CN115247136A - Method for preparing pichia pastoris with surface display of fructosyl transferase - Google Patents

Method for preparing pichia pastoris with surface display of fructosyl transferase Download PDF

Info

Publication number
CN115247136A
CN115247136A CN202110473167.XA CN202110473167A CN115247136A CN 115247136 A CN115247136 A CN 115247136A CN 202110473167 A CN202110473167 A CN 202110473167A CN 115247136 A CN115247136 A CN 115247136A
Authority
CN
China
Prior art keywords
pichia pastoris
seq
sequence
expression vector
fructosyl transferase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110473167.XA
Other languages
Chinese (zh)
Inventor
朱佑民
于婷婷
张慧
郑业鸿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Guolong Biotechnology Co ltd
Original Assignee
Shanghai Guolong Biotechnology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Guolong Biotechnology Co ltd filed Critical Shanghai Guolong Biotechnology Co ltd
Priority to CN202110473167.XA priority Critical patent/CN115247136A/en
Publication of CN115247136A publication Critical patent/CN115247136A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1051Hexosyltransferases (2.4.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • C12N15/815Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts for yeasts other than Saccharomyces
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/33Fusion polypeptide fusions for targeting to specific cell types, e.g. tissue specific targeting, targeting of a bacterial subspecies

Abstract

The invention relates to the technical field of pichia pastoris, in particular to a method for preparing pichia pastoris with surface display of fructosyl transferase, which comprises the following steps of 1: synthesizing a fusion sequence of the improved fructosyltransferase gene and the pichia pastoris anchoring protein gene, wherein the sequence of the fused gene plus a carrier homologous arm is shown as SEQ ID No.4 or SEQ ID No. 7; step 2: constructing a pichia pastoris expression vector, and connecting or recombining the fusion sequence with the enzyme digestion linearized pichia pastoris expression vector to obtain a recombinant expression vector; and 3, step 3: transforming pichia pastoris, and transforming the constructed recombinant expression vector into pichia pastoris competent cells; and 4, step 4: screening multicopy positive clones, and screening out positive pichia pastoris containing multicopy fusion genes through high resistance; and 5: and (3) obtaining the pichia pastoris with the surface display of the fructosyl transferase after methanol induction expression. The pichia pastoris can be recycled, and the preparation cost is low.

Description

Method for preparing pichia pastoris with surface display of fructosyl transferase
Technical Field
The invention relates to the technical field of pichia pastoris, in particular to a method for preparing pichia pastoris with a surface displaying fructosyl transferase.
Background
The existing production method of fructo-oligosaccharide (FOS) is realized by catalyzing fructosyl transfer reaction between sucrose molecules by purified fructosyltransferase. Firstly, sucrose is decomposed by fructosyl transferase to generate fructosyl or glucose, then part of the fructosyl reacts with acceptor sucrose to generate fructo-oligosaccharide, and the fructosyl transferase from microorganisms has higher enzyme activity than that of the fructosyl transferase from plants, so that the production of the fructosyl transferase mainly depends on the expression of the microorganisms and then purification. When the fructo-oligosaccharide is produced by enzyme catalysis, if the fructo-oligosaccharide is intracellular enzyme, cells are required to be firstly crushed to release the intracellular enzyme, then the enzyme is separated and purified, the purified fructosyltransferase can be used for catalyzing sucrose to generate fructo-oligosaccharide, the separated and purified enzyme can also be used for catalyzing the sucrose to generate fructo-oligosaccharide after being fixed, the enzyme is inactivated after the catalysis is finished, and only the fructo-oligosaccharide of a target product is separated.
Therefore, in the prior enzyme catalysis technology, protein purification and immobilization operations are required, but enzyme separation and purification are complex steps and lose a part of enzyme, especially intracellular enzyme extraction is more complex, cells need to be broken first to release intracellular enzyme, immobilization operation needs a carrier, carrier cost and immobilization operation cost are increased, enzyme yield and activity in the enzyme immobilization process are lost, the separated and purified enzyme cannot be reused after use, and the cost is greatly increased due to the defects. In view of this, we propose a method for preparing pichia pastoris that displays fructosyl transferase on its surface.
Disclosure of Invention
The present invention is directed to a method for preparing pichia pastoris displaying fructosyl transferase on the surface, so as to solve the problems presented in the background art.
In order to achieve the purpose, the invention provides the following technical scheme:
a method for preparing pichia pastoris displaying fructosyl transferase on the surface, comprising the following steps:
step 1: synthesis of fusion sequences
Wherein, the fructosyltransferase gene sequence shown as SEQ ID No.1 and the pichia pastoris anchoring protein gene sequence shown as SEQ ID No.2 are fused through a connecting peptide sequence shown as SEQ ID No.3 to obtain a fusion sequence of the improved fructosyltransferase gene and the pichia pastoris anchoring protein gene, and the fused gene plus carrier homologous arm sequence is shown as SEQ ID No.4 or SEQ ID No. 7;
step 2: construction of Pichia expression vector
Connecting or recombining the fusion sequence with a digestion linearized pichia pastoris expression vector to obtain a recombinant expression vector;
and step 3: transformation of Pichia pastoris
Transforming the constructed recombinant expression vector into a pichia pastoris competent cell;
and 4, step 4: screening for multicopy positive clones
Screening out positive pichia pastoris containing multi-copy fusion genes through high resistance;
and 5: obtaining pichia pastoris displaying fructosyl transferase on surface
And (3) obtaining the pichia pastoris with the surface display of the fructosyl transferase after methanol induction expression.
Compared with the prior art, the invention has the beneficial effects that: the method for preparing the pichia pastoris with the surface display of the fructosyl transferase has perfect gene expression regulation and control, protein folding and secretion mechanisms, is an ideal eukaryotic expression host, and can be used for expressing functional proteins needing post-translational modification. The yeast is a unicellular organism, has larger cell volume and is convenient for screening and separating cells. The yeast has the characteristics of simple genetic operation, fast growth, safety and no toxicity, and is an excellent choice for producing food-grade products such as oligosaccharide. The anchoring protein can be connected to a glucan skeleton of the inner layer of the yeast cell wall through a covalent bond, so that the foreign protein expressed by fusion is firmly displayed on the surface of the yeast cell. The displayed protein can tolerate the extraction of SDS;
meanwhile, the pichia pastoris with fructosyl transferase displayed on the surface and capable of being reused can directly catalyze sucrose to generate fructo-oligosaccharide without enzyme separation, purification and immobilization operation steps, and can be reused.
Detailed Description
The technical solutions in the embodiments of the present invention will be clearly and completely described below, and it is obvious that the described embodiments are only a part of the embodiments of the present invention, and not all embodiments. All other embodiments, which can be derived by a person skilled in the art from the embodiments given herein without making any creative effort, shall fall within the protection scope of the present invention.
Example 1
A method for preparing Pichia pastoris with surface display of fructosyl transferase, comprising the steps of:
(1) Optimizing fructosyltransferase gene sequence as SEQ ID No.1;
(2) Optimizing pichia pastoris anchoring protein GCW21 gene sequence as SEQ ID No.2;
(3) Optimizing a Linker sequence of the connecting peptide, such as SEQ ID No.3;
(4) Chemically synthesizing a fusion sequence of the improved fructosyltransferase gene shown in SEQ ID No.4 and a pichia pastoris anchoring protein gene, wherein two ends of the fusion sequence comprise homologous arms at two sides of an EcoRI enzyme cutting site of a pichia pastoris expression vector pPIC 9K;
(5) The vector pPIC9K is subjected to single enzyme digestion by EcoRI, and the enzyme digestion system is as follows:
plasmids 48μL
EcoRI 6μL
10X buffer 6μL
60μL
(6) Recombining the fusion sequence with the pPIC9K vector after enzyme digestion to obtain a recombinant expression vector, reacting for 1h at 50 ℃, wherein a recombinant system is as follows:
linearized vector 5μL
Fusion fragment 10μL
2X ClonExpress Mix 25μL
ddH2O to 50μL
(7) Transforming the recombinant product into an escherichia coli Top10 competent cell;
(8) Plates coated with ampicillin;
(9) Designing a bacteria detection primer: the upstream primer PF1 is CGGCAGCATGTCTTTACTTGA, and the downstream primer PR1 is GCATCTGCATCTACCAA;
(10) Detecting positive clones by PCR;
(11) Carrying out amplification culture and extracting plasmids by using a plasmid miniextraction kit;
(12) The plasmid was linearized by digestion with SacI as follows:
plasmids 48μL
SacI 6μL
10X buffer 6μL
60μL
(13) Running 1% agarose gel to confirm complete linearization of recombinant plasmid;
(14) Electrically transforming the linearized plasmid into a pichia competent cell, carrying out shake cultivation for 1h under the condition of 200-260rpm, and centrifuging at 5000rpm for 5min to collect thalli;
(15) Coating the thallus on His defect flat plate, culturing for 2-3 days, and selecting positive single colony;
(16) Screening pichia pastoris containing multi-copy fusion genes through a plate of 4mg/mLG 418;
(17) Transferring the pichia pastoris displaying fructosyltransferase into a 50mL centrifuge tube containing a 10mL BMGY culture base band air-permeable plug, and performing shake culture at 30 ℃ and 200-260rpm until OD600=1-7;
(18) Centrifuging at 5000rpm for 5min to collect thallus;
(19) The thalli is re-suspended in a BMM culture medium, shaking culture is carried out under the condition of 200-260rpm, 0.5 percent methanol is added every 24 hours for induction, and the culture lasts for 5-7 days;
(20) Centrifuging at 5000rpm for 5min to collect thallus and obtain Pichia pastoris P.pastoris FTase-Linker-GCW21 with surface display of fructosyl transferase;
(21) The thalli is directly used for catalyzing sucrose to produce fructo-oligosaccharide.
Example 2
A method for preparing Pichia pastoris that displays fructosyl transferase on the surface, comprising the steps of:
(1) Optimizing the sequences shown as SEQ ID No.5 and SEQ ID No. 6. The SEQ ID No.5 sequence comprises a fructosyltransferase gene sequence and a part of a Linker peptide Linker sequence. The SEQ ID No.6 sequence comprises a connecting peptide Linker sequence and an optimized anchoring protein GCW21 sequence. The left end of the SEQ ID No.5 sequence and the right end of the SEQ ID No.6 sequence comprise a vector homology arm;
(2) Chemically synthesizing sequences shown as SEQ ID No.5 and SEQ ID No. 6;
(3) Designing primers at the beginning position of the SEQ ID No.5 sequence and the end position of the SEQ ID No.6 sequence: upstream primer PF2 is GAGAGGCTGAAGCTTACGTA, downstream primer PR2 is TGTCTAAGGCGAATTAATTC;
(4) Synthesizing a fusion sequence shown as SEQ ID No.7 by using an overlapping PCR method;
(5) The vector pPIC9K and the fusion sequence shown in SEQ ID No.7 are subjected to EcoRI and Not1 double enzyme digestion, and the enzyme digestion system is as follows:
plasmids 42μL
EcoRI 6μL
Not1 6μL
10X buffer 6μL
60μL
(6) Connecting the fused sequence after enzyme digestion with a pPIC9K vector to obtain a recombinant expression vector, wherein the connecting system is as follows:
linearized vector 5μL
Fusion fragment 10μL
T4 ligase 5μL
ddH2O to 50μL
(7) Transforming the ligation product into an escherichia coli Top10 competent cell;
(8) Plates coated with ampicillin;
(9) Designing a bacteria detection primer: an upstream primer PF1 is CGGCAGCATGTCTTTACTTGA, and a downstream primer PR1 is GCATCTGCATCTACCAA;
(10) Detecting positive clones by PCR;
(11) Carrying out amplification culture and extracting plasmids by using a plasmid miniextraction kit;
(12) The plasmid was linearized by digestion with SacI as follows:
plasmids 48μL
SacI 6μL
10X buffer 6μL
60μL
(13) Running 1% agarose gel to confirm complete linearization of the recombinant plasmid;
(14) Electrically transforming the linearized plasmid into a pichia pastoris competent cell, carrying out shake cultivation for 1h under the condition of 200-260rpm, and centrifuging at 5000rpm for 5min to collect thalli;
(15) Coating the thalli on a His defect flat plate for culturing for 2-3 days, and selecting a positive single colony;
(16) The pichia pastoris containing the multi-copy fusion gene is screened out by a plate of G418 with the concentration of 4 mg/mL;
(17) Transferring the pichia pastoris containing the multi-copy fusion gene into a 50mL centrifuge tube containing a 10mL BMGY culture baseband vent plug, and performing shake culture at 30 ℃ and 200-260rpm until OD600=1-7;
(18) Centrifuging at 5000rpm for 5min to collect thallus;
(19) The thalli is resuspended in BMM culture medium, shake cultivation is carried out under the condition of 200-260rpm, 0.5 percent methanol is added every 24 hours for induction, and cultivation is carried out for 5-7 days;
(20) Centrifuging at 5000rpm for 5min to collect thallus and obtain Pichia pastoris P.pastoris FTase-Linker-GCW21 with surface display of fructosyl transferase;
(21) The thallus is directly used for catalyzing sucrose to produce fructo-oligosaccharide.
Example 3
A method for preparing Pichia pastoris with surface display of fructosyl transferase, comprising the steps of:
(1) And optimizing the sequence shown as SEQ ID No.7, wherein the sequence comprises a fructosyltransferase gene sequence, a connecting peptide Linker sequence and an anchoring protein GCW21 sequence. Both ends of the SEQ ID No.7 sequence contain vector homology arms;
(2) Splitting the SEQ ID No.7 sequence into a plurality of long primers with positive and negative intervals, wherein each primer is 50-70nt long;
(3) A series of forward and reverse spaced primers are synthesized as PCR templates, and adjacent forward and reverse spaced primers have an overlapping region. Designing an actual primer at the beginning position of the SEQ ID No.5 sequence and the end position of the SEQ ID No.6 sequence: upstream primer PF2 is GAGAGGCTGAAGCTTACGTA, downstream primer PR2 is TGTCTAAGGCGAATTAATTC;
(4) Synthesizing a fusion sequence shown in SEQ ID No.7 by using an overlapping PCR method;
(5) The vector pPIC9K is subjected to double digestion by EcoRI and Not1, and the digestion system is as follows:
plasmids 42μL
EcoRI 6μL
Not1 6μL
10X buffer 6μL
60μL
(6) Recombining the vector sequence after enzyme digestion and the synthesized fusion sequence shown in SEQ ID No.7 to obtain a recombinant expression vector, wherein the recombinant system is as follows:
Figure RE-GDA0003507881260000071
Figure RE-GDA0003507881260000081
(7) Transforming the recombinant product into an escherichia coli Top10 competent cell;
(8) Plates coated with ampicillin;
(9) Designing a bacteria detection primer: the upstream primer PF1 is CGGCAGCATGTCTTTACTTGA, and the downstream primer PR1 is GCATCTGCATCTACCAA;
(10) Detecting positive clones by PCR;
(11) Carrying out amplification culture and extracting plasmids by using a plasmid miniextraction kit;
(12) The plasmid was linearized by digestion with SacI as follows:
plasmids 48μL
SacI 6μL
10X buffer 6μL
60μL
(13) Running 1% agarose gel to confirm complete linearization of recombinant plasmid;
(14) Electrically transforming the linearized plasmid into a pichia pastoris competent cell, carrying out shake cultivation for 1h under the condition of 200-260rpm, and centrifuging at 5000rpm for 5min to collect thalli;
(15) Coating the thallus on His defect flat plate, culturing for 2-3 days, and selecting positive single colony;
(16) The pichia pastoris containing the multi-copy fusion gene is screened out through a plate of G418 with the concentration of 4 mg/mL;
(17) Transferring the pichia pastoris displaying fructosyltransferase into a 50mL centrifuge tube containing a 10mL BMGY culture base band air-permeable plug, and performing shake culture at 30 ℃ and 200-260rpm until OD600=1-7;
(18) Centrifuging at 5000rpm for 5min to collect thallus;
(19) The thalli is re-suspended in a BMM culture medium, shaking culture is carried out under the condition of 200-260rpm, 0.5 percent methanol is added every 24 hours for induction, and the culture lasts for 5-7 days;
(20) Centrifuging at 5000rpm for 5min to collect thallus and obtain Pichia pastoris P.pastoris FTase-Linker-GCW21 with fructosyl transferase displayed on the surface;
(21) The thallus is directly used for catalyzing sucrose to produce fructo-oligosaccharide.
The experimental results show that the method can simplify the preparation process of the fructo-oligosaccharide, and omits the complicated steps of cell disruption and enzyme separation and purification. Nor expensive enzyme immobilization equipment. In addition, the pichia pastoris with the fructosyl transferase displayed on the surface, which is provided by the method, can be recycled, so that the cost is greatly saved. Therefore, the invention can be used for the industrial preparation of fructo-oligosaccharide.
Sequence listing
SEQ ID No.1
ATGTATATCAAACCATTCATCCTACCTGCCCTTGCGGCGGTTGCGCAAGCTGCCAGCTATTC GGGAGACCTTCGGCCTCAAACTCACTCCTCTCCACCTTCCAATTTCACGAACGATCCAAGCGGTCT CTTCTATGATAGCAAGAGGGGCGTGTATCACTTATACTATCAGTATAAGCCTACAGCGACAGTCTC TGGGAATCAGCACTGGGGTCATGCCACCAGCCCTGATCTATCGCACTGGACGAATCAACGTATCGC CCTCGCTGGGGATAAGCCAGAGGAGTATATCTTCTCAGGCTCTGCTGTCGTGGACAGCAACAACAG CACAGCAATATTTCCGGAACAGGACGATGGCGTCATAGCCATCTACACAGTAAATACCCCGACACT GGAAACACATCTCATTCCTTCTTCTAGCAATGGTGGATACACTTTCACCAAGTATGAGAACAACGA GGTCATCGACATTGGCTCAAAGACGTTCCGTGACCCGGAGGTGGTGCGGCATCCTGAAACTACGCA ATGGGTGATGACACTTGCCTATGCGGAGAACTTGGTCATCCGATTTTATACCTCGCCCAATCTCAA AGACTGGTCGACTCGGACGTATATCACGCTGGAACGGCAGACGGGCGACCAATTCGAATGCCCCAA CTTGGTCAAGTTTTCGGTGACTCACGCTGAGTCTGAGGAGACGTGCATGTACGTGCTTTTCCTTTC CGTGTCCACTGGCGCTCCTCTTGGAGGTTCGCGAACACTTTATGTGGACGGCGATTTCTACGGCAG CCATTACACCTCTGAAGTTGCTCAGAAGATACTATTTGAATTCTCCAAGTACAACTATCCGGCTCA GTGCTATTCTGGTATTCCTGAGAACGAGCCTCCTGTCTCCATCGGGTGGCCTAGTACGTGCCATTA CACGGAAGAAGTCCCAACTGGCCCGCTTGAAGGCTGGAGGAGCGCCATGACTTTACCTAGAACGCA GACCATAAGCAACGTCAACGGAGTCTGGACTGTGACTCACAGCCCGTTTGAAAGCCCATCGGATCC TAAGGGCAGACAGCTTGTGAGCAAGAGTGTCCACTCTGGGGATGTGAAGACGAAGTTATCCGGGGT CCCATCGAATGCGATATATTTCAATGTGACACTGAAGGGCATCGATGTTACCAGGTCTACCGGACG CCTAAACTTCAGCTTTTCCTCCTCTGTATCGGGTGAATTCCTCGACGGAGGGGTGTCTCTGGATGA TAGTTCTCTCTGGATGACCAGAGCTGGATCCCATCTATTCACGTTTGAAGCTAGTGGAAATTATAC ATCATCTTCTACAACATCTATCACCCCCTTTGGCAACAGCATATTCACCTTCTCGGGCGTTATTGA CCGCTCTGTGTTTGAAGTCCTCATTAGTGAGGCCGGGATCCAAAGCGGAACCATGACTTTCTTCCC AAGCTCCCCACTCGATACCTTGGCTCTTACCGGAGAGGATCTCAGAGATGGGCCTAGCGTTAGTGT TAAGGCTTGGGGCCTTCAGTGCCGCAGGAATCGAACAACAGCCAGTAAGAGGTTCCGCGCC
SEQ ID No.2
ATGTCTTACTTGAAAATTTCCGCTTTCCTTTCAGTTTTGTCCGTCGCCTTGGCCGACCAACG AATCTCTGTCACCGTTGTTGGTGATGGTATCAACACAGGACTGAGATCCGGAGGGTCGCATTTTGA GGCTGGACCAAATGCTGCTGGTACCCCCTTAGATTTGATCCTGTATGAGCCGTCTGGTTTCTTGGT AGATGCAGCAGATGCTTCCAAGTACGTTGGTTGGGATGTTGCAGCTGGCACTTCTTTGACTTCTTT GCCACCAGACCAAGGAGGCAAAGATTGGGGAATCGTTGCCGGTAACCTCAGATTCAACGTTGGAGG TACTACATTCTATGCTTGTGAGACTAGGACCGGTGTTTGGGAAGTAAAGAGTTACGAAGCTAGTGG ATGCAACGCTGTGGTGCTTTCCGTAGCTAGTCACCCAGTTCCTTCTTCCAGTTCTTCCAGTTCTTC CCATGCCCCAACTTCCTCTGTTCCATCTACTTCGTCTCATGTGAGCCCAACTACCACTCAACCTCC TCACACAACCAGTTCTCACACCATCCACACATCAACTACCTTGACGACATCAGGTAGGAATGACTC GAACCACTCCAACCATACCATCCCACCAGTTCCAACCGGTGCCGCTATGGGAGTCTCTAGCAACTA TGGTTTGTTGGTTGCAGCTGGAATTGCCGCCGCTGCTTTGTTATAA
SEQ ID No.3
GGCGGCGGCGGCAGCGGCGGCGGCGGCAGCAGCAGCGGCGGCGGCGGCAGC
SEQ ID No.4
GAGAGGCTGAAGCTTACGTAGAATTCATGTATATCAAACCATTCATCCTACCTGCCCTTGCG GCGGTTGCGCAAGCTGCCAGCTATTCGGGAGACCTTCGGCCTCAAACTCACTCCTCTCCACCTTCC AATTTCACGAACGATCCAAGCGGTCTCTTCTATGATAGCAAGAGGGGCGTGTATCACTTATACTAT CAGTATAAGCCTACAGCGACAGTCTCTGGGAATCAGCACTGGGGTCATGCCACCAGCCCTGATCTA TCGCACTGGACGAATCAACGTATCGCCCTCGCTGGGGATAAGCCAGAGGAGTATATCTTCTCAGGC TCTGCTGTCGTGGACAGCAACAACAGCACAGCAATATTTCCGGAACAGGACGATGGCGTCATAGCC ATCTACACAGTAAATACCCCGACACTGGAAACACATCTCATTCCTTCTTCTAGCAATGGTGGATAC ACTTTCACCAAGTATGAGAACAACGAGGTCATCGACATTGGCTCAAAGACGTTCCGTGACCCGGAG GTGGTGCGGCATCCTGAAACTACGCAATGGGTGATGACACTTGCCTATGCGGAGAACTTGGTCATC CGATTTTATACCTCGCCCAATCTCAAAGACTGGTCGACTCGGACGTATATCACGCTGGAACGGCAG ACGGGCGACCAATTCGAATGCCCCAACTTGGTCAAGTTTTCGGTGACTCACGCTGAGTCTGAGGAG ACGTGCATGTACGTGCTTTTCCTTTCCGTGTCCACTGGCGCTCCTCTTGGAGGTTCGCGAACACTT TATGTGGACGGCGATTTCTACGGCAGCCATTACACCTCTGAAGTTGCTCAGAAGATACTATTTGAA TTCTCCAAGTACAACTATCCGGCTCAGTGCTATTCTGGTATTCCTGAGAACGAGCCTCCTGTCTCC ATCGGGTGGCCTAGTACGTGCCATTACACGGAAGAAGTCCCAACTGGCCCGCTTGAAGGCTGGAGG AGCGCCATGACTTTACCTAGAACGCAGACCATAAGCAACGTCAACGGAGTCTGGACTGTGACTCAC AGCCCGTTTGAAAGCCCATCGGATCCTAAGGGCAGACAGCTTGTGAGCAAGAGTGTCCACTCTGGG GATGTGAAGACGAAGTTATCCGGGGTCCCATCGAATGCGATATATTTCAATGTGACACTGAAGGGC ATCGATGTTACCAGGTCTACCGGACGCCTAAACTTCAGCTTTTCCTCCTCTGTATCGGGTGAATTC CTCGACGGAGGGGTGTCTCTGGATGATAGTTCTCTCTGGATGACCAGAGCTGGATCCCATCTATTC ACGTTTGAAGCTAGTGGAAATTATACATCATCTTCTACAACATCTATCACCCCCTTTGGCAACAGC ATATTCACCTTCTCGGGCGTTATTGACCGCTCTGTGTTTGAAGTCCTCATTAGTGAGGCCGGGATC CAAAGCGGAACCATGACTTTCTTCCCAAGCTCCCCACTCGATACCTTGGCTCTTACCGGAGAGGAT CTCAGAGATGGGCCTAGCGTTAGTGTTAAGGCTTGGGGCCTTCAGTGCCGCAGGAATCGAACAACA GCCAGTAAGAGGTTCCGCGCCGGCGGCGGCGGCAGCGGCGGCGGCGGCAGCGGCGGCGGCGGCAGC ATGTCTTACTTGAAAATTTCCGCTTTCCTTTCAGTTTTGTCCGTCGCCTTGGCCGACCAACGAATC TCTGTCACCGTTGTTGGTGATGGTATCAACACAGGACTGAGATCCGGAGGGTCGCATTTTGAGGCT GGACCAAATGCTGCTGGTACCCCCTTAGATTTGATCCTGTATGAGCCGTCTGGTTTCTTGGTAGAT GCAGCAGATGCTTCCAAGTACGTTGGTTGGGATGTTGCAGCTGGCACTTCTTTGACTTCTTTGCCA CCAGACCAAGGAGGCAAAGATTGGGGAATCGTTGCCGGTAACCTCAGATTCAACGTTGGAGGTACT ACATTCTATGCTTGTGAGACTAGGACCGGTGTTTGGGAAGTAAAGAGTTACGAAGCTAGTGGATGC AACGCTGTGGTGCTTTCCGTAGCTAGTCACCCAGTTCCTTCTTCCAGTTCTTCCAGTTCTTCCCAT GCCCCAACTTCCTCTGTTCCATCTACTTCGTCTCATGTGAGCCCAACTACCACTCAACCTCCTCAC ACAACCAGTTCTCACACCATCCACACATCAACTACCTTGACGACATCAGGTAGGAATGACTCGAAC CACTCCAACCATACCATCCCACCAGTTCCAACCGGTGCCGCTATGGGAGTCTCTAGCAACTATGGT TTGTTGGTTGCAGCTGGAATTGCCGCCGCTGCTTTGTTATAACCTAGGGCGGCCGCGAATTA
SEQ ID No.5
GAGAGGCTGAAGCTTACGTAGAATTCATGTATATCAAACCATTCATCCTACCTGCCCTTGCG GCGGTTGCGCAAGCTGCCAGCTATTCGGGAGACCTTCGGCCTCAAACTCACTCCTCTCCACCTTCC AATTTCACGAACGATCCAAGCGGTCTCTTCTATGATAGCAAGAGGGGCGTGTATCACTTATACTAT CAGTATAAGCCTACAGCGACAGTCTCTGGGAATCAGCACTGGGGTCATGCCACCAGCCCTGATCTA TCGCACTGGACGAATCAACGTATCGCCCTCGCTGGGGATAAGCCAGAGGAGTATATCTTCTCAGGC TCTGCTGTCGTGGACAGCAACAACAGCACAGCAATATTTCCGGAACAGGACGATGGCGTCATAGCC ATCTACACAGTAAATACCCCGACACTGGAAACACATCTCATTCCTTCTTCTAGCAATGGTGGATAC ACTTTCACCAAGTATGAGAACAACGAGGTCATCGACATTGGCTCAAAGACGTTCCGTGACCCGGAG GTGGTGCGGCATCCTGAAACTACGCAATGGGTGATGACACTTGCCTATGCGGAGAACTTGGTCATC CGATTTTATACCTCGCCCAATCTCAAAGACTGGTCGACTCGGACGTATATCACGCTGGAACGGCAG ACGGGCGACCAATTCGAATGCCCCAACTTGGTCAAGTTTTCGGTGACTCACGCTGAGTCTGAGGAG ACGTGCATGTACGTGCTTTTCCTTTCCGTGTCCACTGGCGCTCCTCTTGGAGGTTCGCGAACACTT TATGTGGACGGCGATTTCTACGGCAGCCATTACACCTCTGAAGTTGCTCAGAAGATACTATTTGAA TTCTCCAAGTACAACTATCCGGCTCAGTGCTATTCTGGTATTCCTGAGAACGAGCCTCCTGTCTCC ATCGGGTGGCCTAGTACGTGCCATTACACGGAAGAAGTCCCAACTGGCCCGCTTGAAGGCTGGAGG AGCGCCATGACTTTACCTAGAACGCAGACCATAAGCAACGTCAACGGAGTCTGGACTGTGACTCAC AGCCCGTTTGAAAGCCCATCGGATCCTAAGGGCAGACAGCTTGTGAGCAAGAGTGTCCACTCTGGG GATGTGAAGACGAAGTTATCCGGGGTCCCATCGAATGCGATATATTTCAATGTGACACTGAAGGGC ATCGATGTTACCAGGTCTACCGGACGCCTAAACTTCAGCTTTTCCTCCTCTGTATCGGGTGAATTC CTCGACGGAGGGGTGTCTCTGGATGATAGTTCTCTCTGGATGACCAGAGCTGGATCCCATCTATTC ACGTTTGAAGCTAGTGGAAATTATACATCATCTTCTACAACATCTATCACCCCCTTTGGCAACAGC ATATTCACCTTCTCGGGCGTTATTGACCGCTCTGTGTTTGAAGTCCTCATTAGTGAGGCCGGGATC CAAAGCGGAACCATGACTTTCTTCCCAAGCTCCCCACTCGATACCTTGGCTCTTACCGGAGAGGAT CTCAGAGATGGGCCTAGCGTTAGTGTTAAGGCTTGGGGCCTTCAGTGCCGCAGGAATCGAACAACA GCCAGTAAGAGGTTCCGCGCCGGCGGCGGCGGCAGCGGCGGCGGCGGCAGCAGC
SEQ ID No.6
GCGGCGGCGGCGGCAGCAGCAGCGGCGGCGGCGGCAGCATGTCTTACTTGAAAATTTCCGCT TTCCTTTCAGTTTTGTCCGTCGCCTTGGCCGACCAACGAATCTCTGTCACCGTTGTTGGTGATGGT ATCAACACAGGACTGAGATCCGGAGGGTCGCATTTTGAGGCTGGACCAAATGCTGCTGGTACCCCC TTAGATTTGATCCTGTATGAGCCGTCTGGTTTCTTGGTAGATGCAGCAGATGCTTCCAAGTACGTT GGTTGGGATGTTGCAGCTGGCACTTCTTTGACTTCTTTGCCACCAGACCAAGGAGGCAAAGATTGG GGAATCGTTGCCGGTAACCTCAGATTCAACGTTGGAGGTACTACATTCTATGCTTGTGAGACTAGG ACCGGTGTTTGGGAAGTAAAGAGTTACGAAGCTAGTGGATGCAACGCTGTGGTGCTTTCCGTAGCT AGTCACCCAGTTCCTTCTTCCAGTTCTTCCAGTTCTTCCCATGCCCCAACTTCCTCTGTTCCATCT ACTTCGTCTCATGTGAGCCCAACTACCACTCAACCTCCTCACACAACCAGTTCTCACACCATCCAC ACATCAACTACCTTGACGACATCAGGTAGGAATGACTCGAACCACTCCAACCATACCATCCCACCA GTTCCAACCGGTGCCGCTATGGGAGTCTCTAGCAACTATGGTTTGTTGGTTGCAGCTGGAATTGCC GCCGCTGCTTTGTTATAAGCGGCCGCGAATTAATTCGCCTTAGACA
SEQ ID No.7
GAGAGGCTGAAGCTTACGTAGAATTCATGTATATCAAACCATTCATCCTACCTGCCCTTGCG GCGGTTGCGCAAGCTGCCAGCTATTCGGGAGACCTTCGGCCTCAAACTCACTCCTCTCCACCTTCC AATTTCACGAACGATCCAAGCGGTCTCTTCTATGATAGCAAGAGGGGCGTGTATCACTTATACTAT CAGTATAAGCCTACAGCGACAGTCTCTGGGAATCAGCACTGGGGTCATGCCACCAGCCCTGATCTA TCGCACTGGACGAATCAACGTATCGCCCTCGCTGGGGATAAGCCAGAGGAGTATATCTTCTCAGGC TCTGCTGTCGTGGACAGCAACAACAGCACAGCAATATTTCCGGAACAGGACGATGGCGTCATAGCC ATCTACACAGTAAATACCCCGACACTGGAAACACATCTCATTCCTTCTTCTAGCAATGGTGGATAC ACTTTCACCAAGTATGAGAACAACGAGGTCATCGACATTGGCTCAAAGACGTTCCGTGACCCGGAG GTGGTGCGGCATCCTGAAACTACGCAATGGGTGATGACACTTGCCTATGCGGAGAACTTGGTCATC CGATTTTATACCTCGCCCAATCTCAAAGACTGGTCGACTCGGACGTATATCACGCTGGAACGGCAG ACGGGCGACCAATTCGAATGCCCCAACTTGGTCAAGTTTTCGGTGACTCACGCTGAGTCTGAGGAG ACGTGCATGTACGTGCTTTTCCTTTCCGTGTCCACTGGCGCTCCTCTTGGAGGTTCGCGAACACTT TATGTGGACGGCGATTTCTACGGCAGCCATTACACCTCTGAAGTTGCTCAGAAGATACTATTTGAA TTCTCCAAGTACAACTATCCGGCTCAGTGCTATTCTGGTATTCCTGAGAACGAGCCTCCTGTCTCC ATCGGGTGGCCTAGTACGTGCCATTACACGGAAGAAGTCCCAACTGGCCCGCTTGAAGGCTGGAGG AGCGCCATGACTTTACCTAGAACGCAGACCATAAGCAACGTCAACGGAGTCTGGACTGTGACTCAC AGCCCGTTTGAAAGCCCATCGGATCCTAAGGGCAGACAGCTTGTGAGCAAGAGTGTCCACTCTGGG GATGTGAAGACGAAGTTATCCGGGGTCCCATCGAATGCGATATATTTCAATGTGACACTGAAGGGC ATCGATGTTACCAGGTCTACCGGACGCCTAAACTTCAGCTTTTCCTCCTCTGTATCGGGTGAATTC CTCGACGGAGGGGTGTCTCTGGATGATAGTTCTCTCTGGATGACCAGAGCTGGATCCCATCTATTC ACGTTTGAAGCTAGTGGAAATTATACATCATCTTCTACAACATCTATCACCCCCTTTGGCAACAGC ATATTCACCTTCTCGGGCGTTATTGACCGCTCTGTGTTTGAAGTCCTCATTAGTGAGGCCGGGATC CAAAGCGGAACCATGACTTTCTTCCCAAGCTCCCCACTCGATACCTTGGCTCTTACCGGAGAGGAT CTCAGAGATGGGCCTAGCGTTAGTGTTAAGGCTTGGGGCCTTCAGTGCCGCAGGAATCGAACAACA GCCAGTAAGAGGTTCCGCGCCGGCGGCGGCGGCAGCGGCGGCGGCGGCAGCGGCGGCGGCGGCAGC ATGTCTTACTTGAAAATTTCCGCTTTCCTTTCAGTTTTGTCCGTCGCCTTGGCCGACCAACGAATC TCTGTCACCGTTGTTGGTGATGGTATCAACACAGGACTGAGATCCGGAGGGTCGCATTTTGAGGCT GGACCAAATGCTGCTGGTACCCCCTTAGATTTGATCCTGTATGAGCCGTCTGGTTTCTTGGTAGAT GCAGCAGATGCTTCCAAGTACGTTGGTTGGGATGTTGCAGCTGGCACTTCTTTGACTTCTTTGCCA CCAGACCAAGGAGGCAAAGATTGGGGAATCGTTGCCGGTAACCTCAGATTCAACGTTGGAGGTACT ACATTCTATGCTTGTGAGACTAGGACCGGTGTTTGGGAAGTAAAGAGTTACGAAGCTAGTGGATGC AACGCTGTGGTGCTTTCCGTAGCTAGTCACCCAGTTCCTTCTTCCAGTTCTTCCAGTTCTTCCCAT GCCCCAACTTCCTCTGTTCCATCTACTTCGTCTCATGTGAGCCCAACTACCACTCAACCTCCTCAC ACAACCAGTTCTCACACCATCCACACATCAACTACCTTGACGACATCAGGTAGGAATGACTCGAAC CACTCCAACCATACCATCCCACCAGTTCCAACCGGTGCCGCTATGGGAGTCTCTAGCAACTATGGT TTGTTGGTTGCAGCTGGAATTGCCGCCGCTGCTTTGTTATAAGCGGCCGCGAATTAATTCGCCTTA GACA
SEQUENCE LISTING
<110> Shanghai Dragon Biotechnology Co., ltd
<120> a method for preparing pichia pastoris displaying fructosyl transferase on surface
<130> 2021
<160> 7
<170> PatentIn version 3.3
<210> 1
<211> 1575
<212> DNA
<213> Artificial sequence
<400> 1
atgtatatca aaccattcat cctacctgcc cttgcggcgg ttgcgcaagc tgccagctat 60
tcgggagacc ttcggcctca aactcactcc tctccacctt ccaatttcac gaacgatcca 120
agcggtctct tctatgatag caagaggggc gtgtatcact tatactatca gtataagcct 180
acagcgacag tctctgggaa tcagcactgg ggtcatgcca ccagccctga tctatcgcac 240
tggacgaatc aacgtatcgc cctcgctggg gataagccag aggagtatat cttctcaggc 300
tctgctgtcg tggacagcaa caacagcaca gcaatatttc cggaacagga cgatggcgtc 360
atagccatct acacagtaaa taccccgaca ctggaaacac atctcattcc ttcttctagc 420
aatggtggat acactttcac caagtatgag aacaacgagg tcatcgacat tggctcaaag 480
acgttccgtg acccggaggt ggtgcggcat cctgaaacta cgcaatgggt gatgacactt 540
gcctatgcgg agaacttggt catccgattt tatacctcgc ccaatctcaa agactggtcg 600
actcggacgt atatcacgct ggaacggcag acgggcgacc aattcgaatg ccccaacttg 660
gtcaagtttt cggtgactca cgctgagtct gaggagacgt gcatgtacgt gcttttcctt 720
tccgtgtcca ctggcgctcc tcttggaggt tcgcgaacac tttatgtgga cggcgatttc 780
tacggcagcc attacacctc tgaagttgct cagaagatac tatttgaatt ctccaagtac 840
aactatccgg ctcagtgcta ttctggtatt cctgagaacg agcctcctgt ctccatcggg 900
tggcctagta cgtgccatta cacggaagaa gtcccaactg gcccgcttga aggctggagg 960
agcgccatga ctttacctag aacgcagacc ataagcaacg tcaacggagt ctggactgtg 1020
actcacagcc cgtttgaaag cccatcggat cctaagggca gacagcttgt gagcaagagt 1080
gtccactctg gggatgtgaa gacgaagtta tccggggtcc catcgaatgc gatatatttc 1140
aatgtgacac tgaagggcat cgatgttacc aggtctaccg gacgcctaaa cttcagcttt 1200
tcctcctctg tatcgggtga attcctcgac ggaggggtgt ctctggatga tagttctctc 1260
tggatgacca gagctggatc ccatctattc acgtttgaag ctagtggaaa ttatacatca 1320
tcttctacaa catctatcac cccctttggc aacagcatat tcaccttctc gggcgttatt 1380
gaccgctctg tgtttgaagt cctcattagt gaggccggga tccaaagcgg aaccatgact 1440
ttcttcccaa gctccccact cgataccttg gctcttaccg gagaggatct cagagatggg 1500
cctagcgtta gtgttaaggc ttggggcctt cagtgccgca ggaatcgaac aacagccagt 1560
aagaggttcc gcgcc 1575
<210> 2
<211> 702
<212> DNA
<213> Artificial sequence
<400> 2
atgtcttact tgaaaatttc cgctttcctt tcagttttgt ccgtcgcctt ggccgaccaa 60
cgaatctctg tcaccgttgt tggtgatggt atcaacacag gactgagatc cggagggtcg 120
cattttgagg ctggaccaaa tgctgctggt acccccttag atttgatcct gtatgagccg 180
tctggtttct tggtagatgc agcagatgct tccaagtacg ttggttggga tgttgcagct 240
ggcacttctt tgacttcttt gccaccagac caaggaggca aagattgggg aatcgttgcc 300
ggtaacctca gattcaacgt tggaggtact acattctatg cttgtgagac taggaccggt 360
gtttgggaag taaagagtta cgaagctagt ggatgcaacg ctgtggtgct ttccgtagct 420
agtcacccag ttccttcttc cagttcttcc agttcttccc atgccccaac ttcctctgtt 480
ccatctactt cgtctcatgt gagcccaact accactcaac ctcctcacac aaccagttct 540
cacaccatcc acacatcaac taccttgacg acatcaggta ggaatgactc gaaccactcc 600
aaccatacca tcccaccagt tccaaccggt gccgctatgg gagtctctag caactatggt 660
ttgttggttg cagctggaat tgccgccgct gctttgttat aa 702
<210> 3
<211> 51
<212> DNA
<213> Artificial sequence
<400> 3
ggcggcggcg gcagcggcgg cggcggcagc agcagcggcg gcggcggcag c 51
<210> 4
<211> 2368
<212> DNA
<213> Artificial sequence
<400> 4
gagaggctga agcttacgta gaattcatgt atatcaaacc attcatccta cctgcccttg 60
cggcggttgc gcaagctgcc agctattcgg gagaccttcg gcctcaaact cactcctctc 120
caccttccaa tttcacgaac gatccaagcg gtctcttcta tgatagcaag aggggcgtgt 180
atcacttata ctatcagtat aagcctacag cgacagtctc tgggaatcag cactggggtc 240
atgccaccag ccctgatcta tcgcactgga cgaatcaacg tatcgccctc gctggggata 300
agccagagga gtatatcttc tcaggctctg ctgtcgtgga cagcaacaac agcacagcaa 360
tatttccgga acaggacgat ggcgtcatag ccatctacac agtaaatacc ccgacactgg 420
aaacacatct cattccttct tctagcaatg gtggatacac tttcaccaag tatgagaaca 480
acgaggtcat cgacattggc tcaaagacgt tccgtgaccc ggaggtggtg cggcatcctg 540
aaactacgca atgggtgatg acacttgcct atgcggagaa cttggtcatc cgattttata 600
cctcgcccaa tctcaaagac tggtcgactc ggacgtatat cacgctggaa cggcagacgg 660
gcgaccaatt cgaatgcccc aacttggtca agttttcggt gactcacgct gagtctgagg 720
agacgtgcat gtacgtgctt ttcctttccg tgtccactgg cgctcctctt ggaggttcgc 780
gaacacttta tgtggacggc gatttctacg gcagccatta cacctctgaa gttgctcaga 840
agatactatt tgaattctcc aagtacaact atccggctca gtgctattct ggtattcctg 900
agaacgagcc tcctgtctcc atcgggtggc ctagtacgtg ccattacacg gaagaagtcc 960
caactggccc gcttgaaggc tggaggagcg ccatgacttt acctagaacg cagaccataa 1020
gcaacgtcaa cggagtctgg actgtgactc acagcccgtt tgaaagccca tcggatccta 1080
agggcagaca gcttgtgagc aagagtgtcc actctgggga tgtgaagacg aagttatccg 1140
gggtcccatc gaatgcgata tatttcaatg tgacactgaa gggcatcgat gttaccaggt 1200
ctaccggacg cctaaacttc agcttttcct cctctgtatc gggtgaattc ctcgacggag 1260
gggtgtctct ggatgatagt tctctctgga tgaccagagc tggatcccat ctattcacgt 1320
ttgaagctag tggaaattat acatcatctt ctacaacatc tatcaccccc tttggcaaca 1380
gcatattcac cttctcgggc gttattgacc gctctgtgtt tgaagtcctc attagtgagg 1440
ccgggatcca aagcggaacc atgactttct tcccaagctc cccactcgat accttggctc 1500
ttaccggaga ggatctcaga gatgggccta gcgttagtgt taaggcttgg ggccttcagt 1560
gccgcaggaa tcgaacaaca gccagtaaga ggttccgcgc cggcggcggc ggcagcggcg 1620
gcggcggcag cggcggcggc ggcagcatgt cttacttgaa aatttccgct ttcctttcag 1680
ttttgtccgt cgccttggcc gaccaacgaa tctctgtcac cgttgttggt gatggtatca 1740
acacaggact gagatccgga gggtcgcatt ttgaggctgg accaaatgct gctggtaccc 1800
ccttagattt gatcctgtat gagccgtctg gtttcttggt agatgcagca gatgcttcca 1860
agtacgttgg ttgggatgtt gcagctggca cttctttgac ttctttgcca ccagaccaag 1920
gaggcaaaga ttggggaatc gttgccggta acctcagatt caacgttgga ggtactacat 1980
tctatgcttg tgagactagg accggtgttt gggaagtaaa gagttacgaa gctagtggat 2040
gcaacgctgt ggtgctttcc gtagctagtc acccagttcc ttcttccagt tcttccagtt 2100
cttcccatgc cccaacttcc tctgttccat ctacttcgtc tcatgtgagc ccaactacca 2160
ctcaacctcc tcacacaacc agttctcaca ccatccacac atcaactacc ttgacgacat 2220
caggtaggaa tgactcgaac cactccaacc ataccatccc accagttcca accggtgccg 2280
ctatgggagt ctctagcaac tatggtttgt tggttgcagc tggaattgcc gccgctgctt 2340
tgttataacc tagggcggcc gcgaatta 2368
<210> 5
<211> 1634
<212> DNA
<213> Artificial sequence
<400> 5
gagaggctga agcttacgta gaattcatgt atatcaaacc attcatccta cctgcccttg 60
cggcggttgc gcaagctgcc agctattcgg gagaccttcg gcctcaaact cactcctctc 120
caccttccaa tttcacgaac gatccaagcg gtctcttcta tgatagcaag aggggcgtgt 180
atcacttata ctatcagtat aagcctacag cgacagtctc tgggaatcag cactggggtc 240
atgccaccag ccctgatcta tcgcactgga cgaatcaacg tatcgccctc gctggggata 300
agccagagga gtatatcttc tcaggctctg ctgtcgtgga cagcaacaac agcacagcaa 360
tatttccgga acaggacgat ggcgtcatag ccatctacac agtaaatacc ccgacactgg 420
aaacacatct cattccttct tctagcaatg gtggatacac tttcaccaag tatgagaaca 480
acgaggtcat cgacattggc tcaaagacgt tccgtgaccc ggaggtggtg cggcatcctg 540
aaactacgca atgggtgatg acacttgcct atgcggagaa cttggtcatc cgattttata 600
cctcgcccaa tctcaaagac tggtcgactc ggacgtatat cacgctggaa cggcagacgg 660
gcgaccaatt cgaatgcccc aacttggtca agttttcggt gactcacgct gagtctgagg 720
agacgtgcat gtacgtgctt ttcctttccg tgtccactgg cgctcctctt ggaggttcgc 780
gaacacttta tgtggacggc gatttctacg gcagccatta cacctctgaa gttgctcaga 840
agatactatt tgaattctcc aagtacaact atccggctca gtgctattct ggtattcctg 900
agaacgagcc tcctgtctcc atcgggtggc ctagtacgtg ccattacacg gaagaagtcc 960
caactggccc gcttgaaggc tggaggagcg ccatgacttt acctagaacg cagaccataa 1020
gcaacgtcaa cggagtctgg actgtgactc acagcccgtt tgaaagccca tcggatccta 1080
agggcagaca gcttgtgagc aagagtgtcc actctgggga tgtgaagacg aagttatccg 1140
gggtcccatc gaatgcgata tatttcaatg tgacactgaa gggcatcgat gttaccaggt 1200
ctaccggacg cctaaacttc agcttttcct cctctgtatc gggtgaattc ctcgacggag 1260
gggtgtctct ggatgatagt tctctctgga tgaccagagc tggatcccat ctattcacgt 1320
ttgaagctag tggaaattat acatcatctt ctacaacatc tatcaccccc tttggcaaca 1380
gcatattcac cttctcgggc gttattgacc gctctgtgtt tgaagtcctc attagtgagg 1440
ccgggatcca aagcggaacc atgactttct tcccaagctc cccactcgat accttggctc 1500
ttaccggaga ggatctcaga gatgggccta gcgttagtgt taaggcttgg ggccttcagt 1560
gccgcaggaa tcgaacaaca gccagtaaga ggttccgcgc cggcggcggc ggcagcggcg 1620
gcggcggcag cagc 1634
<210> 6
<211> 768
<212> DNA
<213> Artificial sequence
<400> 6
gcggcggcgg cggcagcagc agcggcggcg gcggcagcat gtcttacttg aaaatttccg 60
ctttcctttc agttttgtcc gtcgccttgg ccgaccaacg aatctctgtc accgttgttg 120
gtgatggtat caacacagga ctgagatccg gagggtcgca ttttgaggct ggaccaaatg 180
ctgctggtac ccccttagat ttgatcctgt atgagccgtc tggtttcttg gtagatgcag 240
cagatgcttc caagtacgtt ggttgggatg ttgcagctgg cacttctttg acttctttgc 300
caccagacca aggaggcaaa gattggggaa tcgttgccgg taacctcaga ttcaacgttg 360
gaggtactac attctatgct tgtgagacta ggaccggtgt ttgggaagta aagagttacg 420
aagctagtgg atgcaacgct gtggtgcttt ccgtagctag tcacccagtt ccttcttcca 480
gttcttccag ttcttcccat gccccaactt cctctgttcc atctacttcg tctcatgtga 540
gcccaactac cactcaacct cctcacacaa ccagttctca caccatccac acatcaacta 600
ccttgacgac atcaggtagg aatgactcga accactccaa ccataccatc ccaccagttc 660
caaccggtgc cgctatggga gtctctagca actatggttt gttggttgca gctggaattg 720
ccgccgctgc tttgttataa gcggccgcga attaattcgc cttagaca 768
<210> 7
<211> 2376
<212> DNA
<213> Artificial sequence
<400> 7
gagaggctga agcttacgta gaattcatgt atatcaaacc attcatccta cctgcccttg 60
cggcggttgc gcaagctgcc agctattcgg gagaccttcg gcctcaaact cactcctctc 120
caccttccaa tttcacgaac gatccaagcg gtctcttcta tgatagcaag aggggcgtgt 180
atcacttata ctatcagtat aagcctacag cgacagtctc tgggaatcag cactggggtc 240
atgccaccag ccctgatcta tcgcactgga cgaatcaacg tatcgccctc gctggggata 300
agccagagga gtatatcttc tcaggctctg ctgtcgtgga cagcaacaac agcacagcaa 360
tatttccgga acaggacgat ggcgtcatag ccatctacac agtaaatacc ccgacactgg 420
aaacacatct cattccttct tctagcaatg gtggatacac tttcaccaag tatgagaaca 480
acgaggtcat cgacattggc tcaaagacgt tccgtgaccc ggaggtggtg cggcatcctg 540
aaactacgca atgggtgatg acacttgcct atgcggagaa cttggtcatc cgattttata 600
cctcgcccaa tctcaaagac tggtcgactc ggacgtatat cacgctggaa cggcagacgg 660
gcgaccaatt cgaatgcccc aacttggtca agttttcggt gactcacgct gagtctgagg 720
agacgtgcat gtacgtgctt ttcctttccg tgtccactgg cgctcctctt ggaggttcgc 780
gaacacttta tgtggacggc gatttctacg gcagccatta cacctctgaa gttgctcaga 840
agatactatt tgaattctcc aagtacaact atccggctca gtgctattct ggtattcctg 900
agaacgagcc tcctgtctcc atcgggtggc ctagtacgtg ccattacacg gaagaagtcc 960
caactggccc gcttgaaggc tggaggagcg ccatgacttt acctagaacg cagaccataa 1020
gcaacgtcaa cggagtctgg actgtgactc acagcccgtt tgaaagccca tcggatccta 1080
agggcagaca gcttgtgagc aagagtgtcc actctgggga tgtgaagacg aagttatccg 1140
gggtcccatc gaatgcgata tatttcaatg tgacactgaa gggcatcgat gttaccaggt 1200
ctaccggacg cctaaacttc agcttttcct cctctgtatc gggtgaattc ctcgacggag 1260
gggtgtctct ggatgatagt tctctctgga tgaccagagc tggatcccat ctattcacgt 1320
ttgaagctag tggaaattat acatcatctt ctacaacatc tatcaccccc tttggcaaca 1380
gcatattcac cttctcgggc gttattgacc gctctgtgtt tgaagtcctc attagtgagg 1440
ccgggatcca aagcggaacc atgactttct tcccaagctc cccactcgat accttggctc 1500
ttaccggaga ggatctcaga gatgggccta gcgttagtgt taaggcttgg ggccttcagt 1560
gccgcaggaa tcgaacaaca gccagtaaga ggttccgcgc cggcggcggc ggcagcggcg 1620
gcggcggcag cggcggcggc ggcagcatgt cttacttgaa aatttccgct ttcctttcag 1680
ttttgtccgt cgccttggcc gaccaacgaa tctctgtcac cgttgttggt gatggtatca 1740
acacaggact gagatccgga gggtcgcatt ttgaggctgg accaaatgct gctggtaccc 1800
ccttagattt gatcctgtat gagccgtctg gtttcttggt agatgcagca gatgcttcca 1860
agtacgttgg ttgggatgtt gcagctggca cttctttgac ttctttgcca ccagaccaag 1920
gaggcaaaga ttggggaatc gttgccggta acctcagatt caacgttgga ggtactacat 1980
tctatgcttg tgagactagg accggtgttt gggaagtaaa gagttacgaa gctagtggat 2040
gcaacgctgt ggtgctttcc gtagctagtc acccagttcc ttcttccagt tcttccagtt 2100
cttcccatgc cccaacttcc tctgttccat ctacttcgtc tcatgtgagc ccaactacca 2160
ctcaacctcc tcacacaacc agttctcaca ccatccacac atcaactacc ttgacgacat 2220
caggtaggaa tgactcgaac cactccaacc ataccatccc accagttcca accggtgccg 2280
ctatgggagt ctctagcaac tatggtttgt tggttgcagc tggaattgcc gccgctgctt 2340
tgttataagc ggccgcgaat taattcgcct tagaca 2376

Claims (1)

1. A method for preparing Pichia pastoris with surface display of fructosyl transferase, comprising the steps of:
step 1: synthesis of fusion sequences
Wherein, the fructosyl transferase gene sequence shown in SEQ ID No.1 and the pichia pastoris anchored protein gene sequence shown in SEQ ID No.2 are fused through a connecting peptide sequence shown in SEQ ID No.3 to obtain an improved fusion sequence of the fructosyl transferase gene and the pichia pastoris anchored protein gene, and the fused gene plus carrier homologous arm sequence is shown in SEQ ID No.4 or SEQ ID No. 7;
step 2: construction of Pichia expression vector
Connecting or recombining the fusion sequence with a enzyme digestion linearized pichia pastoris expression vector to obtain a recombinant expression vector;
and step 3: transformation of Pichia pastoris
Transforming the constructed recombinant expression vector into a pichia pastoris competent cell;
and 4, step 4: screening for multicopy positive clones
Screening out positive pichia pastoris containing multi-copy fusion genes through high resistance;
and 5: obtaining pichia pastoris displaying fructosyl transferase on surface
And (3) obtaining the pichia pastoris with the fructosyl transferase displayed on the surface after methanol induction expression.
CN202110473167.XA 2021-04-29 2021-04-29 Method for preparing pichia pastoris with surface display of fructosyl transferase Pending CN115247136A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110473167.XA CN115247136A (en) 2021-04-29 2021-04-29 Method for preparing pichia pastoris with surface display of fructosyl transferase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110473167.XA CN115247136A (en) 2021-04-29 2021-04-29 Method for preparing pichia pastoris with surface display of fructosyl transferase

Publications (1)

Publication Number Publication Date
CN115247136A true CN115247136A (en) 2022-10-28

Family

ID=83697202

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110473167.XA Pending CN115247136A (en) 2021-04-29 2021-04-29 Method for preparing pichia pastoris with surface display of fructosyl transferase

Country Status (1)

Country Link
CN (1) CN115247136A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102260334A (en) * 2011-07-29 2011-11-30 华南理工大学 Pichia pastoris wall protein Gcw21 as well as surface display system and building system
KR20130030333A (en) * 2011-05-24 2013-03-27 한국외국어대학교 연구산학협력단 Surface display of human lactoferrin using a glycosylphosphatidylinositol-achored protein of saccharomyces cerevisiae in pichia pastoris
CN106497964A (en) * 2016-10-20 2017-03-15 天津大学 The recombinant yeast pichia pastoris of cell surface display PET catabolic enzymes and structure and application
WO2020177719A1 (en) * 2019-03-05 2020-09-10 信达生物制药(苏州)有限公司 Yeast display system for displaying and secreting polypeptide of interest and use thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130030333A (en) * 2011-05-24 2013-03-27 한국외국어대학교 연구산학협력단 Surface display of human lactoferrin using a glycosylphosphatidylinositol-achored protein of saccharomyces cerevisiae in pichia pastoris
CN102260334A (en) * 2011-07-29 2011-11-30 华南理工大学 Pichia pastoris wall protein Gcw21 as well as surface display system and building system
CN106497964A (en) * 2016-10-20 2017-03-15 天津大学 The recombinant yeast pichia pastoris of cell surface display PET catabolic enzymes and structure and application
WO2020177719A1 (en) * 2019-03-05 2020-09-10 信达生物制药(苏州)有限公司 Yeast display system for displaying and secreting polypeptide of interest and use thereof

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
ZHANG L等: "Highly Efficient Fructooligosaccharides Production by an Erythritol-Producing Yeast Yarrowia lipolytica Displaying Fructosyltransferase", 《J AGRIC FOOD CHEM》, vol. 64, no. 19, pages 3828 - 3837 *
吴慧娟: "黑曲霉脂肪酶A在毕赤酵母细胞表面的展示研究", 《中国优秀硕士学位论文全文数据库基础科学辑》, no. 2014, pages 006 - 5 *
张乐彬: "酵母表面展示果糖基转移酶合成低聚果糖", 《中国优秀硕士学位论文全文数据库工程科技Ⅰ辑》, no. 2021, pages 018 - 41 *
李慧娟等: "蔗糖:蔗糖-1-果糖基转移酶的表面展示及酶学性质分析", 《微生物学通报》, vol. 41, no. 11, pages 2190 - 2197 *
王洁等: "基于酵母表面展示技术的胸苷磷酸化酶全细胞催化剂的构建", 《生物技术通报》, vol. 32, no. 01, pages 201 - 206 *
郭东衡: "木薯β-葡萄糖苷酶在毕赤酵母的表面展示及催化合成烷基糖苷的研究", 《中国优秀硕士学位论文全文数据库工程科技Ⅰ辑》, no. 2017, pages 014 - 1554 *

Similar Documents

Publication Publication Date Title
CN113621630B (en) 3-ketoacyl-CoA thiolase gene RkACAA1-1 and application thereof
CN113621631A (en) Mevalonate kinase gene RKMK and application thereof
CN115011616B (en) Acetaldehyde dehydrogenase gene RKALDH and application thereof
CN116286900B (en) Acetic acid permease A gene RkAcpa and application thereof
CN110157654B (en) Bacillus natto recombinant strain and construction method and application thereof
CN113337450B (en) Escherichia coli genetic engineering bacterium, construction method and method for producing (R) -citronellal through whole-cell catalysis
CN112301013A (en) Complex enzyme and application thereof in preparation of ergothioneine
CN105950493B (en) Engineering bacterium, construction method thereof and application of engineering bacterium in preparation of crocetin
CN109576239B (en) Heat-resistant phosphorylase and application thereof
CN106520856B (en) Enzymatic preparation method of (S) -N-tert-butyloxycarbonyl-3-hydroxypiperidine
CN115247136A (en) Method for preparing pichia pastoris with surface display of fructosyl transferase
CN114761553A (en) Nucleic acids, vectors, host cells and methods for producing beta-fructofuranosidase from aspergillus niger
CN114107358B (en) Construction method of heat-resistant aspergillus niger engineering bacteria for increasing content of stress trehalose
CN104342416B (en) Lovastatin acyltransferase comprising one or several point mutations
CN115612628A (en) Pichia pastoris, preparation method thereof and application of pichia pastoris in catalyzing sucrose to produce fructo-oligosaccharide
CN112575022A (en) Construction method of in-vitro artificial scaffold protein-mediated trehalose multienzyme complex
CN110540983B (en) Zeta-carotene high-yield engineering bacterium based on Dunaliella metabolic pathway and construction method and application thereof
CN113249234A (en) Construction method of aspergillus niger genetically engineered bacterium for producing sodium gluconate and overexpressing CAT and GOD
CN114746548A (en) Nucleic acids, vectors, host cells and methods for producing fructosyltransferase from aspergillus japonicus
CN105368913A (en) Bi-enzyme preparation method for industrial production of chiral unnatural amino acid
CN107988131B (en) Method for high-yield production of α -ketone-gamma-methylthiobutyric acid
CN116286899B (en) NADH kinase gene RkNADHK1 and application thereof
CN114525291B (en) Carbonyl reductase and method for preparing (R) -4-chloro-3-hydroxybutyrate by using same
CA3147863A1 (en) Materials and methods for creating strains of saccharomyces cerevisiae that exhibit an increased ability to ferment oligosaccharides
CN116355880A (en) Fusion enzyme, pichia pastoris, preparation method and application thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20221028