device, equipment, ultrasonic imaging system and medium | |
PAVLOV et al. | Calibration of the metrological characteristics of photoplethysmographic multispectral device for diagnosis the peripheral blood circulation | |
Wu et al. | Wavelet-ResNet: A deep residual network combined with wavelet transform for photoacoustic blood glucose detection | |
JP5171564B2 (en) | Acousto-optic tomography measuring apparatus and measuring method | |
WO2022147690A1 (en) | Elastography method and ultrasound imaging system | |
Bai et al. | Full-waveform hyperspectral LiDAR data decomposition via ranking central locations of natural target echoes (Rclonte) at different wavelengths | |
CN115844353A (en) | Imaging system and method for non-contact detection of pulse wave space time domain distribution and characteristics | |
US20160360973A1 (en) | Medical apparatus, phisiological parameter analyzing method and computer readable medium | |
Liu et al. | Recovering fetal signals transabdominally through interferometric near-infrared spectroscopy (iNIRS) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |