CN115239829A - 散射校正方法、计算机设备及成像系统 - Google Patents

散射校正方法、计算机设备及成像系统 Download PDF

Info

Publication number
CN115239829A
CN115239829A CN202210755978.3A CN202210755978A CN115239829A CN 115239829 A CN115239829 A CN 115239829A CN 202210755978 A CN202210755978 A CN 202210755978A CN 115239829 A CN115239829 A CN 115239829A
Authority
CN
China
Prior art keywords
image
scattering
corrected
estimation model
scatter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210755978.3A
Other languages
English (en)
Inventor
刘达林
闫浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Our United Corp
Original Assignee
Our United Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Our United Corp filed Critical Our United Corp
Priority to CN202210755978.3A priority Critical patent/CN115239829A/zh
Publication of CN115239829A publication Critical patent/CN115239829A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/003Reconstruction from projections, e.g. tomography
    • G06T11/008Specific post-processing after tomographic reconstruction, e.g. voxelisation, metal artifact correction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/003Reconstruction from projections, e.g. tomography
    • G06T11/005Specific pre-processing for tomographic reconstruction, e.g. calibration, source positioning, rebinning, scatter correction, retrospective gating

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

本申请公开了一种散射校正方法、计算机设备及成像系统,该方法包括:获取目标对象的待校正图像;利用预先训练得到的散射估计模型对输入的所述待校正图像进行散射估计,输出散射图像;根据所述散射图像,对所述待校正图像进行散射校正,生成所述目标对象的散射分布图像。

Description

散射校正方法、计算机设备及成像系统
技术领域
本申请涉及成像技术领域,具体涉及一种散射校正方法、计算机设备及成像系统。
背景技术
锥形束CT(Cone Beam CT,CBCT)的射线穿过目标对象(例如模体或人体等)后会发生散射,射线的散射会影响重建图像质量,如图像对比度下降,CT值不准确等。
为了克服上述问题,将光束阻挡阵列(Beam Stop Array,BSA)放置于成像源和目标对象之间,则成像源发出的主射线(即原发射线)被BSA中的多个光束阻挡件(如n*n的铅点阵列)遮挡,相应的,投影图像中与光束阻挡件对应的阴影区域的信号均由散射形成。由于散射的低频特性,可以通过比较少的散射信号采样点来估计散射整体分布,从而进行散射校正。
由于光束阻挡件的遮挡,阴影区域无法接收到主射线,需要用插值的方式将散射校正之后的投影图像中阴影区域的主射线补全,然而,主射线并非缓变(即变化缓慢),主射线插值会影响图像质量。
发明内容
本申请实施例提供一种散射校正方法、计算机设备及成像系统,不需要用插值的方式将阴影区域的主射线补全,避免了因主射线插值影响图像质量,不会影响图像质量。
一方面,本申请提供一种散射校正方法,该方法包括:获取目标对象的待校正图像;利用预先训练得到的散射估计模型对输入的所述待校正图像进行散射估计,输出散射图像;根据所述散射图像,对所述待校正图像进行散射校正,生成所述目标对象的散射分布图像。
另一方面,本申请还提供一种计算机设备,所述计算机设备包括:一个或多个处理器;存储器;以及一个或多个应用程序,其中所述一个或多个应用程序被存储于所述存储器中,并配置为由所述处理器执行以实现第一方面中任一项所述的散射校正方法中的步骤。
第三方面,本申请还提供一种成像系统,所述成像系统包括:成像源,用于产生射线,以对目标对象进行成像;光束阻挡阵列,可拆卸/可移动的设置于所述成像源和所述目标对象之间,包括多个光束阻挡件;成像器,与所述成像源相对设置,用于接收通过所述光束阻挡阵列和/或所述目标对象的射线;第二方面任一项所述的计算机设备,与所述成像器连接。
第四方面,本申请还提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器进行加载,以执行第一方面任一项所述的散射校正方法中的步骤。
本申请实施例在不需要设置光束阻挡阵列的前提下,先获取目标对象的待校正图像,然后,利用预先训练得到的散射估计模型对输入的待校正图像进行散射估计,得到散射图像,最后,根据该散射图像,对待校正图像进行散射校正,得到目标对象的散射校正图像。由于待校正图像中不包含阴影区域,通过预先训练好的散射估计模型得到待校正图像的散射图像之后,就可根据散射图像直接对待校正图像进行散射校正,整个散射校正过程中,不需要用插值的方式将阴影区域的主射线补全,避免了因主射线插值影响图像质量。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例中提供的成像系统的结构示意图;
图2是本申请实施例中提供的成像系统中光束阻挡阵列的结构示意图;
图3是本申请实施例中提供的散射校正方法的一个实施例流程示意图;
图4是本申请实施例中提供的计算机设备的一个实施例结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请中,“示例性”一词用来表示“用作例子、例证或说明”。本申请中被描述为“示例性”的任何实施例不一定被解释为比其它实施例更优选或更具优势。为了使本领域任何技术人员能够实现和使用本申请,给出了以下描述。在以下描述中,为了解释的目的而列出了细节。应当明白的是,本领域普通技术人员可以认识到,在不使用这些特定细节的情况下也可以实现本申请。在其它实例中,不会对公知的结构和过程进行详细阐述,以避免不必要的细节使本申请的描述变得晦涩。因此,本申请并非旨在限于所示的实施例,而是与符合本申请所公开的原理和特征的最广范围相一致。
需要说明的是,本申请实施例方法由于是在计算机设备中执行,各计算机设备的处理对象均以数据或信息的形式存在,例如时间,实质为时间信息,可以理解的是,后续实施例中若提及尺寸、数量、位置等,均为对应的数据存在,以便计算机设备进行处理,具体此处不作赘述。
如背景技术,用插值的方式将散射校正中的阴影区域的主射线补全之后,会影响图像的质量,例如造成重建图像伪影。为此,本申请实施例提供一种散射校正方法、计算机设备及成像系统,可以将光束阻挡阵列BSA扫描和深度学习方法相结合完成图像的散射校正,通过预先训练得到的散射估计模型对输入的目标对象的待校正图像(不包含与光束阻挡阵列中多个光束阻挡件对应的多个阴影区域)进行处理,输出指示目标对象投影图像散射整体分布的散射分布图像或指示目标对象重建图像伪影的重建伪影图像,从而可以根据散射分布图像/重建伪影图像对待校正图像进行散射校正,得到目标对象的散射校正图像,这样,就可以避免主射线插值影响散射校正图像的质量,以下将分别进行详细说明。
请参阅图1,图1是本申请实施例中提供的成像系统的结构示意图,该成像系统可以包括成像源100、光束阻挡阵列200、成像器300、计算机设备400。其中:
在本申请实施例中,成像源100可以产生射线(即主射线),成像源100可以是,但不限于,X射线源、γ射线源等射线源。成像源100产生的射线可用于对目标对象P进行成像,这里,目标对象P可以是患者、模体等,只需要能在成像系统下成像的对象即可。
成像源100在对目标对象P进行扫描时,射线会在目标对象P上发生散射,影响重建图像的质量。为了减少散射对重建图像质量的影响,在本申请实施例中,在成像源100和目标对象P之间设置一个光束阻挡阵列200。示例性的,光束阻挡阵列200可以可拆卸/可移动的固定于成像源100的射线发射口的下方。
光束阻挡阵列200可以包括多个光束阻挡件,可以为圆柱体、球体等规则体积。这里,各光束阻挡件可以由高衰减物质(如铅或钨)制成,而多个光束阻挡件以外的区域(也就是非光束阻挡件所在区域)可以由具有低衰减特性的射线透射物质(例如钢化玻璃、碳纤维、亚克力等)制成。
需要说明的是,各光束阻挡件的排布可以为m*n的阵列,m和n均为大于0的整数,m可以等于n,也可以不等于n。当然,各光束阻挡件也可以任意排布。
在本申请实施例中,成像器300与成像源100相对设置,这样,成像器300就可以接收通过光束阻挡阵列200和/或目标对象P的射线。这里,成像器300可以是探测器。这里,成像源和成像器可以为锥形束CT(Cone Beam CT,CBCT)。
示例性的,如图2所示,在XOZ平面,光束阻挡阵列由9*9(共81个)铅点组成,当成像源100发出的射线仅通过光束阻挡阵列200(无目标对象P,仅有空气)被成像器300接收后,在成像器300的投影中就会包括81个阴影区域(阴影点)。可以理解的是,当像源100发出的射线通过光束阻挡阵列200以及目标对象P之后,在成像器300的投影中除了包括81个阴影区域(阴影点)之外,还包括目标对象P的投影;当像源100发出的射线仅通过目标对象P(移除/移走光束阻挡阵列200)之后,在成像器300的投影中包括目标对象P的投影,而不包括81个阴影区域(阴影点)。
在本申请实施例中,计算机设备400与成像器300连接,用于执行下述实施例中的散射校正方法,以生成目标对象P的散射校正图像。
本申请实施例中,计算机设备400可以是独立的服务器,也可以是服务器组成的服务器网络或服务器集群,例如,本申请实施例中所描述的计算机设备,其包括但不限于计算机、网络主机、单个网络服务器、多个网络服务器集或多个服务器构成的云服务器。其中,云服务器由基于云计算(Cloud Computing)的大量计算机或网络服务器构成。
本申请实施例中,上述的计算机设备400可以是通用计算机设备或者是专用计算机设备。在具体实现中计算机设备可以是台式机、便携式电脑、网络服务器、掌上电脑(Personal Digital Assistant,PDA)、移动手机、平板电脑、无线终端设备、通信设备、嵌入式设备等,本实施例不限定计算机设备的类型。
本申请的实施例中,计算机设备400与成像器300之间可通过任何通信方式实现通信,包括但不限于,基于2G、3G、4G、5G、长期演进(Long Term Evolution,LTE)、全球互通微波访问(Worldwide Interoperability for Microwave Access,WiMAX)的移动通信,或基于TCP/IP协议族(TCP/IP Protocol Suite,TCP/IP)、用户数据报协议(User DatagramProtocol,UDP)的计算机网络通信等。
本领域技术人员可以理解,该成像系统还可以包括一个或多个可处理数据的其他计算机设备,具体此处不作限定。
在本申请实施例中,成像系统还可以包括机架500,该机架用于支撑成像源100和成像器300,其可以为固定机架,也可以为旋转机架,其可带动成像源100和成像器300转动。示例性的,旋转机架可以为环形机架、C形臂机架、鼓形机架等。
在本申请实施例中,成像系统还包括阵列板驱动装置600,与光束阻挡阵列200机械连接,用于移动光束阻挡阵列200的位置。这里,阵列板驱动装置600可以是电机。
阵列板驱动装置600可以驱动光束阻挡阵列200移动到射线的照射范围之外,还可以移动光束阻挡阵列200使射线的射线中心穿过光束阻挡阵列200的中心,还可以驱动光束阻挡阵列200沿目标对象P的长度方向(如图2所示的Z轴方向)、宽度方向(如图2所示的X轴方向)、斜向移动,还可以驱动光束阻挡阵列200绕其中心轴线(如图1所示的Y轴方向)旋转。
在本申请实施例中,成像系统还可以包括患者支撑装置700,用于支撑、定位目标对象P。示例性的,患者支撑装置101可以为三维、四维、五维或者六维治疗床或治疗椅等。
图3是本申请实施例中提供的散射校正方法的一个实施例流程示意图,如图3所示,该散射校正方法包括如下步骤S301~S303,具体如下:
S301、获取目标对象的待校正图像。
在实际扫描过程中,拆除光束阻挡阵列或移动光束阻挡阵列位于成像源的射线的照射范围之外,成像源发出的射线穿过目标对象在成像器上形成投影(也即投影数据),计算机设备可以从成像器获取射线通过目标对象的投影数据,由投影数据形成的投影图像,得到目标对象的待校正图像。
这里,待校正图像可以是目标对象形成的投影图像,该投影图像为二维图像,待校正图像也可是目标对象的重建图像,该重建图像是根据不同成像角度下射线通过目标对象形成的投影图像重建而成的三维图像。
可以理解的是,待校正图像中不包括光束阻挡阵列中多个光束阻挡件对应的多个阴影区域。
S302、利用预先训练得到的散射估计模型对输入的待校正图像进行散射估计,输出散射图像。
在获取到待校正图像之后,计算机设备就可以利用预先训练得到的散射估计模型对输入的待校正图像进行散射估计,并输出目标对象的散射图像,该散射图像可指示目标对象投影图像的散射分布或重建图像的伪影,可以存储于计算机设备中,也可以存储于与计算机设备通信连接的云端服务器上。
可以理解的是,上述散射估计模型已预先训练得到,其输入为不包括多个阴影区域的待校正图像,输出为散射图像。
S303、根据散射图像,对待校正图像进行散射校正,生成目标对象的散射分布图像。
在得到目标对象的散射图像之后,计算机设备就可以根据该散射图像,对待校正图像进行散射校正,生成目标对象的散射校正图像,从而消除待校正图像中的散射或因散射造成的重建图像伪影。
示例性的,可以通过计算待校正图像与散射分布图的差值,得到目标对象的散射校正图像,以完成对目标对象的待校正图像的散射校正。
本申请实施例在不需要设置光束阻挡阵列的前提下,计算机设备先获取目标对象的待校正图像,然后,利用预先训练得到的散射估计模型对输入的待校正图像进行散射估计,得到散射图像,最后,根据该散射图像,对待校正图像进行散射校正,从而得到目标对象的散射校正图像。由于待校正图像中不包含阴影区域,通过预先训练好的散射估计模型得到待校正图像的散射图像之后,就可根据散射图像直接对待校正图像进行散射校正,整个散射校正过程中,不需要用插值的方式将阴影区域的主射线补全,避免了因主射线插值影响图像质量。
本申请实施例中还提供另一种散射校正方法,该散射校正方法应用于计算机设备,该方法可以包括:
S401、获取不同对象的第一样本图像和第二样本图像。
计算机设备获取不同对象的第一样本图像和第二样本图像。这里,第一样本图像不包括与光束阻挡阵列中多个光束阻挡件对应的多个阴影区域,第二样本图像为根据投影图像中与光束阻挡阵列中多个光束阻挡件对应的多个阴影区域的散射采样数据生成的散射分布图像。这些样本图像均用于训练散射估计模型。
需要说明的是,每个对象具有第一样本图像和第二样本图像,第一样本图像和第二样本图像可以是对不同对象的不同部位、不同尺寸、不同摆放位置等经散射校正的多个样本图像。不同对象可以为患者、模体等,只需要能在成像系统下成像的对象即可。
S402、将第一样本图像和第二样本图像输入到神经网络中进行训练,得到散射估计模型。
需要说明的是,在本实施例中,散射估计模型可采用任意的深度学习中的神经网络,如卷积神经网络(Convolutional Neural Networks,CNN)、循环神经网络(RecurrentNeural Network,RNN)、对抗生成网络(Generative Adversarial Net,GAN)等,以及任意的训练方式得到,如有监督的训练方式、无监督的训练方式等,本申请实施例在此不做过多赘述。
通过上述步骤S401至步骤S402,即可实现对散射估计模型的训练,建立第一样本图像到第二样本图像之间的映射。
上述散射估计模型可以根据不同类型的输入样本图像训练出不同的模型,样本图像的类型包括第一类型和第二类型,相应的,散射估计模型包括第一散射估计模型和第二散射估计模型。这里,第一类型可以为二维图像,第二类型为三维图像。
以下将分别针对不同情况对步骤S401获取不同对象的第一样本图像和第二样本图像进行详细说明。
第一种情况:样本图像的类型为第一类型,相应的,散射估计模型为第一散射估计模型。
在第一种情况下,步骤S401具体可以包括以下步骤:
S4011a、获取射线通过不同对象且不通过光束阻挡阵列形成的不同对象的第一投影图像并作为第一样本图像。
为了获取第一样本图像,需要拆除光束阻挡阵列或移动光束阻挡阵列位于成像源的射线的照射范围之外,成像源发出的射线穿过不同对象在成像器上形成第一投影,计算机设备可以获取射线通过不同对象形成的不同对象的第一投影图像(由第一投影生成)并作为第一样本图像,该第一投影图像为二维图像。
S4012a、获取射线通过光束阻挡阵列以及不同对象形成的不同对象的第二投影图像。
为了获取第二样本图像,需要将光束阻挡阵列设置于成像源和不同对象之间,且位于成像源的射线的照射范围之内,成像源发出的射线穿过光束阻挡阵列以及不同对象在成像器上形成第二投影,计算机设备可以获取射线通过光束阻挡阵列以及不同对象形成的不同对象的第二投影图像(由第二投影生成),该第二投影图像中包括光束阻挡阵列中多个光束阻挡件对应的多个阴影区域,且该第二投影图像为二维图像。
S4013a、根据第二投影图像中多个阴影区域的散射采样数据,生成散射分布图像并作为第二样本图像。
计算机设备接下来可以根据第二投影图像中多个阴影区域的散射采样数据,生成散射分布图像并作为第二样本图像。示例性的,计算机设备可以将第二投影图像中多个阴影区域的中心点作为散射采样点,根据散射采样点对应的散射采样数据生成散射分布图像,并将散射分布图像作为第二样本图像。
这里,该第二样本图像可指示不同对象的第二投影图像的散射分布情况,且该散射分布图像为二维图像。
这样,就可以基于神经网络对通过步骤S4011a至步骤S4013a得到的样本图像进行训练,建立第一类型的第一样本图像到第一类型的第二样本图像之间的映射。
第二种情况:样本图像的类型为第二类型,相应的,散射估计模型为第二散射估计模型。
在第二种情况下,步骤S401具体可以包括以下步骤:
S4011b、获取不同成像角度下射线通过不同对象且不通过光束阻挡阵列形成的不同对象在所述不同成像角度下的第一投影图像。
为了获取第一样本图像,需要拆除光束阻挡阵列或移动光束阻挡阵列位于成像源的射线的照射范围之外,成像源发出的射线在不同成像角度下穿过不同对象在成像器上形成第一投影,计算机设备可以获取不同成像角度下射线通过不同对象形成的不同对象的第一投影图像,该第一投影图像为二维图像。
S4012b、对不同对象在不同成像角度下的第一投影图像进行图像重建,得到不同对象的重建图像并作为第一样本图像。
计算机设备接下来可以对不同成像角度下的第一投影图像进行图像重建,得到不同对象的重建图像并作为第一样本图像。这里,每个对象对应一个重建图像,该重建图像为三维图像。
可以理解的是,不同对象的重建图像中包含有伪影。
S4013b、获取不同成像角度下射线通过光束阻挡阵列以及不同对象形成的不同对象在所述不同成像角度下的第二投影图像。
为了获取第二样本图像,需要将光束阻挡阵列设置于成像源和不同对象中之间,且位于成像源的射线的照射范围之内,当成像源和成像器可绕旋转轴旋转的情况下,成像源发出的射线在不同成像角度下穿过光束阻挡阵列以及不同对象在成像器上形成不同对象在所述不同成像角度下的第二投影(第二投影包括多个投影),计算机设备可以获取不同对象在不同成像角度下射线通过光束阻挡阵列以及不同对象形成的不同对象在不同成像角度下的第二投影图像(由第二投影生成),该第二投影图像中包括光束阻挡阵列中多个光束阻挡件对应的多个阴影区域,且该第二投影图像为二维图像。
S4014b、根据不同对象在不同成像角度下的第二投影图像中多个阴影区域的散射采样数据,对相应角度下的第一投影图像进行散射校正,得到不同成像角度下的校正投影图像。
计算机设备接下来可以根据不同对象在不同成像角度下的第二投影图像中多个阴影区域的散射采样数据,对相应角度下的第一投影图像进行散射校正,得到不同成像角度下的校正投影图像。该校正投影图像已进行散射校正,消除了散射。
步骤S4014b具体的包括以下两个步骤:
S40141b、根据不同对象在不同成像角度下的第二投影图像中多个阴影区域的散射采样数据,得到不同对象在不同成像角度下的散射分布图像。示例性的,计算机设备可以将不同对象在不同成像角度下的第二投影图像中多个阴影区域的中心点作为散射采样点,根据散射采样点对应的散射采样数据生成不同对象在不同成像角度下的散射分布图像。该散射分布图像为二维图像,可指示散射分布的情况。
S40142b、利用不同对象在不同成像角度下的散射分布图像对相应角度下的第一投影图像进行散射校正,例如从第一投影图像中减去散射分布图像,得到不同对象在不同成像角度下的校正投影图像。
S4015b、对不同对象在不同成像角度下的校正投影图像进行重建,得到不同对象的无散射伪影重建图像。
计算机设备对不同对象在不同成像角度下的校正投影图像进行重建,得到不同对象的无散射伪影重建图像。由于重建该无散射伪影重建图像的校正投影图像中已消除伪影,因此,该无散射伪影重建图像中不存在伪影。
S4016b、利用不同对象的重建图像减去不同对象的无散射伪影重建图像,得到不同对象的重建伪影图像并作为第二样本图像。
计算机设备利用不同对象的重建图像(即第一样本图像)减去不同对象的无散射伪影重建图像,得到不同对象的重建伪影图像并作为第二样本图像。这里,该重建伪影图像为三维图像,可指示重建图像的伪影情况。
这样,就可以基于神经网络对通过步骤S4011b至步骤S4016b得到的样本图像进行训练,建立第二类型的第一样本图像到第二类型的第二样本图像之间的映射。
上述散射估计模型可以根据需求训练出不同模型,该散射估计模型可以为一种模型,也可以包括多种不同模型。下面将针对不同情况进行解释说明。
第一种情况:散射估计模型为第一散射估计模型,输入图像(待校正图像)及输出图像(散射校正图像)的类型均为第一类型。
S403A、获取射线通过目标对象形成的目标对象的投影图像并作为待校正图像。该投影图像为二维图像。
S404A、利用预先训练得到的第一散射估计模型对输入的待校正图像进行散射估计,输出的散射图像为散射分布图像。该散射分布图像为二维图像。
S405A、根据散射分布图像,对待校正图像进行散射校正,生成目标对象的散射校正图像。该散射校正图像为二维图像。
通过步骤S403A至S405A,就可以得到目标对象的散射校正图像。
当在不同成像角度下获取到该目标对象的散射校正图像的情况下,就可以对不同成像角度下目标对象的散射校正图像进行重建,得到目标对象的重建图像,由于用于重建的散射校正图像已经去除了散射,则该重建图像不需要再进行散射校正。
第二种情况:散射估计模型为第二散射估计模型,输入图像(待校正图像)及输出图像(散射校正图像)的类型均为第二类型。
S403B、获取同成像角度下射线通过目标对象形成的投影图像。该投影图像为二维图像。
S404B、对不同成像角度下的投影图像进行图像重建,得到目标对象的重建图像并作为待校正图像。该重建图像为三维图像。
S405B、利用预先训练得到的第二散射估计模型对输入的待校正图像进行散射估计,输出的散射图像为散射重建伪影图像。该散射重建伪影图像为三维图像。
S406B、根据散射重建伪影图像,对待校正图像进行散射校正,生成目标对象的散射校正图像。该散射校正图像为三维图像。
通过步骤S403B至S406B,就可以得到目标对象的散射校正图像。该目标对象的散射校正图像本身为重建图像,可以直接用于对目标对象的图像引导治疗中。
第三种情况:散射估计模型包括第一散射估计模型和第二散射估计模型,其中,第一散射估计模型的输入图像(待校正图像)及输出图像(散射校正图像)的类型均为第一类型,第二散射估计模型的输入图像(待校正图像)及输出图像(散射校正图像)的类型均为第二类型。这里,细分为两种情况分别进行解释说明。
情况1:
S403C1、获取选取目标散射估计模型的用户指令,目标散射估计模型为第一散射估计模型或第二散射估计模型。
S4041C1、确定目标散射估计模型为第一散射估计模型的情况下,执行第一种情况的步骤,即步骤S403A至步骤S405A。
S4042C1、确定目标散射估计模型为第二散射估计模型的情况下,执行第二种情况的步骤,即步骤S403B至步骤S406B。
通过步骤S403C1至S404C1,就可以根据用户需求选择相应的散射估计模型得到相应的目标对象的散射图像,该方式可以满足不同用户的需求。
情况2:
S403C2、获取目标对象的待校正图像。
S4041C2、确定待校正图像的类型为第一类型时,利用预先训练得到的第一散射估计模型对输入的待校正图像进行散射估计,输出散射图像。
S4042C2、确定待校正图像的类型为第二类型时,利用预先训练得到的第二散射估计模型对输入的待校正图像进行散射估计,输出散射图像。
S405C2、根据散射图像,对待校正图像进行散射校正,生成目标对象的散射分布图像。
通过步骤S403C2至S405C2,就可以根据待校正图像的类型自动选择对应的散射估计模型估计散射/伪影,该方式可以适应不同的应用场景。
本申请实施例还提供一种计算机设备,该计算机设备包括:一个或多个处理器;存储器;以及一个或多个应用程序,其中一个或多个应用程序被存储于存储器中,并配置为由处理器执行上述散射校正方法实施例中任一实施例中的散射校正方法中的步骤。
本申请实施例还提供一种计算机设备,如图4所示,其示出了本申请实施例所涉及的计算机设备的结构示意图,具体来讲:
该计算机设备可以包括一个或者一个以上处理核心的处理器401、一个或一个以上计算机可读存储介质的存储器402、电源403和输入装置404等部件。本领域技术人员可以理解,图4中示出的计算机设备结构并不构成对计算机设备的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。其中:
处理器401是该计算机设备的控制中心,利用各种接口和线路连接整个计算机设备的各个部分,通过运行或执行存储在存储器402内的软件程序和/或模块,以及调用存储在存储器402内的数据,执行计算机设备的各种功能和处理数据,从而对计算机设备进行整体监控。
可选的,处理器401可包括一个或多个处理核心;优选的,处理器401可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器401中。
存储器402可用于存储软件程序以及模块,处理器401通过运行存储在存储器402的软件程序以及模块,从而执行各种功能应用以及数据处理。存储器402可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据计算机设备的使用所创建的数据等。此外,存储器402可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。相应地,存储器402还可以包括存储器控制器,以提供处理器401对存储器402的访问。
计算机设备还包括给各个部件供电的电源403,可选的,电源403可以通过电源管理系统与处理器401逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。电源403还可以包括一个或一个以上的直流或交流电源、再充电系统、电源故障检测电路、电源转换器或者逆变器、电源状态指示器等任意组件。
该计算机设备还可包括输入装置404,该输入装置405可用于接收输入的数字或字符信息,以及产生与用户设置以及功能控制有关的键盘、鼠标、操作杆、光学或者轨迹球信号输入。
尽管未示出,计算机设备还可以包括显示装置405等,显示装置405可以是显示器,在此不再赘述。具体在本申请实施例中,计算机设备中的处理器401会按照如下的指令,将一个或一个以上的应用程序的进程对应的可执行文件加载到存储器402中,并由处理器401来运行存储在存储器402中的应用程序,从而实现各种功能,如下:
获取目标对象的待校正图像;利用预先训练得到的散射估计模型对输入的所述待校正图像进行散射估计,输出散射图像;根据所述散射图像,对所述待校正图像进行散射校正,生成所述目标对象的散射分布图像。
本领域普通技术人员可以理解,上述实施例的各种方法中的全部或部分步骤可以通过指令来完成,或通过指令控制相关的硬件来完成,该指令可以存储于一计算机可读存储介质中,并由处理器进行加载和执行。
为此,本申请实施例提供一种计算机可读存储介质,该存储介质可以包括:只读存储器(ROM,Read Only Memory)、随机存取记忆体(RAM,Random Access Memory)、磁盘或光盘等。其上存储有计算机程序,该计算机程序被处理器进行加载,以执行本申请实施例所提供的任一种散射校正方法中的步骤。例如,该计算机程序被处理器进行加载可以执行如下步骤:
获取目标对象的待校正图像;利用预先训练得到的散射估计模型对输入的所述待校正图像进行散射估计,输出散射图像;根据所述散射图像,对所述待校正图像进行散射校正,生成所述目标对象的散射分布图像。。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见上文针对其他实施例的详细描述,此处不再赘述。
具体实施时,以上各个结构可以作为独立的实体来实现,也可以进行任意组合,作为同一或若干个实体来实现,以上各个结构的具体实施可参见前面的方法实施例,在此不再赘述。
以上各个操作的具体实施可参见前面的实施例,在此不再赘述。
以上对本申请实施例所提供的一种散射校正方法、装置、计算机设备、系统及存储介质进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (10)

1.一种散射校正方法,其特征在于,所述方法包括:
获取目标对象的待校正图像;
利用预先训练得到的散射估计模型对输入的所述待校正图像进行散射估计,输出散射图像;
根据所述散射图像,对所述待校正图像进行散射校正,生成所述目标对象的散射分布图像。
2.根据权利要求1所述的散射校正方法,其特征在于,所述散射估计模型为第一散射估计模型的情况下,所述待校正图像和所述散射图像的类型均为所述第一类型;所述获取目标对象的待校正图像,包括:
获取射线通过所述目标对象形成的所述目标对象的投影图像并作为待校正图像;
相应的,所述利用预先训练得到的散射估计模型对输入的所述待校正图像进行散射估计,输出散射图像,包括:
利用预先训练得到的所述第一散射估计模型对输入的所述待校正图像进行散射估计,输出的散射图像为散射分布图像。
3.根据权利要求1所述的散射校正方法,其特征在于,所述散射估计模型为第二散射估计模型的情况下,所述待校正图像和所述散射图像的类型均为所述第二类型;所述获取目标对象的待校正图像,包括:
获取不同成像角度下射线通过所述目标对象形成的投影图像;
对所述不同成像角度下的投影图像进行图像重建,得到所述目标对象的重建图像并作为待校正图像;
相应的,所述利用预先训练得到的散射估计模型对输入的所述待校正图像进行散射估计,输出散射图像,包括:
所述利用预先训练得到的所述第二散射估计模型对输入的所述待校正图像进行散射估计,输出的散射图像为散射重建伪影图像。
4.根据权利要求1所述的散射校正方法,其特征在于,所述散射估计模型包括第一散射估计模型和第二散射估计模型的情况下,所述待校正图像的类型包括第一类型和第二类型;所述利用预先训练得到的散射估计模型对输入的所述待校正图像进行散射估计,输出散射图像,包括:
确定所述待校正图像的类型为第一类型时,利用预先训练得到的所述第一散射估计模型对输入的所述待校正图像进行散射估计,输出散射图像;
确定所述待校正图像的类型为第二类型时,利用预先训练得到的所述第二散射估计模型对输入的所述待校正图像进行散射估计,输出散射图像。
5.根据权利要求1所述的散射校正方法,其特征在于,所述散射估计模型包括第一散射估计模型和第二散射估计模型的情况下,所述方法还包括:
获取选取目标散射估计模型的用户指令,所述目标散射估计模型为第一散射估计模型或第二散射估计模型;
确定所述目标散射估计模型为第一散射估计模型的情况下,所述待校正图像和所述散射图像的类型均为所述第一类型;
确定所述目标散射估计模型为第二散射估计模型的情况下,所述待校正图像和所述散射图像的类型均为所述第二类型。
6.根据权利要求1所述的散射校正方法,其特征在于,所述获取目标对象的待校正图像之前,所述方法还包括:
获取不同对象的第一样本图像和第二样本图像,所述第一样本图像中不包括与光束阻挡阵列中多个光束阻挡件对应的多个阴影区域,所述第二样本图像为根据投影图像中与光束阻挡阵列中多个光束阻挡件对应的多个阴影区域的散射采样数据生成的散射分布图像;
将所述第一样本图像和所述第二样本图像输入到神经网络中进行训练,得到所述散射估计模型。
7.根据权利要求6述的散射校正方法,其特征在于,所述散射估计模型为第一散射估计模型的情况下,所述获取不同对象的第一样本图像和第二样本图像,包括:
获取射线通过所述不同对象且不通过所述光束阻挡阵列形成的所述不同对象的第一投影图像并作为所述第一样本图像;
获取射线通过所述光束阻挡阵列以及所述不同对象形成的所述不同对象的第二投影图像,所述第二投影图像中包括所述光束阻挡阵列中多个光束阻挡件对应的多个阴影区域;
根据所述第二投影图像中多个阴影区域的散射采样数据,生成散射分布图像并作为所述第二样本图像。
8.根据权利要求6所述的散射校正方法,其特征在于,所述散射估计模型为第二散射估计模型的情况下,所述获取不同对象的第一样本图像和第二样本图像,包括:
获取不同成像角度下射线通过所述不同对象且不通过所述光束阻挡阵列形成的所述不同对象在所述不同成像角度下的第一投影图像;
对所述不同对象在所述不同成像角度下的第一投影图像进行图像重建,得到所述不同对象的重建图像并作为所述第一样本图像;
获取所述不同成像角度下射线通过所述光束阻挡阵列以及所述不同对象形成的所述不同对象在所述不同成像角度下的第二投影图像,所述第二投影图像中包括所述光束阻挡阵列中多个光束阻挡件对应的多个阴影区域;
根据所述不同对象在所述不同成像角度下的第二投影图像中多个阴影区域的散射采样数据,对相应角度下的所述第一投影图像进行散射校正,得到所述不同成像角度下的校正投影图像;
对所述不同对象在所述不同成像角度下的校正投影图像进行重建,得到所述不同对象的无散射伪影重建图像;
利用所述不同对象的重建图像减去所述不同对象的无散射伪影重建图像,得到所述不同对象的重建伪影图像并作为所述第二样本图像。
9.一种计算机设备,其特征在于,所述计算机设备包括:
一个或多个处理器;
存储器;以及
一个或多个应用程序,其中所述一个或多个应用程序被存储于所述存储器中,并配置为由所述处理器执行以实现权利要求1至8中任一项所述的散射校正方法中的步骤。
10.一种成像系统,其特征在于,所述成像系统包括:
成像源,用于产生射线,以对目标对象进行成像;
光束阻挡阵列,可拆卸/可移动的设置于所述成像源和所述目标对象之间,包括多个光束阻挡件;
成像器,与所述成像源相对设置,用于接收通过所述光束阻挡阵列和/或所述目标对象的射线;
如权利要求9所述的计算机设备,与所述成像器连接。
CN202210755978.3A 2022-06-29 2022-06-29 散射校正方法、计算机设备及成像系统 Pending CN115239829A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210755978.3A CN115239829A (zh) 2022-06-29 2022-06-29 散射校正方法、计算机设备及成像系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210755978.3A CN115239829A (zh) 2022-06-29 2022-06-29 散射校正方法、计算机设备及成像系统

Publications (1)

Publication Number Publication Date
CN115239829A true CN115239829A (zh) 2022-10-25

Family

ID=83671770

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210755978.3A Pending CN115239829A (zh) 2022-06-29 2022-06-29 散射校正方法、计算机设备及成像系统

Country Status (1)

Country Link
CN (1) CN115239829A (zh)

Similar Documents

Publication Publication Date Title
JP6139361B2 (ja) 医用画像処理装置、治療システム及び医用画像処理方法
US6754300B2 (en) Methods and apparatus for operating a radiation source
US10665002B2 (en) Reconstructing image
EP2443614B1 (en) Imaging procedure planning
CN110866959B (zh) 图像重建方法、系统、装置及存储介质
US9655584B2 (en) Computed tomography apparatus and method of controlling X-ray by using the same
CN110210437B (zh) 一种图像中人体区域的确定方法及系统
US11238625B2 (en) Imaging system extended field-of-view
US20210166448A1 (en) Systems and methods for determining at least one artifact calibration coefficient
WO2017104700A1 (ja) 画像処理装置および画像処理方法
JP6310118B2 (ja) 画像処理装置、治療システム及び画像処理方法
US10390789B2 (en) Two-dimensional X-ray detector, cone-beam CT apparatus and method using region-of-interest
CN110197496A (zh) 一种医疗系统控制方法、装置、设备及介质
KR20200086919A (ko) 단층 영상 촬영 장치 및 단층 영상 생성 방법
US20170084059A1 (en) Image Generating Apparatus, Radiation Tomography Imaging Apparatus, and Image Generating Method and Program
CN115239829A (zh) 散射校正方法、计算机设备及成像系统
US10984564B2 (en) Image noise estimation using alternating negation
CN110811662A (zh) 一种扫描剂量调制的方法、装置、设备及存储介质
CN113313649B (zh) 图像重建方法及装置
US10405822B2 (en) X-ray CT apparatus
CN115272503A (zh) 散射校正方法、计算机设备及成像系统
CN115553797A (zh) 扫描轨迹的调整方法、系统、设备及存储介质
CN115251964A (zh) 主射线投影图像获取方法、计算机设备、系统及存储介质
CN111685784A (zh) 一种基于面阵光源的散射校正方法和系统
CN115067982A (zh) 主射线投影图像获取方法、成像控制方法、设备及系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination