CN115238857B - 基于脉冲信号的神经网络及脉冲信号处理方法 - Google Patents
基于脉冲信号的神经网络及脉冲信号处理方法 Download PDFInfo
- Publication number
- CN115238857B CN115238857B CN202210672468.XA CN202210672468A CN115238857B CN 115238857 B CN115238857 B CN 115238857B CN 202210672468 A CN202210672468 A CN 202210672468A CN 115238857 B CN115238857 B CN 115238857B
- Authority
- CN
- China
- Prior art keywords
- output end
- convolution layer
- end convolution
- pulse signal
- output
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000013528 artificial neural network Methods 0.000 title claims abstract description 111
- 238000003672 processing method Methods 0.000 title claims abstract description 24
- 238000012545 processing Methods 0.000 claims abstract description 71
- 238000000034 method Methods 0.000 claims abstract description 53
- 238000004364 calculation method Methods 0.000 claims description 12
- 238000004590 computer program Methods 0.000 claims description 10
- 230000015654 memory Effects 0.000 description 17
- 238000010586 diagram Methods 0.000 description 15
- 238000001514 detection method Methods 0.000 description 8
- 239000012528 membrane Substances 0.000 description 7
- 238000013527 convolutional neural network Methods 0.000 description 6
- 230000001133 acceleration Effects 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 230000005291 magnetic effect Effects 0.000 description 3
- 210000002569 neuron Anatomy 0.000 description 3
- 230000008054 signal transmission Effects 0.000 description 3
- 238000012421 spiking Methods 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000012827 research and development Methods 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 238000012549 training Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/049—Temporal neural networks, e.g. delay elements, oscillating neurons or pulsed inputs
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/06—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
- G06N3/063—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using electronic means
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Evolutionary Computation (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- Artificial Intelligence (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Neurology (AREA)
- Image Analysis (AREA)
Abstract
Description
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210672468.XA CN115238857B (zh) | 2022-06-15 | 2022-06-15 | 基于脉冲信号的神经网络及脉冲信号处理方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210672468.XA CN115238857B (zh) | 2022-06-15 | 2022-06-15 | 基于脉冲信号的神经网络及脉冲信号处理方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115238857A CN115238857A (zh) | 2022-10-25 |
CN115238857B true CN115238857B (zh) | 2023-05-05 |
Family
ID=83669514
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210672468.XA Active CN115238857B (zh) | 2022-06-15 | 2022-06-15 | 基于脉冲信号的神经网络及脉冲信号处理方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115238857B (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109460817A (zh) * | 2018-09-11 | 2019-03-12 | 华中科技大学 | 一种基于非易失存储器的卷积神经网络片上学习系统 |
CN110119785A (zh) * | 2019-05-17 | 2019-08-13 | 电子科技大学 | 一种基于多层spiking卷积神经网络的图像分类方法 |
CN110210563A (zh) * | 2019-06-04 | 2019-09-06 | 北京大学 | 基于Spike cube SNN的图像脉冲数据时空信息学习及识别方法 |
CN113688976A (zh) * | 2021-08-26 | 2021-11-23 | 哲库科技(上海)有限公司 | 一种神经网络加速方法、装置、设备及存储介质 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109816026B (zh) * | 2019-01-29 | 2021-09-10 | 清华大学 | 卷积神经网络和脉冲神经网络的融合装置及方法 |
CN112581414B (zh) * | 2019-09-30 | 2024-04-23 | 京东方科技集团股份有限公司 | 一种卷积神经网络、图像处理的方法及电子设备 |
CN111797971B (zh) * | 2020-05-27 | 2024-08-23 | 北京迈格威科技有限公司 | 应用卷积神经网络进行数据处理的方法、装置和电子系统 |
CN114037047A (zh) * | 2021-10-09 | 2022-02-11 | 鹏城实验室 | 一种脉冲神经网络的训练方法 |
-
2022
- 2022-06-15 CN CN202210672468.XA patent/CN115238857B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109460817A (zh) * | 2018-09-11 | 2019-03-12 | 华中科技大学 | 一种基于非易失存储器的卷积神经网络片上学习系统 |
CN110119785A (zh) * | 2019-05-17 | 2019-08-13 | 电子科技大学 | 一种基于多层spiking卷积神经网络的图像分类方法 |
CN110210563A (zh) * | 2019-06-04 | 2019-09-06 | 北京大学 | 基于Spike cube SNN的图像脉冲数据时空信息学习及识别方法 |
CN113688976A (zh) * | 2021-08-26 | 2021-11-23 | 哲库科技(上海)有限公司 | 一种神经网络加速方法、装置、设备及存储介质 |
Also Published As
Publication number | Publication date |
---|---|
CN115238857A (zh) | 2022-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10977530B2 (en) | ThunderNet: a turbo unified network for real-time semantic segmentation | |
US11361546B2 (en) | Action recognition in videos using 3D spatio-temporal convolutional neural networks | |
US11462034B2 (en) | Generating images using neural networks | |
WO2020238560A1 (zh) | 视频目标跟踪方法、装置、计算机设备及存储介质 | |
CN112308200B (zh) | 神经网络的搜索方法及装置 | |
US11157764B2 (en) | Semantic image segmentation using gated dense pyramid blocks | |
CN108537824B (zh) | 基于交替反卷积与卷积的特征图增强的网络结构优化方法 | |
CN111669514B (zh) | 高动态范围成像方法和装置 | |
EP3427195A1 (en) | Convolutional neural networks, particularly for image analysis | |
CN108520238B (zh) | 一种基于深度预测编码网络的夜视图像的场景预测方法 | |
CN112149694B (zh) | 一种基于卷积神经网络池化模块的图像处理方法、系统、存储介质及终端 | |
CN110136162B (zh) | 无人机视角遥感目标跟踪方法及装置 | |
US11734557B2 (en) | Neural network with frozen nodes | |
EP4038581A1 (en) | Spatio-temporal embeddings | |
CN114885144B (zh) | 基于数据融合的高帧率3d视频生成方法及装置 | |
CN114821058A (zh) | 一种图像语义分割方法、装置、电子设备及存储介质 | |
US11704894B2 (en) | Semantic image segmentation using gated dense pyramid blocks | |
CN103595922A (zh) | 一种基于电子快门曝光编码的成像方法 | |
CN115238857B (zh) | 基于脉冲信号的神经网络及脉冲信号处理方法 | |
CN112541972A (zh) | 一种视点图像处理方法及相关设备 | |
US12002453B2 (en) | Methods and devices for irregular pruning for automatic speech recognition | |
CN114418064A (zh) | 一种目标检测方法、终端设备及存储介质 | |
CN113379746A (zh) | 图像检测方法、装置、系统、计算设备及可读存储介质 | |
CN116129363B (zh) | 一种河流漂浮污染物的监测方法及存储介质 | |
CN113642549B (zh) | 快速目标检测系统和电子设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20230329 Address after: 100193 302a4, 3 / F, building 2, east yard, No.10, northwest Wangdong Road, Haidian District, Beijing Applicant after: Beijing Fusion Future Technology Co.,Ltd. Address before: 100084 b501b-2, 5th floor, building 8, yard 1, Zhongguancun East Road, Haidian District, Beijing Applicant before: Pulse vision (Beijing) Technology Co.,Ltd. |
|
TA01 | Transfer of patent application right | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240829 Address after: 100089, 5th Floor, Building 7, Courtyard A2, West Third Ring North Road, Haidian District, Beijing Patentee after: Zhongguancun Technology Leasing Co.,Ltd. Country or region after: China Address before: 100193 302a4, 3 / F, building 2, east yard, No.10, northwest Wangdong Road, Haidian District, Beijing Patentee before: Beijing Fusion Future Technology Co.,Ltd. Country or region before: China |
|
TR01 | Transfer of patent right |