CN115242109A - 一种适用于直流故障清除的低比例全桥混合型mmc拓扑及其控制策略 - Google Patents

一种适用于直流故障清除的低比例全桥混合型mmc拓扑及其控制策略 Download PDF

Info

Publication number
CN115242109A
CN115242109A CN202210498319.6A CN202210498319A CN115242109A CN 115242109 A CN115242109 A CN 115242109A CN 202210498319 A CN202210498319 A CN 202210498319A CN 115242109 A CN115242109 A CN 115242109A
Authority
CN
China
Prior art keywords
full
mmc
bridge
fault
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210498319.6A
Other languages
English (en)
Inventor
付丰豪
袁帅
贾秀芳
赵成勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North China Electric Power University
Original Assignee
North China Electric Power University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North China Electric Power University filed Critical North China Electric Power University
Priority to CN202210498319.6A priority Critical patent/CN115242109A/zh
Publication of CN115242109A publication Critical patent/CN115242109A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/26Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)

Abstract

本发明提供了一种适用于直流故障清除的低比例全桥混合型模块化多电平换流器(modular multilevel converter,MMC)拓扑及其控制策略,所述低比例全桥混合型MMC包含少量全桥子模块、大量半桥子模块、电流放电单元和电感控制单元。当系统直流侧发生短路故障时,短时间内按比例降低差模电压参考值,使直流电压降为零,并通过电流放电单元和电感控制单元隔离故障线路,实现无闭锁故障穿越。本发明所提的技术方案优点在于:当低比例全桥混合型MMC中全桥子模块占比低于50%时,换流站仍然可以实现无闭锁故障穿越,与传统混合型MMC相比,降低了器件使用量与运行损耗,提升了经济性。

Description

一种适用于直流故障清除的低比例全桥混合型MMC拓扑及其 控制策略
技术领域
本发明涉及高电压技术领域,具体涉及一种适用于直流故障清除的低比例全桥混合型MMC拓扑及其控制策略。
背景技术
柔性直流输电因具备有功无功独立控制能力,成为大规模新能源并网的重要技术手段,柔性直流控制能力灵活,同时拥有良好的电网并入特性,使其适用于区域电网互联、孤岛供电、弱电网接入等多种重要场景,基于以上特点,柔性直流将在能源高质量发展中扮演着重要角色。
然而柔性直流输电所采用的模块化多电平换流器(modular multilevelconverter,MMC)普遍具有低惯量、低阻尼特性,并且含有大量直流储能电容。换流器发生直流短路故障后,直流电容迅速放电,其故障电流上升速度比交流故障电流高十倍以上,在故障后几毫秒内就会达到器件过流能力上限,且故障电流没有过零点,难以分断,将会对系统产生较大危害。
目前一类故障保护方案是源侧降压方案,通过采用包含有全桥子模块(fullbridge sub module,FBSM)和半桥子模块(half bridge sub module,HBSM)的子模块混合型MMC,利用FBSM电压极性翻转能力,实现无闭锁故障穿越。但基于子模块混合型方案的故障处理原理,FBSM占比需要达到50%以上,换流站建设成本和运行损耗均增加较大。基于此,本发明在子模块混合型MMC方案的基础上,改进MMC结构,保证故障处理能力的同时降低了FBSM的使用数量,提升了经济性。
发明内容
为了克服上述子模块混合型MMC故障处理方案中FBSM占比高,成本和损耗大的问题,本发明提供一种适用于直流故障清除的低比例全桥混合型MMC拓扑,并提出了相应的控制策略。其特征在于:在故障期间通过改变桥臂电压参考值,使得FBSM占比低于50%时仍然可以暂时输出零电压,抑制故障电流。
本发明所述的低比例全桥混合型MMC拓扑由半全混合MMC单元、电流放电单元和电感控制单元构成。
半全混合MMC单元包含少量FBSM和大量HBSM,且两者占比分别为KF,KH(KF<KH),稳态时,FBSM和HBSM输出正电平;直流侧故障后,FBSM用以输出负电平。
电流放电单元包含负荷转换开关(load commutation switch,LCS)、超快速隔离开关(ultra-fast disconnector,UFD)和多个同向串联二极管。LCS与UFD串联在直流出线侧,用以直流侧故障时隔离故障线路,多个同向串联二极管并联在直流出线侧,用以LCS与UFD分断后继续流通直流电感上的电流。
电感控制单元由多支同向串联IGBT(Insulated Gate Bipolar Transistor)并联多支反向串联二极管和单个避雷器后,再串联同向二极管构成。电感控制单元并联在半全混合MMC单元内部的上下桥臂电感上,用于故障清除期间暂时流通桥臂电感电流直流分量。
定义低比例全桥混合型MMC中差模电压比例系数K如下:
K=1-KH+KF 0.5<KH<1,0<KF<0.5
本发明低比例全桥混合型MMC拓扑在稳态时控制策略为:系统正常运行时,电流放电单元中LCS导通,UFD闭合,电感控制单元中IGBT关断,半全混合MMC单元正常传输功率,桥臂子模块中FBSM与HBSM输出正电平。
本发明低比例全桥混合型MMC拓扑在直流侧故障时控制策略为:
(1)系统检测到直流故障后,外环功率控制切换为定子模块电容电压控制,FBSM输出负电平,内环控制器输出的差模电压参考值(桥臂电压交流分量参考值)乘以比例系数K,共模电压参考值(桥臂电压直流分量参考值)变为零;
(2)导通电感控制单元的IGBT,同时关断电流放电单元的LCS,给UFD分段信号;
(3)UFD分断完成后,低比例全桥MMC内环控制器输出的差模电压和共模电压参考值恢复正常,关断电感控制单元的IGBT,桥臂电感直流分量经避雷器短暂能量释放后衰减为零,直流侧故障线路被隔离。
本发明的有益效果是:在保证故障清除能力与无闭锁故障穿越的情况下,有效降低了全桥子模块使用数量,减小了建设成本和运行损耗,提升了换流站经济性。
附图说明
图1为低比例全桥混合型MMC拓扑结构(摘要附图);
图2为低比例全桥MMC稳态直流电流路径示意图;
图3为低比例全桥MMC桥臂电压变化曲线;
图4为故障清除期间低比例全桥MMC电流路径示意图;
图5为故障清除过程中换流站直流输出电压;
图6为故障清除过程中三相差模电压参考值。
具体实施方式
下面结合附图对本发明作进一步详细说明。
图1为低比例全桥混合型MMC拓扑结构,包含半全混合MMC单元、电流放电单元和电感控制单元。半全混合MMC包含少量HBSM和大量FBSM且两者占比分别为KF,KH(KF<KH)。电流放电单元包含LCS、UFD和多支同向串联二极管,LCS和UFD串联于直流出线侧,多支同向串联二极管并联于直流出线侧。电感控制单元由多支同向串联IGBT并联多支反向串联二极管和单个避雷器后,再串联二极管构成,电感控制单元并联于半全混合MMC单元内部上下桥臂电感上。
低比例全桥混合型MMC拓扑在稳态时控制策略为:系统稳定运行时,半全混合MMC单元正常运行,桥臂中HBSM与FBSM均输出正电平;电流放电单元中LCS导通,UFD闭合;电感控制单元中IGBT关断,直流电流平均流过MMC内三相桥臂电感和电流放电单元中LCS与UFD后,流向直流侧,低比例全桥MMC稳态直流电流路径示意图如图2所示。
定义低比例全桥混合型MMC中差模电压比例系数K如下:
K=1-KH+KF 0.5<KH<1,0<KF<0.5
以FBSM占比为30%,HBSM占比为70%为例,则KF=0.3,KH=0.7,K=0.6。
本发明低比例全桥混合型MMC拓扑在直流侧故障时控制策略为:
(1)0.8s直流侧发生接地故障,0.801s系统检测到直流故障后,外环功率控制切换为定子模块电容电压控制,MMC直流侧应当输出零电压,但此时FBSM占比小于0.5,桥臂电压直流分量无法达到零电压,通过将差模电压参考值(桥臂电压交流分量参考值)乘以比例系数K,则差模电压幅值减小,为共模电压参考值(桥臂电压直流分量参考值)留出下降空间,此时共模电压可以达到零电压,低比例全桥MMC桥臂电压变化曲线如图3所示。
(2)桥臂电压参考值改变后,MMC直流侧输出零电压,此时关断电流放电单元中LCS,同时给UFD分断信号,导通电感控制单元中的IGBT,桥臂电感电流的直流分量将通过电感控制单元中IGBT和二极管导通,直流侧线路上的电感电流将通过电流放电单元中的串联二极管继续流通,故障清除期间低比例全桥MMC电流路径示意图如图4所示。
(3)经过2ms,在0.803s时,UFD在零电压环境下正常分断完成后,故障线路被隔离,差模电压和共模电压参考值恢复,同时电感控制单元中的IGBT关断,电感电流直流分量将通过避雷器流通,能量释放完成后衰减到零。
故障清除过程中换流站直流输出电压如图5所示,0.801s桥臂电压参考值改变,直流侧输出电压变为零,0.803s故障线路被隔离,直流电压逐渐恢复,实现无闭锁故障穿越。故障清除过程中三相差模电压参考值如图6所示,0.8s直流侧故障后电压参考值波动,0.801s外环功率控制切换为定子模块电容电压控制,同时差模电压乘以比例系数K=0.6,电压幅值降低,0.803s故障清除,差模电压参考值幅值增大恢复稳定。
以上实施例仅用以说明本发明的技术方案而非对其限制,尽管参照上述实施例对本发明进行了详细的说明,所属领域的普通技术人员依然可以对本发明的具体实施方式进行修改或者等同替换,这些未脱离本发明精神和范围的任何修改或者等同替换,均在申请待批的本发明的权利要求保护范围之内。

Claims (4)

1.一种适用于直流故障清除的低比例全桥混合型MMC拓扑,其特征在于:所述低比例全桥混合型MMC由半全混合MMC单元、电流放电单元和电感控制单元构成;半全混合MMC包含少量全桥子模块(full bridge sub module,FBSM)和大量半桥子模块(half bridge submodule,FBSM),并定义FBSM和HBSM占比分别为KF,KH(KF<KH);所述电流放电单元包含负荷转换开关(load commutation switch,LCS)、超快速隔离开关(ultra-fast disconnector,UFD)和多个同向串联二极管,LCS和UFD串联在直流线路出口,多个串联二极管并联在直流线路出口;所述电感控制单元由IGBT反向并联二极管和避雷器后串联二极管构成,电感控制单元分别并联在半全混合MMC三相上下桥臂电感上。
2.如权利要求1所述的低比例全桥混合型MMC拓扑,其特征在于:定义差模电压比例系数K如下:
K=1-KH+KF 0.5<KH<1,0<KF<0.5 (1)
3.如权利要求1所述的低比例全桥混合型MMC拓扑,其特征在于:系统稳态运行时控制策略为:电感控制单元的IGBT关断,电流放电单元的LCS和UFD导通,半全混合MMC单元正常运行,换流站正常控制直流电压和功率传输。
4.如权利要求1所述的低比例全桥混合型MMC拓扑,其特征在于:直流侧发生短路故障时控制策略为:
(1)系统检测到直流侧故障后,功率传输中断,MMC外环功率控制切换为定子模块电容电压控制;同时差模电压参考值(桥臂电压交流分量参考值)乘以比例系数K,共模电压参考值(桥臂电压直流分量参考值)变为零,MMC输出直流电压为零;
(2)导通电感控制单元的IGBT,关断电流放电单元的LCS,同时给UFD分断信号;
(3)UFD分断完成后,关断电感控制单元的IGBT,控制环节的差模电压和共模电压参考值恢复,故障线路被隔离,MMC实现无闭锁故障穿越。
CN202210498319.6A 2022-05-09 2022-05-09 一种适用于直流故障清除的低比例全桥混合型mmc拓扑及其控制策略 Pending CN115242109A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210498319.6A CN115242109A (zh) 2022-05-09 2022-05-09 一种适用于直流故障清除的低比例全桥混合型mmc拓扑及其控制策略

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210498319.6A CN115242109A (zh) 2022-05-09 2022-05-09 一种适用于直流故障清除的低比例全桥混合型mmc拓扑及其控制策略

Publications (1)

Publication Number Publication Date
CN115242109A true CN115242109A (zh) 2022-10-25

Family

ID=83667617

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210498319.6A Pending CN115242109A (zh) 2022-05-09 2022-05-09 一种适用于直流故障清除的低比例全桥混合型mmc拓扑及其控制策略

Country Status (1)

Country Link
CN (1) CN115242109A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116207997A (zh) * 2023-03-22 2023-06-02 国网智能电网研究院有限公司 一种可控换相换流器主支路全控阀关断控制方法及系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116207997A (zh) * 2023-03-22 2023-06-02 国网智能电网研究院有限公司 一种可控换相换流器主支路全控阀关断控制方法及系统
CN116207997B (zh) * 2023-03-22 2024-03-08 国网智能电网研究院有限公司 一种可控换相换流器主支路全控阀关断控制方法及系统

Similar Documents

Publication Publication Date Title
CN104410260B (zh) 一种具有容错能力可实现直流故障自主防护的mmc子模块结构及其mmc调制方法
Sano et al. A surgeless solid-state DC circuit breaker for voltage-source-converter-based HVDC systems
CN104868748B (zh) 一种换流器模块单元、换流器、直流输电系统及控制方法
CN109659967B (zh) 含有电阻型超导限流器和直流断路器的换流站及其直流故障处理策略
WO2018130205A1 (zh) 一种子模块混合型换流器的充电方法
CN113938037B (zh) 模块化多电平换流器、故障穿越方法及电子设备
CN113991662A (zh) 基于lcc-mmc的能量路由系统及直流故障保护方法
CN113394760B (zh) 一种基于电容换流的预限流型高压直流故障限流器及方法
CN112366745A (zh) 一种集中式模块化DC Chopper拓扑及控制方法
CN111917317B (zh) 一种能阻断直流故障的柔直换流器、子模块及其保护方法
CN115242109A (zh) 一种适用于直流故障清除的低比例全桥混合型mmc拓扑及其控制策略
CN109327016B (zh) 一种直流极间分断装置及控制方法
CN110768233A (zh) 适用于直流电网且具备潮流控制功能的组合式高压直流断路器及其控制方法
CN118100260A (zh) 柔性交流互联装置及控制方法
CN117595349A (zh) 一种高效型中压交流互联装置及其控制方法
CN112928740A (zh) 一种混合式直流故障限流器及其控制方法
CN110995039B (zh) 一种低损耗模块化多电平换流器及其参数设计方法
CN106451428A (zh) 一种具有短路限流功能的混合型统一电能质量调节器
CN112671024B (zh) 全桥晶闸管耗能子模块及辅助换相控制方法
CN214959327U (zh) 储能电路及模块化多电平换流器
CN111711348B (zh) 具有故障阻断能力的改进型混合半桥mmc
CN115276434A (zh) 一种含全桥子模块的电能路由器及其控制方法
CN113489359A (zh) 一种具备直流故障清除能力的子模块拓扑
CN108988269B (zh) 一种电压源型融冰装置及控制方法和控制装置
CN113507203A (zh) 一种具备直流故障电流主动转移抑制能力的桥臂拓扑结构及mmc拓扑结构

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication